文档库 最新最全的文档下载
当前位置:文档库 › 概率论公式总结

概率论公式总结

概率论公式总结
概率论公式总结

概率论公式总结

集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

第一章

P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时,

P(A+B)=P(A)+P(B)

条件概率公式

概率的乘法公式

全概率公式:从原因计算结果

Bayes 公式:从结果找原因

第二章

二项分布(Bernoulli 分布)——X~B(n,p)

泊松分布——X~P(λ)

概率密度函数

怎样计算概率

均匀分布X~U(a,b)

指数分布X~Exp (θ)

分布函数

对离散型随机

变量 对连续型随机变量

分布函数与密度函数的重要关系:

二元随机变量及其边缘分布

分布规律的描述方法

)(b X a P ≤≤∑≤==≤=x k k X P x X P x F )()()(?∞-=≤=x

dt

t f x X P x F )()()(1),(0≤≤y x F

联合密度

函数 联合分布函数 联合密度与边缘密度

离散型随机变量的独立性

连续型随机变量的独立性

第三章 数学期望

离散型随机变量,数学期望定义

连续型随机变量,数学期望定义

E(a)=a ,其中a 为常数

E(a+bX)=a+bE(X),其中a 、b 为常数

E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量

随机变量g(X)的数学期望

常用公式

方差

定义式

常用计算

常用公式

当X 、Y 相互独立时:

方差的性质

D(a)=0,其中a 为常数

D(a+bX)=b2D(X),其中a 、b 为常数 ),(y x f ),(y x F ∑+∞-∞=?=k k k P x X E )([]22)()()(X E X E X D -=

当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y)

协方差与相关系数

协方差的性质

独立与相关

独立必定不相关

相关必定不独立

不相关不一定独立

第四章 正态分布

标准正态分布的概率计算

标准正态分布的概率计算公式

一般正态分布的概率计算

一般正态分布的概率计算公式

第五章

卡方分布

t 分布

F 分布 正态总体条件下

样本均值的分布:

样本方差的分布:

两个正态总体的方差之比

第六章

)

,(~2σμN X )

(~)1,0(~212

n X N X n i i χ∑=,则若)

,(~//),(~),(~212

1

2212n n F n V n U n V n U 则若χχ

点估计:参数的估计值为一个常数

矩估计

最大似然估计

似然函数 均值的区间估计——大样本结果

正态总体方差的区间估计

两个正态总体均值差的置信区间

大样本或正态小样本且方差已知

两个正态总体方差比的置信区间

第七章

假设检验的步骤

① 根据具体问题提出原假设H0和备择假设H1

② 根据假设选择检验统计量,并计算检验统计值

③ 看检验统计值是否落在拒绝域,若落在拒绝域则拒绝原假设,否则就不拒绝原假设。

不可避免的两类错误

第1类(弃真)错误:原假设为真,但拒绝了原假设

第2类(取伪)错误:原假设为假,但接受了原假设

单个正态总体的显着性检验

单正态总体均值的检验

大样本情形——Z 检验

);(1θi n i x f L ∏==);(1θi n i x p L ∏==()22/1222/2)1()1(,ααχχ---S n S n 卡方分布的分位点

—样本方差—22/2αχS

正态总体小样本、方差已知——Z 检验 正态总体小样本、方差未知—— t 检验 单正态总体方差的检验

正态总体、均值未知——卡方检验

单正态总体均值的显着性检验

统计假设的形式

双边检验

左边检验

右边检验

单正态总体均值的Z 检验

拒绝域的

代数表示

双边检验

左边检验

右边检验 比例——特殊的均值的Z 检验

单正态总体均值的 t 检验

单正态总体方差的卡方检验

拒绝域

双边检

左边检验

右边检验 0100::)1(μμμμ≠=H H 2/αZ Z ≥αZ Z ≥22/1222/2ααχχχχ-≤≥或αZ Z -≤

概率统计公式大全(复习重点)

