文档库 最新最全的文档下载
当前位置:文档库 › 仪器分析小结

仪器分析小结

仪器分析小结
仪器分析小结

仪器分析小结

一、基础内容

电位分析法

电位分析法:电位法、电位滴定法

电位法一般使用专用的指示电极,把被测离子的活(浓)度通过毫伏电位计显示为电位读数,再有能斯特方程计算求其活度;电位滴定法类似于化学滴定法,是利用电极电位在化学计量点附近的突变来代替指示剂的颜色变化来确定滴定终点。被测物质含量的求取和化学滴定法完全相同

电位分析法指示电极的分类:

第一类电极:金属电极与其金属离子溶液组成的体系,其电极电位决定于该金属离子的活度

第二类电极:金属及其难溶盐(或络离子)所组成的电极体系

第三类电极:金属与两种具有共同银离子的难溶盐或难解离的络离子组成的电极体系

零类电极:惰性金属电极,Pt、Au、C等

膜电极:离子选择电极

电位选择系数:电极对各种离子的选择性,用电位选择系数来表示,为一常数

参比电极和盐桥

参比电极基本性质:1、可逆性;2、重现型;3、稳定性

分类:标准氢电极、甘汞电极和银—氯化银电极

盐桥作用:接通电路,消除或减小液接电位

使用条件:1、盐桥中电解质不含有被测离子;2、电解质的正负离子的迁移率应该基本相等;3、要保持盐桥内离子浓度尽可能的大,以保证减小液接电位

扩散电位:由于离子扩散速度的不同造成的电位差

离子选择电极电位=内参比电极+膜电位

离子选择电极类型:

1、玻璃电极

2、晶体膜电极:I)、氟离子单晶膜电极;II)、硫、卤素离子电极

3、流动载体电极:液膜电极

4、气敏电极:一种气体传感器,测定溶液或其他介质中气体的含量

5、生物电极:一种将生物化学和电化学原理结合而制成的电极(分为酶电极、离子敏感场效应晶

体管、组织电极)

响应时间:从离子选择电极与参比电极一起与试液接触时算起,直至电池电动势达到稳定值时为止,在此期间所经过的时间为实际响应时间

分析方法:直接比较法、校准曲线法、标准加入法

电位滴定法

滴定终点的确定:滴定反应发生时,在化学计量点附近,由于被滴定物质的浓度发生突变,指示电极的电位随之产生突越,由此确定滴定终点

滴定反应类型以及指示电极的选择

1、酸碱反应可用pH玻璃电极作指示电极

2、氧化还原反应在滴定过程中,溶液中氧化态和还原态的浓度比值发生变化,可采用零类电极作指

示电极,一般都用铂电极

3、沉淀反应滴定可根据不同的沉淀反应,选用不同的指示电极

4、络合反应用EDTA进行电位滴定时,可采用两种类型的指示电极;一是应用于个别反应的指示电

极;另一种能够指示多种金属离子的电极,谓之pM电极

伏安法与极谱法

液相传质方式:对流、电迁移、扩散

直流直谱装置:以滴汞电极为工作电极,饱和甘汞电极为参比电极组成的电解池

干扰电流及其消除方法:

残余电流:来源于微量杂志的氧化还原所产生的电流,采用作图法加以扣除

迁移电流:加入大量支持电解质可以消除

极谱极大:在电流—电位曲线上出现的比扩散电流要大得多的突发电流峰:通常采用加入表面活性剂来抑制

氧电流:通入惰性气体,或在中性或碱性溶液中加入亚硫酸钠,强酸中加入碳酸钠或铁粉,从而消除氧的电流干扰

脉冲极谱:方波极谱法、常规脉冲极谱法、示差脉冲极谱法

伏安法:线性扫描伏安法、循环伏安法、溶出伏安法、

单扫描极谱法(示波极谱法)特点

1、在汞滴的生长后期施加线性扫描电压,且扫描速度快

2、在阴极射线示波器记录电流—电位曲线

3、在一滴汞生长周期内完成一个极谱波的测定

循环伏安法(三角波电位扫描):从其实电位E i开始,线性扫描到终止电位E t后,再扫描到起始电位

溶出伏安法:先将被测物质以某种方式富集在电极表面,而后借助线性电位扫描或脉冲技术将电极表面富集物质溶出根据溶出过程得到的电流—电位曲线来进行分析的方法(阳极溶出伏安法、阴极溶出伏安法、吸附溶出伏安法、)

伏安法常用的电极:汞电极、碳电极、金属电极、化学修饰电极

电解和库仑法

过电压:指工频下交流电压均方根值升高,超过额定值的10%,并且持续时间大于1分钟的长时间电压变动现象

过电位:电极的电位差值,无电流通过(平衡状态下)和有电流通过之电位差值。

影响过电位的因素:1、电极材料和电极表面状态;2、析出物质的形态;3、电流密度;4、温度

电分析方法的应用

1、控制电流电解法:指恒电流电解法,在恒定的电流条件下进行电解,然后直接称量电极上析出

物质的质量来进行分析,主要用于精铜产品的鉴定和仲裁分析

2、控制电位电解法:控制阴极或者阳极电位为一恒定值条件下进行电解的方法,特点是选择性高,

可用于分离并测定银(与铜分离)、铜(与铋、铅、银、镍等分离)、铋(与铅、锡、镝等分离)、镉(与锌分离)等

库仑法

控制电位库仑法优点:具有准确、灵敏、选择性高,特别适用于混合物质的测定,同样也是研究电极过程、反应机理等方面的有效方法

控制电流库仑法

滴定终点的确定:化学指示剂法、电流法(单指示电极电流法、双指示电极电流法)

库仑滴定法特点:

1、可以使用不稳定的滴定剂

2、能用于常量组分及微量组分的分析,能作为标准方法

3、控制电位法同样适用于库仑滴定,提高了选择性

4、可以采用酸碱中和、氧化—还原、沉淀以及络合等各类反应进行滴定

微库仑分析方法:动态库仑滴定

其他库仑分析法:Karl Fischer(卡尔·费歇尔)滴定法、库仑阵列电极

电化学分析新方法

化学修饰电极类型:吸附型、共价键合型、聚合物型、复合型

化学修饰电极功能:富集作用、化学转换、电催化、渗透性

生物电化学传感器;酶传感器(以氧作为待女子受体的酶传感器、接替型酶传感器、直接电子传递型酶传感器)

电化学免疫传感器:电流型免疫传感器、电位型免疫传感器

生物成分的表面固定化法:夹心法、交联法、包埋法、共价键合法、吸附法

微电极特点:1、电极表面的液相传质速率加快,提高测量响应速度;2、通过电流的电流很小,在高阻抗体系的伏安法测量中可以不考虑欧姆电位降的补偿;3、提高灵敏度、4、可以用于生物活体及单细胞分析

微电极的基本性质:1、容易达到稳定电流;2、微电极的时间常数很小;3、适用于高阻抗溶液体系(三)光学分析法

光化学分析导论

光学分析法:基于物质发射的电磁辐射或物质与辐射相互作用后产生的辐射或发生信号变化来测定物质的性质、含量和结构的一类仪器分析方法。分为光谱法和非光谱法,包括三个过程:1.能源提供能量;2.能量与物质作用;3.产生被检测信号。

线状光谱:由若干条强度不同的谱线和暗区相间而成的光谱。

带状光谱:由几个光带和暗区相间而成的光谱。

连续光谱:在一定范围内各种波长的光都有,且连续不断,无明显的谱线和谱带。

电磁波吸收:由电磁辐射提供能量致使量子从低能级向高能级的跃迁过程(按电磁辐射作用对象分为:原子吸收、分子吸收、磁场诱导吸收)

电磁波发射:由高能级向低能级跃迁并发射电磁波的过程(按受作用的对象分为:原子发射、分子发射)

电磁波共振:由低能级吸收电磁辐射向高能级跃迁,再由高能级跃迁回低能级并发射相同频率的电磁辐射,同时存在弛豫现象的过程。

弛豫现象:指以发光的形式释放能量的过程。

非光谱法:折射法、旋光法、比浊法、衍射法(X射线衍射法、电子衍射法)

光谱法(吸收光谱、发射光谱、散射光谱):

1、基于原子、分子外层电子能级跃迁的光谱法:原子吸收光谱法、原子发射光谱法、原子荧光光谱法、紫外—可见光吸收光谱法、分子荧光和分子磷光光谱法、化学发光分析法

2、基于原子内层电子能级跃迁发光谱法:X射线分析法—X射线荧光法、X射线吸收法、X射线衍射

3、基于原子核能级跃迁的光谱法:核磁共振波谱法

4、基于Raman散射的光谱法

光谱仪的组成:

稳定光源系统→试样引进系统→波长选择系统→检测系统→信号处理或读出系统

光谱仪分类:吸收光谱仪、吸收/发射和发散射光谱仪以及发射光谱分析仪

光源系统(一般指常见光源):连续光源、线光源、脉冲光源

波长选择系统:单色器、滤光片、棱镜、光栅、狭缝

检测系统:理想的检测器、光电检测器(硒光电池、真空管电管、光导电检测器、硅二极管、光电倍增器、硅二极管阵列、电荷转移器件、)、热检测器(真空热电偶、测热辐射计、热释电检测器)

原子发射光谱法

原子光谱法的基础

原子能级:原子有原子核和核外电子组成,核外电子按照一定规律排列在一定轨道绕核运动,由于不同轨道的能级不同,所以每个电子的能量也由它所处的能级所决定的,意即不同能量的电子发生跃迁时所需的激发能是不一样的。不同能级间的能量差不同且量子化;原子的吸收光谱由原子最外层电子的跃迁所产生的。

原子化过程:被测元素由试样转入气相,并转化为基态原子的过程。包括火焰原子化法(常用为乙炔-空气火焰)和非火焰原子化法(最常用的是管式石墨炉原子化器)两种方法。

定量分析方法:

1、校正曲线法;

2、标准加入法;

3、内标法

共振谱线:由激发态直接跃迁至基态所辐射的谱线称为共振线。共振线是原子发射光谱中最强的谱线。处于较低能级的激发态(第一激发态)直接跃迁到基态时所辐射的谱线称为第一共振线(不同元素的特征谱线)。用来进行光谱分析的谱线叫做分析线,分析线常常选用灵敏线或最后线。

灵敏线:是各元素中最容易激发或激发电位较低,跃迁几率较大的谱线。灵敏线大多是一些共振线。 定性分析:各种元素都有自己的特征谱线组→识别各元素的特征谱线→鉴定元素的存在。 定量分析:谱线的强度→测定元素的含量。

原子发射光谱法定义:原子发射光谱分析(AES)是根据原子所发射的光谱来测定物质的化学组成的分析方法。

原子发射光谱分析的特点:

光谱定性分析可靠、灵敏、快速、 简便、应用范围广。周期表上约七十个元素可以用光谱方法较容易地定性鉴 定,这是光谱分折的突出应用。

●在多数情况下,分析前不必把待分析的元素从基体元素中分离出来。 ●一次分析可以同时测得样品中多种元素的含量。 ●消耗试样量很少,并具有很高的灵敏度。 ●适宜于作低含量及痕量元素的分折。 ●不适合分析有机物及大部分非金属元素。 原子发射光谱法的过程:

由光源提供能量使试样蒸发,形成气态原子,并进一步使原子激发产生光辐射→将光源发出的复合光排列成谱线,形成光谱→用检测器检测谱线的强度和波长

影响谱线强度的因素有:统计权重、跃迁概率、激发能、激发温度、基态原子数

自吸现象:原子在高温时被激发,发射某一波长的谱线,而处于低温状态的同类原子又能吸收这一波长的辐射的现象

自蚀现象:当自吸现象非常严重时,谱线中心的辐射讲完全被吸收的现象 共振变宽:由于同类原子的相互碰撞引起的谱线变宽现象

使电极之间的气体电离的方法:紫外线照射、电子轰击、电子或离子对中性原子碰撞以及金属灼热时发射电子等

击穿:当电极间的电压增大到某一定值时,电极间的电阻突然变得很小的现象

自持放电:在电极间的气体被击穿后,即使没有外界电离作用,仍然继续保持电离,使放电持续的现象 ICP —电感耦合等离子体的特点:

1、检出限低;

2、稳定性好、精密度高、准确度高;

3、自吸效应、基体效应小;

4、选择合适的观测高度,光谱背景小;

缺点:在于对非金属测定灵敏度低,仪器价格昂贵,维持费用较高 试样引进激发光源方式:

1、 溶液试样:一般采用气动雾化(同心型、直角型、特殊型)、超生雾化和电热蒸发方式

2、 气体试样:直接引入

3、

固体试样:1、试样直接插入进样;2、电弧和火花熔融法;3、电热蒸发进样;4、激光熔法

λ

/12hc hv E E E ==-=?E

hc

?=

λ

原子吸收光谱法

定义:AAS是基于物质产生的原子蒸气对特定的谱线(通常是待测元素的特征谱线)的吸收作用来进行定量

分析的一种方法。

原子吸收光谱谱线变宽的因素:自然宽度、Doppler变宽(热变宽)、碰撞变宽(Lorentz洛伦兹变宽、

Holtsmark霍尔茨马克变宽)、场致变宽、自吸变宽

原子吸收光谱法特点:选择性好、灵敏度高、精密度高、操作方便和快捷、应用范围广

缺点:光源单一,不适宜用于多元素混合物的定性分析,对于高熔点、形成氧化物、形成复合物或形成碳

化物后难以原子化元素的分析灵敏度极低。

原子吸收光谱和原子发射光谱的比较

1.原子吸收法的选择性高,干扰较少且易于克服。

由于原于的吸收线比发射线的数目少得多,这样谱线重叠的几率小得多。而且空心阴极灯一般并不发射那些

邻近波长的辐射线经,因此其它辐射线干扰较小。

2.原子吸收具有较高的灵敏度。

在原子吸收法的实验条件下,原子蒸气中基态原于数比激发态原子数多得多,所以测定的是大部分原子。

3.原子吸收法比发射法具有更佳的信噪比。

这是由于激发态原子数的温度系数显著大于基态原子。

原子吸收分光光度计的基本构造:光源、原子化系统、分光系统、检测系统

1.光源——空心阴极灯

☆能发射待测元素的共振线、比吸收光谱线更窄的锐线光谱,光的强度稳定且背景小。

空极阴极灯的发光强度与工作电流有关。

使用灯电流过小,放电不稳定;灯电流过大,溅射作用增强,原子蒸气密度增大,谱线变宽,甚至引起自吸,导致测定灵敏度降低,灯寿命缩短。因此在实际工作中应选择合适的工作电流。

为了获得稳定的发射强度,在使用前要进行预热,根据不同元素灯的性质预热时间也不同,一般在5~10分钟。

2.原子化系统

原子吸收光谱法常用的原子化系统:火焰原子化系统,石墨炉子原子化系统和低温原子化系统

(1)火焰原子化系统

结构:雾化器、预混合室、燃烧器及其高度控制、燃气与助燃气气路控制系统

特点:适用范围广,分析操作简单,分析速度快、分析成本低

缺点:同轴雾化器雾化效率低,所需试样溶液体积较大、火焰原子化效率低伴随复杂的火焰反应、原子蒸气在光程中滞留时间短,燃气和助燃气体稀释作用限制了方法检出限的降低,而且只能分析液体试样

(2)石墨炉原子化系统

结构:电源、炉体、石墨管

石墨炉原子化法(电热原子化法)特点:采用直接进样和程序升温方式可达3500℃,升温速度快,绝对灵敏度高,可分析元素种类多,所用试样少,

缺点:分析速度较慢,分析成本高,背景吸收、光辐射和基体干扰比较大

(3)低温原子化法(化学原子化法):冷原子化法和氢化物发生法

原子吸收分光光度计的性能指标:

1、光学系统的波长显示值误差;

2、光学系统分辨率;

3、基线的稳定性;

4、吸收灵敏度;

5、精密度;

6、检出限;

干扰及其消除

物理干扰:试样溶液物理性质变化而引起吸收信号强度变化,属于非选择性干扰

减少或消除的办法:

1、配置与待测试样溶液基体相一只的标准溶液;

2、当配置与待测试样溶液基体相一致的标准溶液有困难时,采用标准加入法;

3、被测试样溶液中元素的浓度较高时,采用稀释方法

化学干扰属选择性干扰;

消除办法:1、改变火焰类型;2、改变火焰特性;3、加入释放剂;4、加入保护剂;5、加入缓冲剂;

6、采用标准加入法

电离干扰:由于电离能较低的碱金属和见图金属元素在原子化过程中产生电离而使基态原子数减少,导致吸光度下降;

减少的方法:加入电离能较低的消电离剂、利用强还原性富燃火焰、采用标准加入法、提高金属元素的总浓度

光谱干扰:

当光谱通带内存在其他谱线,分子吸收和光散射也属于光谱干扰

减少吸收线重叠干扰方法:选用较小的光谱通带;选用被测元素的其他分析线;预先分离干扰元素

减少直流发射光谱干扰方法:采用锐线光源的电源调制技术

减少非吸收线光谱干扰方法:选用较小的光谱通带;选用较小HCL灯电流

仪器操作条件的选择:1、HCL电流选择;2、吸收谱线选择;3、光谱通带的选择

火焰原子化法最佳条件选择:

1、火焰的类型与特性选择;

2、燃烧器高度的选择;

3、火焰原子化器的吸喷速率

石墨炉原子化法最佳条件选择:

1、石墨管类型的选择;

2、升温程序的选择;

3、基体改进剂选择;

4、进样量的选择;

紫外-可见光分光光度法单色光——具有相同能量(相同波长)的光。

混合光(复合光)——具有不同能量(不同波长)的光复合在一起。

互补色:

绿

青蓝

白光

λmax(最大吸收波长)——吸收曲线中,吸光度最大处的波长,是定性鉴别物质的基础。

吸收曲线——以波长λ为横坐标,吸光度A为纵坐标作图所得曲线。

光吸收具有选择性和加和性。

红外吸收光谱法

红外光谱——又称为分子振动转动光谱,当样品受到频率连续变化的红外光照射时,分子吸收某些频率的辐射,并由其振动运动或转动运动引起偶极矩的净变化,产生的分子振动和转动能级从基态到激发态的跃迁,从而形成的分子吸收光谱。一般指有机物质在4000~400cm-1红外线的照射下,选择性的吸收其中某些频率后,用红外光谱仪记录所形成的吸收谱带。特点:

1)红外吸收只有振-转跃迁,能量低;