第一章随机事件和概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

概率论与数理统计公式定理全总结

第一章 P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式 概率的乘法公式 全概率公式:从原因计算结果 Bayes 公式:从结果找原因 第二章 二项分布(Bernoulli 分布)——X~B(n,p) 泊松分布——X~P(λ) 概率密度函数 怎样计算概率 均匀分布X~U(a,b) 指数分布X~Exp (θ) 分布函数 对离散型随机变量 对连续型随机变量 分布函数与密度函数的重要关系: 二元随机变量及其边缘分布 分布规律的描述方法 联合密度函数 联合分布函数 联合密度与边缘密度 离散型随机变量的独立性 连续型随机变量的独立性 第三章 数学期望 离散型随机变量,数学期望定义 连续型随机变量,数学期望定义 ● E(a)=a ,其中a 为常数 ● E(a+bX)=a+bE(X),其中a 、b 为常数 ● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量 随机变量g(X)的数学期望 常用公式 ) () ()|(B P AB P B A P =)|()()(B A P B P AB P =) |()(A B P A P =∑ ==n k k k B A P B P A P 1)|()()(∑ ==n k k k i i k B A P B P B A P B P A B P 1 )|()()|()()|() ,...,1,0()1()(n k p p C k X P k n k k n =-==-,,...) 1,0(! )(== =-k e k k X P k ,λλ 1)(=? +∞ ∞ -dx x f )(b X a P ≤≤?=≤≤b a dx x f b X a P )()() 0(1 )(/≥= -x e x f x θ θ ∑≤==≤=x k k X P x X P x F ) ()()(? ∞ -=≤=x dt t f x X P x F )()()(? ∞ -=≤=x dt t f x X P x F )()()() ,(y x f ),(y x F 0 ),(≥y x f 1),(=?? +∞∞-+∞ ∞ -dxdy y x f 1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=?+∞ ∞ -=dy y x f x f X ),()(?+∞ ∞ -=dx y x f y f Y ),()(} {}{},{j Y P i X P j Y i X P =====) ()(),(y f x f y x f Y X =∑+∞ -∞ =?= k k k P x X E )(? +∞ ∞ -?=dx x f x X E )()(∑ =k k k p x g X g E )())((∑∑=i j ij i p x X E )(dxdy y x xf X E ??=),()() (1 )(b x a a b x f ≤≤-= ) ()('x f x F =

概率统计公式大全汇总

第一章
n Pm ?
随机事件和概率
(1)排列 组合公式
n Cm ?
m! (m ? n)!
从 m 个人中挑出 n 个人进行排列的可能数。
m! 从 m 个人中挑出 n 个人进行组合的可能数。 n!(m ? n)!
(2)加法 和乘法原 理
加法原理(两种方法均能完成此事) :m+n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种 方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事) :m×n 某件事由两个步骤来完成, 第一个步骤可由 m 种方法完成, 第二个步骤可由 n 种 方法来完成,则这件事可由 m×n 种方法来完成。 重复排列和非重复排列(有序) 对立事件(至少有一个) 顺序问题 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但 在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如 下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用 ? 来表示。 基本事件的全体,称为试验的样本空间,用 ? 表示。 一个事件就是由 ? 中的部分点(基本事件 ? )组成的集合。通常用大写字母 A, B,C,…表示事件,它们是 ? 的子集。 ? 为必然事件,? 为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω )的概率为 1,而概率为 1 的事件也不一定是必然事件。 ①关系: 如果事件 A 的组成部分也是事件 B 的组成部分, (A 发生必有事件 B 发生) :
(3)一些 常见排列 (4)随机 试验和随 机事件
(5)基本 事件、样本 空间和事 件
(6)事件 的关系与 运算
A? B
如果同时有 A ? B , B ? A ,则称事件 A 与事件 B 等价,或称 A 等于 B:A=B。 A、B 中至少有一个发生的事件:A ? B,或者 A+B。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可表 示为 A-AB 或者 A B ,它表示 A 发生而 B 不发生的事件。
1 / 33

(完整版)概率论基本公式

1、 A B AB A AB;A B A (B A) 例: 证明: A B) B A AB AB A B. 第一部分 概率论基本公 式 概率论与数理统计基本公式 证明: 由(A B) B ,知 B 不发生, A 发生,则 AB 不发生,从而 A B) B A AB 成立,也即 A B 成立,也即 A B 成立。得证。 2、对偶率: A B A B ;A B A B. 3、概率性率: (1) 有限可加: A 1、 A 2为不相容事件,则 P(A 1 A 2) P(A 1) P(A 2) P(A B) P(A ) P(B);P(A) P(B) (3) 对任意两个事件有: P(A B) P(A) P(B) P(AB) 例:已知: P(A) 0.5, P(AB) 0.2,P(B) 0.4.求:(1)P(AB);P(A B); P(A 解: AB AB B,且B 、AB 是不相容事件, P(AB) P(AB) P(B) 即P(AB) 0.2.,又 P(A) 0.5, P(A B) P(A) P(AB) 0.3 P(A B) P(A) P(B) P(AB) 0.7, P( AB) PA B 1 P(A B) 0.3. 4、古典概 P(A B) P(A) P(AB),特别, B A 时有: (2) B); P( AB ) 例: n 双鞋总共 2n 只,分为 n 堆,每堆为 2只,事件 A 每堆自成一双鞋的概率 2n (2-n 2))!! 2! ,自成一双为: n! C 22 n 解:分堆法: C 22n n !,则 P(A) 5、条件概率 P(B| A) P(AB) ,称为在事件 A 条件下,事件 B 的条件概 率, P(A) P(B)称为无条件概率。 乘法公式: P(AB) P(A)P(B |A) P(AB) P(B)P(A |B) 全概率公式:P(B) P(A i )P(B| A i ) i 贝叶斯公式: P(A i |B) P(A i B) P(A i )P(B|A i ) i P(B) P(A j )P(B |A j ) j 例:有三个罐子, 1号装有 2红1黑共 3个球, 2号装有 3红1黑 4个球, 3号装有 2红2

概率论知识点总结及心得体会

概率论总结及心得体会 2008211208班 08211106号 史永涛 班内序号:01 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。

不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全体 样本点的集合称为样本空间. 样本空间用S或Ω表示. 一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件间的关系及运算,就是集合间的关系和运算。 3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A 或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件 A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差 事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。

概率论知识点总结

概率论知识点总结 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为Ω。 样本点:随机试验的每个基本结果称为样本点,记作ω、样本空间:所有样本点组成的集合称为样本空间、样本空间用Ω表示、一个随机事件就是样本空间的一个子集。基本事件多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。事件的关系与运算(就是集合的关系和运算)包含关系:若事件A 发生必然导致事件B发生,则称B包含A,记为或。 相等关系:若且,则称事件A与事件B相等,记为A=B。事件的和:“事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B的和事件。记为A∪B。事件的积:称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB。事件的差:称事件“事件A发生而事件B不发生”为事件A 与事件B的差事件,记为 A-B。用交并补可以表示为。互斥事件:如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。互斥时可记为A+B。对立事

件:称事件“A不发生”为事件A的对立事件(逆事件),记为。对立事件的性质:。事件运算律:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律: A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C) A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)对偶律(摩根律): 第二节事件的概率概率的公理化体系:(1)非负性: P(A)≥0;(2)规范性:P(Ω)=1(3)可数可加性:两两不相容时概率的性质:(1)P(Φ)=0(2)有限可加性:两两不相容时当AB=Φ时P(A∪B)=P(A)+P(B)(3)(4)P(A-B)=P(A)- P(AB)(5)P(A∪B)=P(A)+P(B)-P(AB)第三节古典概率模型 1、设试验E是古典概型, 其样本空间Ω由n个样本点组成,事件A由k个样本点组成、则定义事件A的概率为 2、几何概率:设事件A是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可、第四节条件概率条件概率:在事件B发生的条件下,事件A发生的概率称为条件概率,记作 P(A|B)、乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设是一个完备事件组,则