2)应用范围广;

3)分子结构更为精细的表征;

4)固、液、气态样均可用,且用量少、不破坏样品;

6)分析速度快;

7)与色谱等联用具有强大的定性功能。

红外活性分子——产生红外吸收的分子,如非对称分子。反之为非红外活性分子,如对称分子。

伸缩振动——原子沿键轴方向伸缩,键长发生变化而键角不变的振动。分为对称伸缩振动(νs)和不对称伸缩振动(νas)。

变形振动(δ)——又称弯曲振动或变角振动,基团键角发生周期变化而键长不变的振动。分为面内变形振动和面外变形振动。

产生吸收峰的条件:只有偶极矩大小或方向有一定改变的振动才能吸收红外光而发生振动能级跃迁。线性分子具有3n-5种振动方式,非线性分子有3n-6种。

产生红外光谱的两个条件:

1.辐射应具有能满足物质产生振动跃迁所需的能量;

2.辐射与物质间有相互偶合作用。

红外光谱三要素:峰位、峰强、峰形。

红外谱带位移影响因素:

1.诱导效应与共轭效应

2.键应力效应(张力效应)

3.空间效应

4.氢键效应

5.振动偶合与费米共振

6.物态变化

7.溶剂影响

红外光谱的最大特点是具有特征性。

基团频率——与一定的结构单元相联系的振动频率。

核磁共振波谱法

核磁共振定量分析的基础是结构分析。

优点:定性测定不具有破坏性,定量测定不需标样,灵敏度、精确度、准确度及分析速度高。

核磁共振谱定量分析的基础:各化学环境不同的质子吸收蜂的面积,只与所包含的质子数有关,可直接根据各共振峰积分值的比值推算所代表的各自旋核的数量。

NMR定量方法:

1、要求:

1.被测物质的结构必须是已知;

2.核磁共振谱线已归属;

3.理想的被测信号是多个质子的单蜂;

4.信号两端的基线位置一致;

5.每一信号需进行5次积分,取平均值。

2、分类:

1.内标绝对测定法

常用内标:六甲基环三硅氧烷和六甲基环三硅胺

2.外标绝对测定法

样品和外标分别放置在两只核磁管中测定,二管直径必须相同,最好使用同一支样品管。

样品和外标必须交叉重复测定以提高分析的准确性。

3.相对含量测定法

被测样品是由若干已知化合物组成,如果没有合适的内标化合物时,可采用以其中一个组分做“标样”。

4.峰高定量法

通过求出样品中某组质子的峰高,求出样品的含量。

峰高与自旋-自旋弛豫常数有关,而后者与化合物的类型有关,受局部磁场的影响,故不能直接用于定量。被积信号过于接近而无法准确测定各质子峰积分面积时,可考虑用峰高法进行定量分析,通过实验求出峰高与含量之间的关系,校正误差。

(四)质谱法

质谱仪:进样系统、离子源、质量分析器、检测器、计算机系统

药用植物中的组分提取分析:

低极性组分——GC-MS

大极性组分、生物大分子——HPLC-MS

蛋白质测定:基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF MS)、电喷雾质谱(ESI-MS)。

蛋白质分子量测定:

1、多肽与蛋白质的ESI-MS分析采用正离子方式进行,ESI-MS可以产生多电荷离子峰使检测的分子质量范围扩大。

2、ESI-MS得到的是一簇多电荷的质谱峰群,相邻两簇质谱峰之间电荷数差1。

3、

P:多电荷离子质荷比,Mr:蛋白质分子量,Ma:正离子分子量(来源为氢时,Ma=1.0079),Z:多电荷离子带电量

故,Mr=(P-Ma)Z=(P-1)Z

4、高分辨质谱求电荷数:

,P、P’:相邻同位素峰的质荷比

蛋白质鉴定:肽质量指纹谱+基于串联质谱多肽测序

肽质量指纹谱(PMF)——蛋白质的氨基酸序列经酶解为肽段序列,所测得的肽混合物质量数即称为肽质量指纹谱。

(五)色谱法

色谱法导论

色谱法是一种重要的分离分析方法,它是根据组分与固定相和流动相的作用力不同而达到分离目的。

色谱流出曲线或色谱图——样品注入色谱柱后,信号随时间变化的曲线。

基线——实验条件下,样品加入色谱柱后仅有纯流动相进入检测器时的流出曲线,反映了S/N(信噪比)大小的稳定性的水平直线。

峰高——色谱峰顶点与基线的距离。

保留值:

1、死时间(t0 )——不与固定相作用的物质从进样到出现峰极大值时的时间,与色谱柱的空隙体积成正比。

流动相平均流速:,L为柱长

2、保留时间(t R )——试样从进样到出现峰极大值时的时间。包括组份随流动相通过柱子的时间t0和组份在固定相中滞留的时间。保留时间为色谱定性依据,但同一组份的保留时间还与流速有关,因此有时需用保留体积来表示保留值。

3、调整保留时间(t’R )——某组份的保留时间扣除死时间后的时间,它是组份在固定相中的滞留时间。即t’R = t R - t0

4、死体积(V0)——色谱柱管内固定相颗粒间空隙、色谱仪管路和连接头间空隙和检测器间隙的总和。V0=t0F co,F co:柱出口的载气流速(ml/min)

5、保留体积(V R)——从进样到待测物在柱后出现浓度极大点时所通过的流动相的体积。

6、调整保留体积(V’R)——某组份的保留体积扣除死体积后的体积。即V’R = V R - V0

7、相对保留值(r2,1)——组份2的调整保留值与组份1的调整保留值之比。r2,1只与柱温和固定相性质有关,而与柱内径、柱长、填充情况及流动相流速无关,又称选择因子或者分离因子α:反映两组分间的分离情况,α=1,则两组分无法分离,而α越大则分离越好。两组分在两相间的分配系数不同,是色谱分离的先决条件。

区域宽度:

1、标准偏差σ——峰高0.607处的峰宽的一半。

2、半峰宽W1/2——峰高一半处的峰宽。

3、峰(底)宽W——色谱峰两侧拐点上切线与基线的交点间的距离。

色谱流出曲线的意义:

色谱峰数——样品中单组份的最少个数;

色谱保留值——定性依据;

色谱峰高或面积——定量依据;

色谱保留值或区域宽度——色谱柱分离效能评价指标;

色谱峰间距——固定相或流动相选择是否合适的依据。

分配系数K——一定温度与压力下两相达平衡后,组分在固定相和流动相浓度的比值。

分配比(容量因子或者保留因子)k——一定温度与压力下两相达平衡后,组分在固定相和流动相质量的比值。

塔板理论假定:

1)塔板之间不连续;

2)塔板之间无分子扩散;

3)组分在各塔板内两相间的分配瞬间达到平衡(达一次平衡所需柱长为理论塔板高度H);

4)某组分在所有塔板上的分配系数相同;

5)流动相以不连续方式加入(以一个一个的塔板体积加入)。

当塔板数n较少时,组分流出曲线呈峰形,但不对称;当塔板数n>50时,峰形接近正态分布。

速率理论认为:

单个组分粒子在色谱柱内的运动是高度不规则的、随机的,在柱中随流动相前进的速度是不均一的。塔板理论研究的是平衡态,速率理论则从动态角度出发,提出改变色谱条件、控制流速、提高分离效率的理论。色谱分离条件选择:

1、两组份峰间距足够远:由各组份在两相间的分配系数(k)决定,即由色谱过程的热力学性质决定。

2、每个组份峰宽足够小:由组份在色谱柱中的传质和扩散(H或n)决定,即由色谱过程动力学性质决定。

气相色谱法

气相色谱仪:载气系统、进样系统、色谱柱系统、检测系统、记录系统

固定液的选择——相似性原则;组分极性差别较大选用极性固定液,沸点差别较大选用非极性固定液。

常用检测器

速率理论应用

1、(A=2λd p)减小A:粒度较细,颗粒均匀,一般为60~80目或80~100目的填料。

2、(B=2γD g)减小B:载气线速度较低时用氮气,较高时宜用氦气或氢气;较低的柱温。

(1)填充柱γ<1,空心毛细管柱γ=1。

(2)Dg与载气的分子量的平方根成反比,随柱温升高而增大,随柱压增大而减小。

3、减小C:固定相的液膜厚度要薄;组分在液相中的扩散系数要大。

分离度R应用

1、增大k:峰间隔变大。

2、增大n:峰宽变窄。

色谱柱评价:

1、色谱柱效率——峰尖

评价:理论板高(H)、理论塔板数(n)

对策:将Van Deemter 各因素优化

2、选择性——峰的分离度

评价:分离因子或分离度(R)

对策:选择极性相当的固定相

3、峰的对称性——吸附现象

评价:拖尾因子(f)

对策:色谱柱进一步老化

柱温选择原则:不超过固定液最高使用温度;在良好分离前提下,尽可能采用低柱温。

柱长选择原则:在达到一定分离度的条件下,应使用尽可能短的柱。

其他条件:

1、气化室温度等于或稍高于试样的沸点,不超过沸点50℃以上,高于柱温30℃~50℃。

2、检测室温度高于或至少等于柱温。

3、进样速度快,试样不超载。

定量分析的依据:在恒定的实验条件下,峰面积(或峰高)与组分的(含)量成正比。

同一检测器对不同物质具有不同的响应灵敏度。(需要校正)