概率计算公式

概率计算公式 加法法则 P(A ∪ B)=P(A)+P(B) -P(AB 条件概率 当P(A)>0 ,P(B|A)=P(AB)/P(A) 乘法公式 P(AB)=P(A)×P(B|A)=P(B)P(A|B)× 计算方法 “排列组合”的方法计算 记法 P(A)=A 加法法则 定理 :设 A 、 B 是互不相容事件(AB=φ), P(AB)=0. 则 P(A ∪ B)=P(A)+P(B)-P(AB)=p(A)+P(B) 推论 1:设 A1 、 A2 、?、 An 互不相容,则:P(A1+A2+...+ An)= P(A1) +P(A2) +?+P(An)推论 2:设 A1 、 A2 、?、 An 构成完备事件组,则:P(A1+A2+...+An)=1 推论 3: P(A)=1-P(A') 推论 4:若 B 包含 A ,则 P(B-A)= P(B)-P(A) 推论 5(广义加法公式): 对任意两个事件 A 与 B,有 P(A∪ B)=P(A)+P(B)-P(AB) 折叠条件概率 条件概率 :已知事件 B 出现的条件下 A 出现的概率,称为条件概率,记作:P(A|B) 条件概率计算公式: 当P(A)>0 ,P(B|A)=P(AB)/P(A) 当P(B)>0 ,P(A|B)=P(AB)/P(B) 折叠乘法公式 P(AB)=P(A)×P(B|A)=P(B)P(A|B)× 推广 :P(ABC)=P(A)P(B|A)P(C|AB) 折叠全概率公式 设: 若事件 A1 , A2 ,?, An 互不相容,且 A1+A2+?+An=Ω,则称 A1 ,A2 ,?, An 构成一个完备事件组。 全概率公式的形式如下 : 以上公式就被称为全概率公式。

《概率统计》公式符号汇总表及复习策略

《概率统计》公式、符号汇总表及各章要点及复习策略 (共4页) 第一章均独立。 与与与此时独立与B A B A B A B P A P AB P B A B P AB P B A P ,,);()()( )()()( (1)?=?= )() ()()( ) ()()()()( )3() (1)( ) ()( A B )()()( ) ()()()()( ) ()()()( )2(11A P B P B A P A B P B P B A P B P B A P A P A P A P B P A P AB P A P B A P A P A B P B P B A P AB P AB P B P A P B A P i i i n n ?=?++?=-=-?-=-?=?=-+= 第二、三章 一维随机变量及分布:X , i P , )(x f X , )(x F X 二维随机变量及分布:),(Y X , ij P , ),(y x f , ),(y x F *注意分布的非负性、规范性 (1)边缘分布:如:∑=j ij i p P ,?+∞ ∞-=dy y x f x f X ),()( (2)独立关系:J I IJ P P P Y X =?独立与 或)()()(y f x f y x f Y X =, ),,(11n X X 与),,(21n Y Y 独立),,(11n X X f ?与),,(21n Y Y g 独立 (3)随机变量函数的分布(离散型用点点对应法、连续型用分布函数法) 一维问题:已知X 的分布以及)(X g Y =,求Y 的分布 二维问题:已知),(Y X 的分布,求Y X Z +=、{}Y X M ,m ax =、{}Y X N ,m in =的分布- *??+∞∞-+∞ ∞--=-=dy y y z f dx x z x f z f Z ),(),()( M 、N 的分布--------离散型用点点对应法、连续型用分布函数法 第四章 (1)期望定义:离散:∑= i i i p x X E )( 连续:? ??+∞∞-+∞∞-+∞ ∞-==dxdy y x xf dx x xf X E ),()()( 方差定义:)()(]))([()(222X E X E X E X E X D -=-= 离散:∑-= i i i p X E x X D 2))(()( 连续:?+∞ ∞--=dx x f X E x X D X )())(()(2 协方差定义:)()()())]())(([(),(Y E X E XY E Y E Y X E X E V X COV -=--=