定量分析方法:

外标法——校正曲线法和外标一点法

内标法——校正曲线法和内标一点法

气相色谱与液相色谱的比较

1、流动相

GC用气体做流动相(载气),常用载气(氮气、氦气和氢气)种类少,可选择范围小,对分离影响小;LC 中,流动相种类多,对分离结果贡献大。

2、固定相

GC一般选定一种载气,然后通过改变色谱柱(固定相)以及操作参数(柱温和载气流速)来优化分离;LC 则往往是选定色谱柱后,通过改变流动相的种类、组成以及操作参数(柱温)来优化分离。

3、分析对象

GC分离的样品可挥发且热稳定,沸点一般不超过450度。已知化合物中,有20~25%可用GC直接分析,其余原则上可用LC分析。

4、检测设备不同

5、制备分离

GC收集馏分后载气很容易除去,原理上有优势,但由于其柱容量远不及LC,故实用价值很有限,而制备LC则有很广泛的应用。

高效液相色谱法

高效液相色谱法(HPLC)——在经典液相色谱法的基础上,引入了气相色谱法的理论和实验技术,以高压输送流动相,采用高效固定相及高灵敏度检测器,发展而成的现代液相色谱分析方法。具有分离效率高、

选择性好、分析速度快、检测灵敏度高、操作自动化和应用范围广的特点。

(I)HPLC与经典LC比较

主要区别:固定相、输液设备和检测手段的差别

1.经典LC:

仅做为一种分离手段;柱内径1~3cm,固定相粒径>100μm且不均匀;常压输送流动相;柱效低;分析周期长;无法在线检测。

2、HPLC:

可用于分离和分析;柱内径2~6mm,固定相粒径<10μm且均匀;高压输送流动相,分析速度快;柱效高;采用高灵敏度检测器,分析时间大大缩短;可以在线检测。

(II)HPLC与GC比较

相同:兼具分离和分析功能,均可以在线检测

区别:分析对象和流动相的差别

1、GC:

分析可气化、热稳定性好且沸点较低的样品;采用惰性气体为流动相,组分与流动相无亲合作用力,只与固定相作用;实验过程常需加温。

2、HPLC:

分析样品范围广,不受样品挥发性和热稳定性的影响;流动相为液体,种类较多,选择余地广;一般常温进行。

HPLC分类:

按固定相的聚集状态分为液液色谱法(LLC)和液固色谱法(LSC);

按分离机制分为分配色谱法、吸附色谱法、离子交换色谱法、空间排阻色谱法;

最常见的是化学键合相色谱法、离子抑制色谱法、离子对色谱法等,其他如亲和色谱法、手性色谱法、胶束色谱法和电色谱法等。

化学键合相色谱法:以化学键合相为固定相的色谱法,适用于分离几乎所有类型的化合物,是应用最广的色谱法。其均一性和稳定性好;柱效高,重现性好;分离选择性高。

化学键合相:采用化学反应的方法,将官能团键合在载体表面所形成的固定相。具有使用过程中不流失、化学稳定性好、适于梯度洗脱、载样量大等特点。但流动相的pH应在其相应使用范围内,如2~8,否则硅胶会被溶解;按极性可分为非极性、弱极性和极性三类。非极性键合相:表面基团为非极性烃基,如十八烷基(C18)、辛烷基(C8)和苯基等,最常用是C18(ODS)。一般来说,长链烷基可使得样品保留时间延长,分离的选择性增加,且载样量提高,稳定性好。弱极性键合相:常见的有醚基和二羟基键合相,使用较少。极性键合相:常用的有氨基和氰基键合相。

化学键合相色谱法可分为正相色谱法和反相色谱法,最常用的是反相色谱法。

正相键合相色谱法以极性键合相为固定相,如氰基(-CN)、氨基(-NH2)等,并以非极性或弱极性溶剂为流动相,如各种烷烃等,即固定相极性大于流动相极性。主要用于分离溶于有机溶剂的极性至中等极性的分子型化合物。

反相键合相色谱法以非极性键合相为固定相,如十八烷基硅烷(C18)、辛烷基(C8)等,有时也用弱极性或中等极性的键合相为固定相,流动相则以水为基础溶剂,再加入一些与水混溶的有机溶剂,如甲醇、乙腈等,以调整流动相的极性比例,即固定相极性小于流动相极性的色谱法。适合于分离非极性或弱极性化合物,可用于分子型化合物及离子型或可离子化的化合物(加入抑制剂)的分离。

极性键合相的分离选择性决定于键合相的种类、流动相的强度和样品的性质。

1、正相键合相色谱中,组分极性越强,吸附越牢,越后洗脱出柱;固定相极性增加,组分保留时间变大,

洗脱减慢;流动相极性增加,洗脱能力增强,组分保留时间变小,洗脱加快。一般情况下分离含双键的化合物常用氰基键合相,而分离多官能团化合物则用氨基键合相;流动相常以饱和烷烃加极性调节剂的方式组成。

2、反相键合相色谱中,组分极性越弱,疏水性越强,与固定相的亲和力越大,越后洗脱出柱;流动相极性越小,洗脱能力越强,保留时间越短(水增多,保留时间增加)。以长链烷基组成的键合相适合分离非极性化合物,短链烷基键合相则能用于分离部分极性化合物,苯基键合相适用于分离芳香化合物以及多羟基化合物等。

HPLC固定相:颗粒细且均匀;传质快;机械强度高,能耐高压;化学稳定性好,不与流动相发生化学反应。HPLC流动相:不与固定相发生化学反应;对样品有适宜的溶解度;必须与检测器相适应;纯度要高,粘度要小。使用前,需用微孔滤膜过滤,同时还要脱气。

在正相和反相色谱中,流动相极性强弱与洗脱能力是相反的——相似相溶

HPLC速率方程:H=A+C m u+C sm u,降低流速,可增加H,但流速太低,分析时间长。

传质过程——组分在固定相和流动相间不断的溶解、扩散、转移的过程。影响此过程进行的阻力称为传质阻抗。为降低流动相的传质阻抗,应降低固定相的粒度,同时选用粘度比较小的流动相,使得分子扩散比较容易。在实验中常用粘度比较低的甲醇或乙腈,而少用粘度比较大的乙醇。

HPLC仪器主要由输液系统(高压输液泵以及在线脱气和梯度洗脱装置)、进样系统(手动进样阀或自动进样器)、色谱柱系统(色谱柱以及柱温箱)、检测系统和数据记录处理系统组成,制备型HPLC还备有自动馏分收集装置。HPLC的三大关键部件:输液泵、色谱柱、检测器。

等度洗脱——在同一分析周期内流动相组成保持恒定的洗脱方式。该法适合于组分数目少,性质差别不大的样品的分离分析。

梯度洗脱——在一个分析周期内可以程序改变流动相组成的洗脱方式。该法适合分析组分数目多,性质相差较大的复杂样品的分离分析。梯度洗脱可以缩短分析时间、提高分离度、改善峰形、提高检测灵敏度,但是可能引起基线漂移和重现性降低。根据具体情况,可将等度洗脱和梯度洗脱结合起来。

线性梯度洗脱是常用梯度洗脱方式,即在一个分析周期内,流动相随时间均匀线性变化。

梯度洗脱有两种装置:高压梯度和低压

3、朗伯-比尔定律

A=Ebc

A:吸光度,A=-lgT(T=I/I0,称为透光率)

E:吸光系数,b:比色池厚度(cm),c:浓度(mol/L或者质量百分数)

E分为摩尔吸光系数ε和质量吸光系数,两者关系为:,其中M为分子量。

(1)条件:1.单色光;2.稀溶液;3.吸收溶质形式不变。

(2)当T=0.368,即A=0.434时测量误差最小。透光率20%~65%,A为0.2~0.7时,浓度相对误差在约3倍ΔT以内。

4、色谱基本公式

(1)速率理论:H=A+B/u+Cu(Van Deemter方程)

H:塔板高度,A:涡流扩散系数,B:纵向扩散系数,C:传质阻抗系数,u:流动相线速度

a.涡流扩散项A与流速u无关;

b.低流速区(u小),B/u大,分子扩散占主导;

c.高流速区(u大),Cu大,传质阻力占主导;

(2)塔板理论:H=L/n

L:有效柱长,n:塔板数

t R:保留时间,W:峰宽,W1/2:半峰宽。

其中,W=4σ,W1/2=2.355σ(σ:标准差),即W=1.669 W1/2

色谱柱的长度一定时,理论板数目n越大,色谱峰越窄。

(3)分配系数和保留因子

分配系数:,保留因子:

s:固定相,m:流动相

色谱基本保留方程(保留时间与保留因子的关系):

t R=t0(1+k)

(a) 色谱条件一定时,K或k值越大,则组分的保留值也越大。

(b)两个组分的K或k值差别越大,则相应的两色谱峰相距就越远。(4)分离度(一般要求R≥1.5)

色谱分离方程:

,其中α=k2/k1,分离因子

5、电磁辐射基本公式

(1)λ=c/ν

λ:波长,ν:频率,c:波速

(2)波数:σ=1/λ

(3)E=hν

E:光量子能量,h=6.626×10-34:普朗克常数

6、荧光分析

荧光效率

7、NMR定量

(1)峰面积:A=πγHM

γ:旋磁比,H:外磁场强度,M:质子数

(2)信号强度(峰高):υ=-γHT2M

γ:旋磁比,H:外磁场强度,M:质子数,T2:自旋-自旋弛豫常数(与质子具体环境有关)

(3)内外标测定法:

,其中,,M:分子量,n:质子数

(4)相对含量测定:

三、复习题(基本内容以外的补充)

1、为什么不用峰宽来计算理论塔板数?