大学概率论与数理统计公式全集

大学概率论与数理统计公式全集 一、随机事件和概率 1、随机事件及其概率 运算律名称 表达式 交换律 A B B A +=+ BA AB = 结合律 C B A C B A C B A ++=++=++)()( ABC BC A C AB ==)()( 分配律 AC AB C B A ±=±)( ) )(()(C A B A BC A ++=+ 德摩根律 B A B A =+ B A A B += 2、概率的定义及其计算 公式名称 公式表达式 求逆公式 ) (1)(A P A P -= 加法公式 ) ()()()(AB P B P A P B A P -+=+ 条件概率公式 ) () ()(A P AB P A B P = 乘法公式 ) ()()(A B P A P AB P = )()()(B A P B P AB P = 全概率公式 ∑== n i i i A B P A P B P 1 )()()( 贝叶斯公式 (逆概率公式) ∑∞ == 1 ) ()() ()()(i i j j j j A B P A P A B P A P B A P 伯努利概型公式 n k p p C k P k n k k n n ,1,0,)1()(=-=- 两件事件相互独立相 应公式 ) ()()(B P A P AB P =;)()(B P A B P =;)()(A B P A B P =;1)()(=+A B P A B P ; 1)()(=+A B P A B P

二、随机变量及其分布 1、分布函数性质 )()(b F b X P =≤ )()()(a F b F b X a P -=≤< 2、离散型随机变量 分布名称 分布律 0–1分布),1(p B 1 ,0,)1()(1=-==-k p p k X P k k 二项分布),(p n B n k p p C k X P k n k k n ,,1,0,)1()( =-==- 泊松分布)(λP ,2,1,0,! )(===-k k e k X P k λλ 几何分布)(p G ,2,1,0, )1()(1=-==-k p p k X P k 超几何分布),,(n M N H ) ,min(,,1,,)(M n l l k C C C k X P n N k n M N k M +== =-- 3、连续型随机变量 分布名称 密度函数 分布函数 均匀分布),(b a U ?? ???<<-=其他,0,1 )(b x a a b x f ?? ? ????≥<≤--<=b x b x a a b a x a x x F ,1,,0)( 指数分布)(λE ???? ?>=-其他, 00 ,)(x e x f x λλ ? ??≥-<=-0,10, 0)(x e x x F x λ 正态分布),(2σμN +∞<<∞-= -- x e x f x 2 2 2)(21)(σμσ π ?∞ --- = x t t e x F d 21 )(2 22)(σμσπ 标准正态分布)1,0(N +∞<<∞-=- x e x x 2 221)(π ? ?∞ --- = x t t e x F d 21)(2 22)(σμσπ

概率论基本公式

概率论基本公式 Document number:PBGCG-0857-BTDO-0089-PTT1998

概率论与数理统计基本公式 第一部分概率论基本公式 1、)(;A B A B A AB A B A B A -?=?-==-- 例:证明: 2、对偶率:.- - - - ?=??=?B A B A B A B A ; 3、概率性率: (1) )()()(212121A P A P A A P A A +=?为不相容事件,则、有限可加:(2 ) ) ()();()()(),()()(B P A P B P A P B A P A B AB P A P B A P ≥-=-?-=-时有: 特别, (3))()()()(AB P B P A P B A P -+=?对任意两个事件有: 4、古典概型 5、条件概率 例:有三个罐子,1号装有2红1黑共3个球,2号装有3红1黑4个球,3号装有2红2黑4个球,某人随机从其中一罐,再从该罐中任取一个球,(1)求取得红球的概率;(2)如果取得是红球,那么是从第一个罐中取出的概率为多少 . 348.0) () ()|()|()2(. 639.0)(3 1 )()()(.2 1 )|(;43)|(;32)|()|()()(}{3,2,1i }{)1(111321321i i 321≈=≈∴====== ====∑A P B P B A P A B P A P B P B P B P B A P B A P B A P A B P A P B P B B B A i B i i 由贝叶斯公式:,,依题意,有:由全概率公式是一个完备事件、、,由题知取得是红球。,号罐球取自设解:6、独立事件

《概率统计》公式、符号汇总表

《概率统计》公式、符号汇总表及各章要点 (共3页) 第一章 均独立。 与与与此时独立与B A B A B A B P A P AB P B A B P AB P B A P ,,);()()( ) ()()( (1)?=?= ) () ()()( )()()()()( )3() (1)( )()( A B )()()( )()()()()( )()()()( )2(11A P B P B A P A B P B P B A P B P B A P A P A P A P B P A P AB P A P B A P A P A B P B P B A P AB P AB P B P A P B A P i i i n n ?= ?++?=-=-?-=-?=?=-+= 第二、三章 一维随机变量及分布:X , i P , )(x f X , )(x F X 二维随机变量及分布:),(Y X , ij P , ),(y x f , ),(y x F *注意分布的非负性、规范性 (1)边缘分布:∑ = j ij i p P ,? +∞ ∞ -= dy y x f x f X ),()( (2)独立关系:J I IJ P P P Y X =?独立与 或)()()(y f x f y x f Y X =, ),,(1 1n X X 与),,(21n Y Y 独立),,(1 1n X X f ?与),,(21n Y Y g 独立 (3)随机变量函数的分布(离散型用列表法) 一维问题:已知X 的分布以及)(X g Y =,求Y 的分布-------连续型用分布函数法 二维问题:已知),(Y X 的分布,求Y X Z +=、{}Y X M ,max =、{}Y X N ,min =的分布- ? ? +∞ ∞ -+∞ ∞ --=-= dy y y z f dx x z x f z f Z ),(),()( M 、N 的分布---------连续型用分布函数法 第四章 (1)期望定义:离散:∑= i i i p x X E )( 连续:?? ? +∞∞ -+∞ ∞-+∞ ∞ -= = dxdy y x xf dx x xf X E ),()()( 方差定义:)()(]))([()(2 2 2 X E X E X E X E X D -=-= 离散:∑-=i i i p X E x X D 2 ))(()( 连续:? +∞ ∞ --= dx x f X E x X D X )())(()(2

概率统计复习提纲百度文库讲解

《概率论与数理统计》总复习提纲 第一块随机事件及其概率 内容提要 基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,几何概率,条件概率,与条件概率有关的三个公式,事件的独立性,贝努里试验. 1、随机试验、样本空间与随机事件 (1)随机试验:具有以下三个特点的试验称为随机试验,记为. 1)试验可在相同的条件下重复进行; 2)每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果; 3)每次试验前不能确定哪一个结果会出现. (2)样本空间:随机试验的所有可能结果组成的集合称为的样本空间记为Ω;试验的每一个可能结果,即Ω中的元素,称为样本点,记为. (3)随机事件:在一定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的子集,必然事件(记为)和不可能事件(记为). 2、事件的关系与运算 (1)包含关系与相等:“事件发生必导致发生”,记为或;且. (2)互不相容性:;互为对立事件且. (3)独立性: (1)设为事件,若有,则称事件与相互独立. 等价于:若 (). (2)多个事件的独立:设是n个事件,如果对任意的,任意的 ,具有等式,称个事件相互独立. 3、事件的运算 (1)和事件(并):“事件与至少有一个发生”,记为. (2)积事件(交):“事件与同时发生”,记为或.

(3)差事件、对立事件(余事件):“事件发生而不发生”,记为称为与的差事件; 称为的对立事件;易知:. 4、事件的运算法则 1) 交换律:,; 2) 结合律:,; 3) 分配律:,; 4) 对偶(De Morgan)律:,, 可推广 5、概率的概念 (1)概率的公理化定义: (2)频率的定义:事件在次重复试验中出现次,则比值称为事件在次重复试验中出现的频率,记为,即. (3)统计概率:称为事件的(统计)概率. 在实际问题中,当很大时,取 (4)古典概率:若试验的基本结果数为有限个,且每个事件发生的可能性相等,

概率论公式总结

概率论公式总结 This manuscript was revised by the office on December 10, 2020.