答:因为实际流出曲线图上色谱峰并不规整,不便于求出峰宽,所以选用较易取得的半峰宽。

2、怎样提高色谱柱的理论塔板数n,从而提高色谱柱的效率?

答:根据塔板理论n=L/H,通过减少理论塔板高度和增大有效柱长可以提高色谱柱理论塔板数。(1)根据速率理论,减小固定相粒度,增大其均匀性,减小流动相粘度,以及控制合适的柱温、选择合适的流动相线速度,有助于理论塔板高度的减少;(2)加长色谱柱工作部分可以增加有效柱长。一般来说,由于色谱柱的强度限制、色谱仪本身的限制,常通过减少理论塔板高度来提高理论塔板数。

3、怎样装柱才能提高色谱柱的效率?

答:根据实际需要,一般固定相颗粒应当小且均匀,选择合适固定液加入,且应当适量,既保证均匀完全的涂覆,又尽可能薄。此外,装柱应当均匀无气泡,沉降充分不分层。

4、空心柱是否能够用于色谱分离?

答:可以。只要在柱内有合适的固定相与流动相中的被分离物结合,并能保证k值合适,就能选用空心柱进行色谱分离。例如,空心毛细管气相色谱在毛细管内壁涂覆固定液,既能保证合适的k,又能增大有效柱长、减弱涡流等影响,提高柱效。

5、如何获得色谱最佳流速?

答:根据速率理论可知,H=A+B/u+Cu,故存在一个最佳流速。实际操作中,要根据所用色谱、固定相颗粒大小、流动相的性质、柱温等选择合适的流速。对于HPLC,降低流速有利于减小H,提高柱效,但是流速过低,分离时间又太长,应根据具体情况合理选择。

6、在AAS中,吸收度与原子浓度的关系如何?

答:AAS也遵循朗伯-比尔定律,积分吸收与待测元素原子的总数呈简单的线性关系。一般情况下,常采用峰值吸收来进行定量分析。此时要求光源的吸收线与原子吸收线的中心频率一致,所用光源为锐线光源,而吸光度与浓度的关系可简化为:A=Kc。

7、固定相粒度大小对速率理论中的哪些因素有影响?

答:固定相粒度大小对于速率理论的涡流扩散项A和传质阻抗项C都有影响,粒度越小,A、C越小。

仪器分析心得体会

仪器分析心得体会 篇一:仪器分析的感想 对仪器分析课程的认识和感想 仪器分析是高等学校等有关专业开设的一门基础课,其目的是使学生在大学学习期间掌握有关仪器分析中一些常用方法的基本原理、特点和应用,对于将来参加科学研究或具体实际工作都是很有益的。 仪器分析法是以物理和化学及其信号强度为基础建立起来的一种分析方法,使用比较复杂和特殊的仪器。仪器分析的基本原理源于分析化学。分析仪器的发展与分析化学的发展紧密相关,分析化学经历过三次重大变革,使得仪器分析也逐步升级,从仪器化、电子化、计算机化到智能化、信息化以至仿生化。 常用的仪器分析方法主要包括几类:光学分析法、电化学分析法、色谱分析法、质谱法。这些方法依据的原理不同,具有的性能指标如精密度、灵敏度、检出限、测定下限、线性范围、准确度等,在选择方法时,还要有一些考虑,如对样品结果准确度的要求,还有费用(包括仪器的购置费、运转费)、样品量、分析速度等。使用仪器分析法检测样品,具有效率高、速度快、方便、实用的特点。 仪器分析的应用范围十分广泛。仪器分析与科学四大理论(天体、地球、生命、人类起源和深化)及人类社会面临

的五大危机(资源、粮食、能源、人口、环境)问题的解决密切相关,也与工农业生产及人们日常衣食住行用的质量保证等领域密切相关,仪器分析的发展包括仪器和方法两方面的发展,仪器分析的发展趋势表现在建立原位、在体、实时、在线的动态分析检测方法建立无损以及多参数同时检测方法。现在以实现各种分析法的联用;分析仪器的智能化、自动化和微型化等几个方面。 通过对仪器分析这一课程的学习,对常用仪器的基本原理、特点、使用方法和应用都有了大致的认识和掌握。这门学科的实用性强,应用广泛。它的方法和基本思想如逻辑思维,对以后的科研和日常的工作有巨大的帮助。如果能对仪器分析这门课程有深刻认识,对以后仪器的创新和发展也能尽到一份力。 篇二:《仪器分析》问题学习法总结 《仪器分析》问题学习法心得体会 虽然只有短短的八周学习时间,但在张玲老师的指导学习下,使我对仪器分析这门学科了解颇多。通过学习是我知道仪器分析是我们学化学的必学的一门课程,是化学分析中不可缺少的方法。而且随着科技的发展,仪器分析变得越来越重要,在化学分析中的应用也越来越广泛。因此,我们必须学好仪器分析。就像张玲老师说的那样,大学毕业后我们什么书都可以卖掉,但《仪器分析》这本书一定要留下来。

仪器分析课程教学大纲

《仪器分析》课程教学大纲 课程编号:190142110 课程类型:必修课 英文名称:Instrumental Analysis 课程类型:基础方向课 学时:64学时讲课学时:60学时 学分:4学分 适用对象:环境科学专业、化学专业 先修课程:无机化学、分析化学、有机化学、高等数学、计算机 执笔人:刁春鹏审定人:张金萍 一、课程的性质、目的与任务以及对先开课要求 仪器分析是化学学科的一个重要分支,它是以物质的物理和物理化学性质为基础建立起来的一种分析方法。利用较特殊的仪器,对物质进行定性分析,定量分析,形态分析及结构分析。它具有测定快速、灵敏、准确和自动化程度高等特点,它是分析化学的发展方向。 仪器分析是化学专业必修的基础课程之一。仪器分析的主要任务是介绍常用的主要仪器分析方法,介绍这些分析方法的基本原理、基本概念和典型仪器的结构与性质,利用这些仪器完成定性、定量、定结构的分析任务,为今后开展科学研究和更好的指导工农业生产打下牢固的基础。 仪器分析是建立在无机化学、分析化学、有机化学、高等数学、物理学及计算机基础上的后续课程,它为后续课和今后的科研工作打下扎实的理论基础和操作技能。它是许多学科进行科学研究不可缺少的重要测试手段,并在提高人才素质和实现现代化的进程中,发挥着越来越重要的作用。 二、教学重点与难点 本课程重点介绍光谱、电化学和色谱三大块和质谱法的内容。 掌握常用仪器分析方法的基本原理、基本知识和基本技能。如:紫外-可见吸收光谱法,红外吸收光谱法,分子发光分析法,原子发射光谱法原子吸收光谱法,电位分析法,极谱分析法,色谱分析法,核磁共振波谱法和质谱分析法等。 了解仪器的结构及常用仪器的主要组成部分,学会使用一些仪器。 要求学生初步具有根据分析的目的、要求和各种仪器分析方法的特点、应用范围,选择适宜的分析方法以解决分析化学问题的能力。了解一些仪器分析方法和技能在实际中的应用,为后续课的学习及今后科学研究打下一定的基础。 三、与其他课程关系 仪器分析是建立在无机化学、分析化学、有机化学、高等数学、物理学及计算机基础上的后续课程,用到先修课的一些基础知识。 四、教学内容、学时分配及基本要求 第1章绪论 学时:2