第一章 P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式 概率的乘法公式 全概率公式:从原因计算结果 Bayes 公式:从结果找原因 第二章 二项分布(Bernoulli 分布)——X~B(n,p) 泊松分布——X~P(λ) 概率密度函数 怎样计算概率 均匀分布X~U(a,b) 指数分布X~Exp (θ) 分布函数 对离散型随机 变量 对连续型随机变量 分布函数与密度函数的重要关系: 二元随机变量及其边缘分布 分布规律的描述方法 联合密度 函数 联合分布函数 联合密度与边缘密度 )(b X a P ≤≤∑≤==≤=x k k X P x X P x F )()()(?∞-=≤=x dt t f x X P x F )()()(),(y x f ),(y x F 1),(0≤≤y x F

离散型随机变量的独立性 连续型随机变量的独立性 第三章 数学期望 离散型随机变量,数学期望定义 连续型随机变量,数学期望定义 E(a)=a ,其中a 为常数 E(a+bX)=a+bE(X),其中a 、b 为常数 E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量 随机变量g(X)的数学期望 常用公式 方差 定义式 常用计算 式 常用公式 当X 、Y 相互独立时: 方差的性质 D(a)=0,其中a 为常数 D(a+bX)=b2D(X),其中a 、b 为常数 当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y) 协方差与相关系数 协方差的性质 独立与相关 独立必定不相关 ∑+∞-∞=?=k k k P x X E )([]22)()()(X E X E X D -=

概率论知识点总结归纳

欢迎共阅 概率论知识点总结 第一章随机事件及其概率 第一节基本概念 随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用E 表示。 随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件 样本点样本空间包含关系相等关系事件的和记为A ∪事件的积事件的差 互斥事件对立事件=?B A (1(2(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C)A(B ∪C)=(A∩B)∪(A∩C)=AB ∪AC (4)对偶律(摩根律):B A B A ?=?B A B A ?=? 第二节事件的概率 概率的公理化体系: (1)非负性:P(A)≥0; (2)规范性:P(Ω)=1 (3)可数可加性: ????n A A A 21两两不相容时 概率的性质:

(1)P(Φ)=0 (2)有限可加性:n A A A ??? 21两两不相容时 当AB=Φ时P(A ∪B)=P(A)+P(B) (3))(1)(A P A P -= (4)P(A -B)=P(A)-P(AB) (5)P (A ∪B )=P(A)+P(B)-P(AB) 第三节古典概率模型 1、设试验E 是古典概型,其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为 2落在区域把μ相互独立. 总结:1.3.独立性是概率论中的最重要概念之一,应正确理解并应用于概率的计算。 第二章一维随机变量及其分布 第二节分布函数 分布函数:设X 是一个随机变量,x 为一个任意实数,称函数}{)(x X P x F ≤=为X 的分布函数。如果将X 看作数轴上随机点的坐标,那么分布函数F(x)的值就表示X 落在区间],(x -∞内的概率 分布函数的性质:(1)单调不减;(2)右连续;(3)1)(,0)(=+∞=-∞F F 第三节离散型随机变量

概率论知识点复习总结

概率论知识点总结 第一章 随机事件及其概率 第一节 基本概念 随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。 随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为Ω。 样本点:随机试验的每个基本结果称为样本点,记作ω. 样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示. 一个随机事件就是样本空间的一个子集。基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件的关系与运算(就是集合的关系和运算) 包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为A B ?或 B A ?。 相等关系:若A B ?且B A ?,则称事件A 与事件B 相等,记为A =B 。 事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 的和事件。记为 A ∪B 。 事件的积:称事件“事件A 与事件B 都发生”为A 与B 的积事件,记为A∩ B 或AB 。 事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A -B 。 用交并补可以表示为B A B A =-。 互斥事件:如果A ,B 两事件不能同时发生,即AB =Φ,则称事件A 与事件B 是互不相容事件或互斥事件。互斥时B A ?可记为A +B 。 对立事件:称事件“A 不发生”为事件A 的对立事件(逆事件),记为A 。对立事