中南大学仪器分析经典习题总结

中南大学仪器分析各章节经典习题 第2章气相色谱分析 一.选择题 1.在气相色谱分析中, 用于定性分析的参数是 (保留值保留值) 2. 在气相色谱分析中, 用于定量分析的参数是 ( D ) A 保留时间 B 保留体积 C 半峰宽 D 峰面积 3. 使用热导池检测器时, 应选用下列哪种气体作载气, 其效果最好? ( A ) A H2 B He C Ar D N2 4. 热导池检测器是一种 (浓度型检测器) 5. 使用氢火焰离子化检测器, 选用下列哪种气体作载气最合适? ( D ) A H2 B He C Ar D N2 6、色谱法分离混合物的可能性决定于试样混合物在固定相中( D )的差别。 A. 沸点差, B. 温度差, C. 吸光度, D. 分配系数。 7、选择固定液时,一般根据( C )原则。 A. 沸点高低, B. 熔点高低, C. 相似相溶, D. 化学稳定性。 8、相对保留值是指某组分2与某组分1的(调整保留值之比)。 9、气相色谱定量分析时( B )要求进样量特别准确。 A.内标法; B.外标法; C.面积归一法。 10、理论塔板数反映了(柱的效能。 11、下列气相色谱仪的检测器中,属于质量型检测器的是( B ) A.热导池和氢焰离子化检测器; B.火焰光度和氢焰离子化检测器; C.热导池和电子捕获检测器; D.火焰光度和电子捕获检测器。 12、在气-液色谱中,为了改变色谱柱的选择性,主要可进行如下哪种(些)操作?( D ) A. 改变固定相的种类 B. 改变载气的种类和流速 C. 改变色谱柱的柱温 D. (A)、(B)和(C) 13、进行色谱分析时,进样时间过长会导致半峰宽(变宽)。 14、在气液色谱中,色谱柱的使用上限温度取决于( D ) A.样品中沸点最高组分的沸点, B.样品中各组分沸点的平均值。 C.固定液的沸点。 D.固定液的最高使用温度 15、分配系数与下列哪些因素有关( D ) A.与温度有关; B.与柱压有关; C.与气、液相体积有关; D.与组分、固定液的热力学性质有关。 二、填空题 1.在一定温度下, 采用非极性固定液,用气-液色谱分离同系物有机化合物, 低碳数的有机化合物先流出色谱柱, _____高碳数的有机化合物____后流出色谱柱。 2.气相色谱定量分析中对归一化法要求的最主要的条件是试样中所有组分都要在一定时间内分离流出色谱柱,且在检测器中产生信号。 3.气相色谱分析中, 分离非极性物质, 一般选用非极性固定液, 试样中各组分按沸点的高低分离, 沸点低的组分先流出色谱柱,沸点高的组分后流出色谱柱。 4.在一定的测量温度下,采用非极性固定液的气相色谱法分离有机化合物, 低沸点的有机化合物先流出色谱柱, 高沸点的有机化合物后流出色谱柱。 5.气相色谱分析中, 分离极性物质, 一般选用极性固定液, 试样中各组分按极性的大小分离, 极性小的组分先流出色谱柱, 极性大的组分后流出色谱柱。 6、在气相色谱中,常以理论塔板数(n)和理论塔板高度(H)来评价色谱柱效能,有时也用单位柱长(m) 、有效塔板理论数(n有效)表示柱效能。

武汉大学版仪器分析知识点总结(适用考中科院的同学)

第一部分:AES,AAS,AFS AES原子发射光谱法是根据待测元素的激发态原子所辐射的特征谱线的波长和强度,对元素进行定性和定量测定的分析方法。 特点: 1.灵敏度和准确度较高 2.选择性好,分析速度快 3.试样用量少,测定元素范围广 4.局限性 (1)样品的组成对分析结果的影响比较显著。因此,进行定量分析时,常常需要配制一套与试样组成相仿的标准样品,这就限制了该分析方法的灵敏度、准确度和分析速度等的提高。 (2)发射光谱法,一般只用于元素分析,而不能用来确定元素在样品中存在的化合物状态,更不能用来测定有机化合物的基团;对一些非金属,如惰性气体、卤素等元素几乎无法分析。 (3)仪器设备比较复杂、昂贵。 术语: 自吸 自蚀 ?击穿电压:使电极间击穿而发生自持放电的最小电压。 ?自持放电:电极间的气体被击穿后,即使没有外界的电离作用,仍能继续保持电离,使放电持续。 ?燃烧电压:自持放电发生后,为了维持放电所必需的电压。 由激发态直接跃迁至基态所辐射的谱线称为共振线。由较低级的激发态(第一激发态)直接跃迁至基态的谱线称为第一共振线,一般也是元素的最灵敏线。当该元素在被测物质里降低到一定含量时,出现的最后一条谱线,这是最后线,也是最灵敏线。用来测量该元素的谱线称分析线。 仪器: 光源的作用: 蒸发、解离、原子化、激发、跃迁。 光源的影响:检出限、精密度和准确度。 光源的类型: 直流电弧 交流电弧 电火花 电感耦合等离子体(ICP)

ICP 原理 当高频发生器接通电源后,高频电流I 通过感应线圈产生交变磁场(绿色)。 开始时,管内为Ar 气,不导电,需要用高压电火花触发,使气体电离后,在高频交流电场的作用下,带电粒子高速运动,碰撞,形成“雪崩”式放电,产生等离子体气流。在垂直于磁场方向将产生感应电流(涡电流,粉色),其电阻很小,电流很大(数百安),产生高温。又将气体加热、电离,在管口形成稳定的等离子体焰炬。 ICP-AES 法特点 1.具有好的检出限。溶液光谱分析一般列素检出限都有很低。 2.ICP 稳定性好,精密度高,相对标准偏差约1%。 3.基体效应小。 4.光谱背景小。 5.准确度高,相对误差为1%,干扰少。 6.自吸效应小 进样: 溶液试样 气动雾化器 超声雾化器 超声雾化器:不连续的信号 气体试样可直接引入激发源进行分析。有些元素可以转变成其相应的挥发性化合物而采用气体发生进样(如氢化物发生法)。 例如砷、锑、铋、锗、锡、铅、硒和碲等元素。 固体试样 (1). 试样直接插入进样 (2). 电弧和火花熔融法 (3). 电热蒸发进样 (4). 激光熔融法 分光仪棱镜和光栅 检测器:目视法,摄谱法,光电法 干扰: 光源 蒸发温度 激发温度/K 放电稳定性 应用范围 直流电弧 高 4000~7000 较差 定性分析,矿物、纯物质、 难挥发元素的定量分析 交流电弧 中 4000~7000 较好 试样中低含量组分的定量分析 火花 低 瞬间10000 好 金属与合金、难激发元素的定量分析 ICP 很高 6000~8000 最好 溶液的定量分析

仪器分析课程学习心得

《仪器分析》学习心得 仪器分析是我们大学课程里的一门专业基础课,本着让我们在大学学习期间掌握有关仪器分析的一些常用方法的基础原理、特点和应用。通过老师的详细讲解,我认为这门课程对于我们将来参加科学研究或具体实际工作都是很有帮助的。通过学习,我也感触颇深,受益匪浅。 在老师讲的众多实验仪器中我对电感偶和等离子体(ICP)最为感兴趣,想法颇多。主要是因为,我现在跟随着唐老师做大学生创新实验——用吸附法处理含铬电镀废水,因此经常用到ICP,感觉ICP 对我们的科研具有很大的帮助,方便我们测量分析实验结果,快捷方便。 1.1我简单讲一下,ICP的CP光谱议中等离子体焰的形成过程及原理。 ICP英文翻译过来是电感耦合等离子体,顾名思义,在炬管的切向方向引入高速氩气,氩气在炬管的外层形成高速旋流,通过类似真空检漏仪的装置产生的高频电火花使氩气电离出少量电子,形成一个沿炬管切线方向的电流.因为炬管放置在高频线圈内,通过高频发生器产生的高频振荡通过炬管线圈耦合到已被电离出少量电子的氩气上,使氩气中的这部分电子加速运动,撞击其他电子产生电离,形成雪崩效应,最终靠高频发生器连续提供能量,即可形成一个稳定的等离子体火焰。 样品气溶胶在ICP高温作用下经历了蒸发、原子化、电离、激发

等过程。在听完课后,我感觉对这个过程还不是很清楚,我就上网搜索了相关ICP的自学资料来进一步学习。在学习后,我明白了这4个过程的具体内容。以ICP测量CaCl2样品为例,先通过去溶剂成盐粒,盐粒在高温下蒸发成气态,在通过离解成原子态,激发发射特征谱线测量。 1.2下面我大概讲一下ICP的样品前处理,测试参数的选取,标准曲线的绘制。 1.2.1样品前处理:样品在放入ICP前,应该经过分解。可以是采用酸溶、碱溶、灰化后酸溶和微波消解等。消解液可以是王水、KOH /NaOH、氢氟酸高氯酸组成的混合酸、王水与硫酸和磷酸组成的混合酸等。具体的消解可以看下面:

仪器分析课程教学大纲

《仪器分析》课程教学大纲 (Instrumental Analysis) 【课程代码】024601102【课程修习类型】必修(平台课程) 【开课学院】材料与化学化工学院【适用专业】化学 【学分数】3 【学时数】总学时48学时 【建议修读学期】二秋【先修课程】无机化学、物理、高等数学、 分析化学、有机化学 一、课程说明 1.课程介绍(中、英文) 仪器分析是化学专业的专业核心课,应化及制药工程专业的专业选修课之一。它是研究物质的化学组成、结构和状态的分析测试方法,也是其它学科取得化学信息的研究手段,在许多领域发挥着重要的作用。课程涉及的知识面广且综合性强,包括各种现代仪器分析方法的物理和化学的原理、特点、仪器的结构原理、定性定量分析原理、方法及其应用范围。本课程主要讲解原子发射光谱、原子吸收光谱、分子发光分析法、电位分析法、电解库仑分析法、伏安与极谱法、气相色谱、液相色谱及毛细管电泳等分析方法。 通过本课程的学习,使学生能够基本掌握主要仪器分析方法的原理及应用领域,掌握应用合适的方法进行实际样品分析,并解决相应分析化学问题的能力。 仪器分析在工业、农业、环境、医药、健康、食品及科学研究等方方面面都有着广泛的应用。掌握各种仪器分析方法,不仅有利于学生提高化学及相关学科的学习和研究能力,而且能更快更好地与社会接轨,提高他们的就业竞争力。因此,仪器分析课程在化学及相关专业的人才培养过程中起到承前启后的作用。 Brief Introduction of Instrumental Analysis Instrumental analysis is one of core courses in chemical majors. It is not only an analytical test method for studying chemical composition, state and structure of matter, but also a research method of obtaining chemical information in other science. Instrumental analysis is an important analytical detection means that plays an important role in a lot of field. The course of Instrumental analysis involves a wide range of knowledge with strong comprehensive, including physical and chemical principle, the characteristics, structure principle, qualitative and quantitative analysis principle and its application scope of all kinds of modern instrumental analysis methods. The course explains basic principle ,instrumental operation and application principle of atomic emission spectroscopy, atomic absorption spectroscopy, molecular luminescence analysis, potentiometric analysis, electrolytic analysis, coulometry, voltammetry and polarography, gas chromatography and liquid chromatography, etc. The purpose of this course is to help the students to understand the basic principle of the various instrumental analysis methods and know where they can be applied. Help the students to gain the abilities of choosing an appropriate method to analyze actual sample as well as solving the problems encountered in the process of analysis.

仪器分析总结习题 (1)

第一章 气象色谱法 1. 死时间tM 2. 保留时间tR 3. 调整保留时间t ’R 4. 死体积VM 5. 保留体积VR 6. 调整保留体积 7.相对保留值γ21 8.标准偏差σ 9.半峰宽度Y1/2 10.峰底宽度Y 1、若一个溶质的分配比为,计算它在色谱柱流动相中的质量分数(%) 2、在一根色谱柱上分离苯和甲苯,保留时间分别为和,死时间为1min ,问:甲苯停留在固定相中的时间是苯的几倍? 甲苯的分配系数是苯的几倍? (3,3) 3、某色谱条件下,组分A 的分配比为4,死时间为30s ,求组分A 的保留时间(150s ) 4、下列哪些参数改变会引起相对保留值变化? A 、柱长 B 、相比 C 、柱温 D 、流动相流速 5、在气液色谱中,下列变化对溶质的保留体 积几乎没有影响的是 A 、改变载气流速 B 、改变固定液化学性质 C 、增加柱温 D 、增加柱长 E 、增加固定液的量 例1 已知某组分峰Y =40s ,tR=400s 。计算理论塔板数n 。 例2 已知一根1米长的色谱柱,neff =1600块,组份A 在柱上的调整保留时间为100s ,试求A 峰的半峰宽和Heff 。 例3 在一定条件下,两个组分的调整保留时间分别为85秒和100秒,要达到完全分离,即R= 。计算需要多少块有效塔板。若填充柱的塔板高度为 cm ,柱长是多少? 解: γ2,1= 100 / 85 = n 有效 = 16R2 [γ 2,1 / (γ 2,1 -1) ]2 = 16× × / ) 2 = 1547(块) L 有效 = n 有效·H 有效 = 1547× = 155 cm 1600)40 400(16)(1622===Y t n R 理'21/25.54() R t L n H Y n ==有效有效有效

仪器分析总结

1仪器分析概述 1、1分析化学 1、1、1定义 分析化学就是指发展与应用各种方法、仪器与策略,获得有关物质在空间与时间方面组成与性质信息的一门科学,就是化学的一个重要分支。 1、1、2任务 分析化学的主要任务就是鉴定物质的化学组成(元素、离子、官能团、或化合物)、测定物质的有关组分的含量、确定物质的结构(化学结构、晶体结构、空间分布)与存在形态(价态、配位态、结晶态)及其与物质性质之间的关系等,属于定性分析、定量分析与结构分析研究的范畴。 ①确定物质的化学组成——定性分析 ②测量试样中各组份的相对含量——定量分析 ③表征物质的化学结构、形态、能态——结构分析、形态分析、能态分析 ④表征组成、含量、结构、形态、能态的动力学特征——动态分析 1、1、3 分类 根据分析任务、分析对象、测定原理、操作方法与具体要求的不同,分析方法可分为许多种类。 ①定性分析、定量分析与结构分析 ②无机分析与有机分析

③化学分析与仪器分析 ④常量分析、半微量分析与微量分析 ⑤例行分析与仲裁分析 1、1、4 特点 分析化学就是一门信息的科学,现代分析化学学科的发展趋势与特点可归纳为如下几个方面: ①提高分析方法的灵敏度; ②提高分析方法的选择性及解决复杂体系的分离问题; ③扩展物质的时间空间多维信息; ④对微型化及微环境的表征与测定; ⑤对物质形态、状态分析及表征; ⑥对生物活性及生物大分子物质的表征与测定; ⑦对物质非破坏性检测及遥测;

⑧分析自动化及智能化。 1、2 仪器分析 仪器分析就是化学学科得到一个重要分支,以物质的物理与物理化学性质为基础建立起来的一种分析方法。 1、2、1分类 仪器分析分为电化学分析、光化学分析、色谱分析、质谱分析、热分析法与放射化学分析法,详见下表。 1、2、2特点 ①灵敏度高:大多数仪器分析法适用于微量、痕量分析。如原子吸收分光光度法测定某些元素的绝对灵敏度可达10-14g,电子光谱甚至可达10-18g; ②取样量少:化学分析法需用10-1~10-4g,而仪器分析试样常在10-2~10-8g;

浅谈对仪器分析这门课的认识

浅谈对仪器分析这门课的认识 摘要:不论是大气污染还是水质污染,都要求采用先进的测定技术对环境介质中污染物的浓度进行准确定位和评价。例如,在了解酸雨程度时,适宜采用离子色谱法;氟氯烃类气体和有机农药的测定,不但需要高难度的采样和预处理技术,还需要采用气相色谱法或气质联用技术( GC -MS) 进行测定;如上所述,在大气污染、水质污染这两个领域中,各类污染物质均需要相应的分析方法。因此仪器分析这门课的学习是相当重要的。 关键词:大气污染、水污染、仪器分析 仪器分析这门课是我向往已久的课程,因为在上学期通过学习环境监测以及做一些专业基础实验,我对化学分析仪器已经产生了浓厚的兴趣,所以很是向往仪器分析这门课。另一方面,对于环境工程专业的我们来说,学好仪器分析这门课对我们来说尤为重要,因为环境质量的不断恶化使得人们对环境质量的关注上升到更高的层次。环境质量监测需要应对更大数量的样品和更快的分析速度,因此现代化的检测方法成为环境监测的必由之路。所以光谱法、色谱法、色-质联用技术、电感耦合等离子体质谱法及流动分析等仪器分析技术在环境监测中尤为重要【1】。但当我真正开始学习这门课的时候,才发现仪器分析并没有想象中的那么简单。因为《仪器分析》的各章节之间联系不够紧密,知识琐碎,仪器结构复杂,原理抽象,涉及面广。例如对于气相色谱仪这一仪器来说,虽然书上介绍的很详细,老师讲解的也很细致,但听完之后对于它的整个气路流程还是不是很清楚,简单通过听课或者看书很难达到记忆深刻的目的。所以自己课下也会找到一些适合自己的方法来学习。 1善于总结。 对于仪器分析这门课,虽然它的知识点很琐碎,各章节之间联系也不是很紧密,但每门课学习结束后的总结是我必做的一件事情,因为不仅加深了我的记忆,还能够通过总结比较拓宽我的知识广度和深度。例如对于仪器分析中的原子吸收光谱法与原子发射光谱法来说,自己就在课下做了一些总结,并且总结的同时也会通过过程图来进行记忆。 图1 笔记总结图2 原子吸收仪示意图 1.1原子吸收光谱法 (1)原子吸收光谱法以测量待测元素的气态基态原子外层电子对其特征谱线的吸收作

仪器分析各个章节小结

第八章电位法和永停滴定法- 章节小结 1.基本概念 指示电极:是电极电位值随被测离子的活(浓)度变化而变化的一类电极。 参比电极:在一定条件下,电极电位基本恒定的电极。 膜电位:跨越整个玻璃膜的电位差。 不对称电位:在玻璃电极膜两侧溶液pH相等时,仍有1mV~3mV的电位差,这一电位差称为不对称电位。是由于玻璃内外两表面的结构和性能不完全相同,以及外表面玷污、机械刻划、化学腐蚀等外部因素所致的。 酸差:当溶液pH<1时,pH测得值(即读数)大于真实值,这一正误差为酸差。 碱差:当溶液pH>9时,pH测得值(即读数)小于真实值,这一负误差为碱差,也叫钠差。 转换系数:指当溶液pH每改变一个单位时,引起玻璃电极电位的变化值。 离子选择电极:一般由电极膜(敏感膜)、电极管、内充溶液和内参比电极四个部分组成。 电位选择性系数:在相同条件下,同一电极对X和Y离子响应能力之比,亦即提供相同电位响应的X和Y离子的活度比。 可逆电对:电极反应是可逆的电对。 此外还有相界电位、液接电位、原电池、残余液接电位。 2.基本理论 (1)pH玻璃电极: -浓度一定)、内参比电极(Ag-AgCl电极)、绝缘套; ①基本构造:玻璃膜、内参比溶液(H+与 Cl ②膜电位产生原理及表示式:; ③玻璃电极作为测溶液pH的理论依据。 (2)直接电位法测量溶液pH: ①测量原理。 ②两次测量法。pHs 要准,而且与pHx差值不大于3个pH单位,以消除液接电位。(3)离子选择电极: ①基本构造:电极膜、电极管、内参比溶液、内参比电极; ②分类:原电极、敏化电极; ③响应机理及电位选择性系数; ④测量方法:两次测量法、校正曲线法、标准加入法。 (4)电位滴定法:以电位变化确定滴定终点(E-V曲线法、曲线法、曲线法)。 (5)永停滴定法:以电流变化确定滴定终点,三种电流变化曲线及终点确定。 第九章光谱分析法概论- 章节小结 1.基本概念 电磁辐射:是一种以巨大速度通过空间而不需要任何物质作为传播媒介的光子流。 磁辐射性质:波动性、粒子性 电磁波谱:所有的电磁辐射在本质上是完全相同的,它们之间的区别仅在于波长或频率不同。若把电磁辐射按波长长短顺序排列起来,即为电磁波谱。 光谱和光谱法:当物质与辐射能相互作用时,物质内部发生能级跃迁,记录由能级跃迁所产生的辐射能强度随波长(或相应单位)的变化,所得的图谱称为光谱。利用物质的光谱进行定性、定量和结构分析的方法称光谱法。 非光谱法:是指那些不以光的波长为特征讯号,仅通过测量电磁辐射的某些基本性质(反射、折射、干涉、衍射和偏振)的变化的分析方法。 原子光谱法:测量气态原子或离子外层电子能级跃迁所产生的原子光谱为基础的成分分析方法。为线状光谱。 分子光谱法:以测量分子转动能级、分子中原子的振动能级(包括分子转动能级)和分子电子能级(包括振-转能级