概率论基本公式

概率论与数理统计基本公式 第一部分 概率论基本公式 1、)(;A B A B A AB A B A B A -?=?-==-- 2、对偶率:.- ---?=??=?B A B A B A B A ; 3、概率性率:) ()();()()(),()()(B P A P B P A P B A P A B AB P A P B A P ≥-=-?-=-时有: 特别, 4、古典概型 5、条件概率 例:有三个罐子,1号装有2红1黑共3个球,2号装有3红1黑4个球,3号装有2红2黑4个球,某人随机从其中一罐,再从该罐中任取一个球,(1)求取得红球的概率;(2)如果取得是红球,那么是从第一个罐中取出的概率为多少? . 348.0) () ()|()|()2(. 639.0)(3 1 )()()(. 21)|(;43)|(;32)|()|()()(}{3,2,1i }{)1(111321321i i 321≈=≈∴==========∑A P B P B A P A B P A P B P B P B P B A P B A P B A P A B P A P B P B B B A i B i i 由贝叶斯公式:,,依题意,有:由全概率公式是一个完备事件、、,由题知取得是红球。,号罐球取自设解:6、独立事件 (1)P(AB)=P(A)P(B),则称A 、B 独立。 (2)伯努利概型 如果随机试验只有两种可能结果:事件A 发生或事件A 不发生,则称为伯努利试验,即: P(A)=p,q p A P =-=- 1) ( (0

概率论知识点的总结(良心出品必属精品)

概率论总结 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结 果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为 随机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全 体样本点的集合称为样本空间. 样本空间用S或Ω表示. 一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。

事件间的关系及运算,就是集合间的关系和运算。 3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。 定义:互不相容事件或互斥事件 如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。 定义6:逆事件/对立事件 称事件“A不发生”为事件A的逆事件,记为ā。A与ā满足:A ∪ā= S,且Aā=Φ。 运算律: 设A,B,C为事件,则有 (1)交换律:A∪B=B∪A,AB=BA (2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC (3)分配律:A∪(B∩C)=(A∪B)∩(A∪C) A(B∪C)=(A∩B)∪(A∩C)= AB∪AC (4)德摩根律: Y= A I B A B

概率统计公式大全

概率统计公式大全

————————————————————————————————作者:————————————————————————————————日期:

第1章随机事件及其概率 (1) 排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2) 加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3) 一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4) 随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5) 基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6) 事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=Φ,则表示A与B不可能同时发

概率论公式总结

概率公式整理 1.随机事件及其概率吸收律:A AB A A A A =?=??Ω =Ω?)( A B A A A A A =???=??=Ω?)()(AB A B A B A -==- 反演律: B A B A =? B A A B ?= n i i n i i A A 1 1 === n i i n i i A A 1 1 === 2.概率的定义及其计算:)(1)(A P A P -= 若B A ? )()()(A P B P A B P -=-? 对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有 )()()()(AB P B P A P B A P -+=? )()()(B P A P B A P +≤? )() 1()()()()(211 111 1 n n n n k j i k j i n j i j i n i i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++ - = ∑∑∑ 3.条件概率 ()=A B P ) ()(A P AB P 乘法公式 ())0)(()()(>=A P A B P A P AB P ()() ) 0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式 ∑ == n i i AB P A P 1 ) ()( ) ()(1 i n i i B A P B P ?= ∑ =Bayes 公式 ) (A B P k ) ()(A P AB P k = ∑== n i i i k k B A P B P B A P B P 1 ) ()() ()( 4.随机变量及其分布 分布函数计算)()() ()()(a F b F a X P b X P b X a P -=≤-≤=≤< 5.离散型随机变量 (1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k (2) 二项分布 ),(p n B 若P ( A ) = p n k p p C k X P k n k k n ,,1,0, ) 1()( =-==- *Possion 定理 0lim >=∞ →λn n np 有 ,2,1,0! ) 1(lim ==---∞ →k k e p p C k k n n k n k n n λ λ (3) Poisson 分布 ) (λP ,2,1,0,! )(===-k k e k X P k λ λ 6.连续型随机变量 (1) 均匀分布 ),(b a U ?? ? ??<<-=其他 ,0,1 )(b x a a b x f ??? ?? ??--=1, ,0)(a b a x x F (2) 指数分布 )(λE ???? ?>=-其他 , 00, )(x e x f x λλ ???≥-<=-0 , 10, 0)(x e x x F x λ (3) 正态分布 N (μ , σ 2 ) +∞ <<∞-= -- x e x f x 22 2)(21)(σ μσ π ? ∞ --- = x t t e x F d 21)(2 2 2)(σ μσ π *N (0,1) — 标准正态分布 +∞ <<∞-= - x e x x 2 2 21)(π ?

相关文档
相关文档 最新文档