最新《仪器分析》知识点整理

教学内容 绪论 分子光谱法:UV-VIS、IR、F 原子光谱法:AAS 电化学分析法:电位分析法、电位滴定 色谱分析法:GC、HPLC 质谱分析法:MS、NRS 第一章绪论 ⒈经典分析方法与仪器分析方法有何不同? 经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。 仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。 化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。 ⒉仪器的主要性能指标的定义 1、精密度(重现性):数次平行测定结果的相互一致性的程度,一般用相对标准偏差表示(RSD%),精密度表征测定过程中随机误差的大小。 2、灵敏度:仪器在稳定条件下对被测量物微小变化的响应,也即仪器的输出量与输入量之比。 3、检出限(检出下限):在适当置信概率下仪器能检测出的被检测组分的最小量或最低浓度。 4、线性范围:仪器的检测信号与被测物质浓度或质量成线性关系的范围。 5、选择性:对单组分分析仪器而言,指仪器区分待测组分与非待测组分的能力。 ⒊简述三种定量分析方法的特点和应用要求 一、工作曲线法(标准曲线法、外标法) 特点:直观、准确、可部分扣除偶然误差。需要标准对照和扣空白 应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。 二、标准加入法(添加法、增量法) 特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响 应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况 三、内标法 特点:可扣除样品处理过程中的误差 应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰 第2章光谱分析法引论 习题1、吸收光谱和发射光谱的电子能动级跃迁的关系 吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv的关系时,将产生吸收光谱。M+hv→M* 发射光谱:物质通过激发过程获得能量,变为激发态原子或分子M*,当从激发态过渡到低能态或某态时产生发射光谱。M*→M+hv 2、带光谱和线光谱 带光谱:是分子光谱法的表现形式。分子光谱法是由分子中电子能级、振动和转动能级的变化产生。 线光谱:是原子光谱法的表现形式。原子光谱法是由原子外层或内层电子能级的变化产生的。 第6章原子吸收光谱法(P130) 熟识: 原子吸收光谱产生的机理以及影响原子吸收光谱轮廓的因素 了解: 原子吸收光谱仪的基本结构;空心阴极灯产生锐线光源的原理 掌握:火焰原子化器的原子化历程以及影响因素、原子吸收光谱分析干扰及其消除方法、AAS测量条件的选择及定量分析方法(实验操作) 1、定义:它是基于物质所产生的原子蒸气对特定谱线的吸收来进行定量分析的方法。基态原子吸收其共振辐射,外层电子由基态跃迁至激发态而产生原子吸收光谱。 原子吸收光谱位于光谱的紫外区和可见区。 2、原子吸收定量原理:频率为ν的光通过原子蒸汽,其中一部分光被吸收,使透射光强度减弱。 3、谱线变宽的因素(P-131): ⑴多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 Doppler宽度随温度升高和相对原子质量减小而变宽。 ⑵压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起 外界压力愈大,浓度越高,谱线愈宽。 4、对原子化器的基本要求:①使试样有效原子化;②使自由状态基态原子有效地产生吸收;③具有良好的稳定性和重现形; ④操作简单及低的干扰水平等。 1.测量条件选择 ⑴分析线:一般用共振吸收线。 ⑵狭缝光度:W=DS没有干扰情况下,尽量增加W,增强辐射能。 ⑶灯电流:按灯制造说明书要求使用 ⑷原子条件:燃气:助燃气、燃烧器高度石墨炉各阶段电流值 ⑸进样量:(主要指非火焰方法) 2.分析方法 (1).工作曲线法 最佳吸光度0.1---0.5,工作曲线弯曲原因:各种干扰效应。 ⑵. 标准加入法 精品文档

仪器分析-光谱法总结

原子发射光谱:原子的外层由高层能及向底层能级,能量以电磁辐射的形式发射出去,这样就得到了发射光谱。原子发射一般是线状光谱。 原理:原子处于基态,通过电至激发,热至激发或者,光至激发等激发作用下,原子获得能量,外层电子从基态跃迁到较高能态变成激发态,经过10-8s,外层电子就从高能级向较低能级或基态跃迁,多余能量的发射可得到一条光谱线。 光谱选择定律:①主量子数的变化△n为包括零的整数,②△±1,即跃迁只能在S项与P项间,P与S或者D间,D到P和F。 ③△0,即不同多重性状间的迁移是不可能的。 ③△0,±1。但在0时,0的跃迁是允许的。N21 影响谱线强度的主要因素:1激发电位2跃迁概率3 统计权重4激发温度(激发温度↑离子↑原子光谱↓离子光谱↑)5原子密度 原子发射光谱仪组成:激发光源,色散系统,检测系统, 激发光源:①火焰:2000到3000K,只能激发激发电位低的原子:如碱性金属和碱土金属。 ②直流电弧:4000到7000K,优点:分析的灵敏度高,背景小,适合定量分析和低含量的测定。缺点:不宜用于定量分析及低熔点元素的分析。 ③交流电弧:温度比直流高,离子线相对多,稳定性比直流高,操作安全,但灵敏度差

④火花:一万K,稳定性好,定量分析以及难测元素。每次放电时间间隔长,电极头温度低。 适合分析熔点低。缺点:灵敏度较差,背景大,不宜做痕量元素分析(金属,合金等组成均匀的试样)⑤辉光激发能力强,可以激发很难激发的元素,(非金属,卤素,一些气体)谱线强度大,背景小,检出限低,稳定性好,准确度高(设备复杂,进样不方便)⑥电感耦合等离子体10000K 基体效应小,检出限低,限行范围宽⑦激光一万K,适合珍贵样品 分光系统:单色器:入射狭缝,准直装置,色散装置,聚焦透镜,出射狭缝。 棱镜:分光原理:光的折射,由于不同的光有不同的折射率,所以分开。 光栅:光的折射与干涉的总效果,不同波长的光通过光栅作用各有不同的衍射角。 分辨率: 原子发射检测法:①目视法,②光电法, ③摄谱法:用感光板来记录光谱,感光板:载片(光学玻璃)和感光乳剂(精致卤化银精致明胶)。曝光量 E感光层接受的照度、 黑度:1为没有谱线的光强,i通过谱线的光强度i ,透过率T 定性分析:铁光谱比较法,标样光谱比较法,波长测定法。

《仪器分析》课程教学大纲

课程编号: 《仪器分析及实验》课程教学大纲 (Teaching Outline of Instrumental Analysis and Experiments) 总学时:96 学分:2+1.5 一、课程简介 1、课程性质:专业必修 2、开课学期:第4学期 3、适用专业:化学(师范)、应用化学 4、课程修读条件:学习本课程前应先学习无机化学、有机化学、分析化学、分析化学实验和普通物理等课程。 5、课程教学目的: 仪器分析是通过测量物质的物理或物理化学性质来确定某些化学组成、含量及化学结构的一类分析方法。它具有实验性强和应用性强的特点,随着科学技术的发展,其应用日益广泛,它在化学学科中的地位越来越重要。通过教学,应使学生: (1)掌握有关的仪器分析方法的基本原理、方法特点; (2)掌握有关的仪器的工作原理和构造; (3)掌握有关节仪器分析的定性、定量分析方法。 二、教学基本要求或建议: 通过本课程的学习,要求学生掌握仪器分析方法的基本原理和方法特点,掌握一些简单分析仪器的操 作方法,了解并初步掌握一些大型分析仪器的操作方法,并初步具有分析问题和解决问题的能力。 三、内容纲目及标准: (一)理论部分 学时数(42) 绪论 [教学目的] 通过绪论教学,使学生初步了解仪器分析方法特点、方法分类和发展概况,并使学生对仪器分 析感兴趣。 [教学重点与难点]各种仪器分析方法 第一节仪器分析和化学分析 1、化学分析 2、仪器分析 第二节仪器分析方法 1、光分析法 2、电化学分析法 3、色谱分析法 4、其它仪器分析法 第三节仪器发展概况 第一章电磁辐射基础

[教学目的] 初步了解电磁辐射,电磁波谱的基本概念,正确理解原子光谱和分子光谱,熟悉射光谱、吸光谱、荧光光谱和曼散射,并对上述概念加以对比和区分。 [教学重点与难点]电磁辐射的基本性质,原子光谱与分子光谱,发射光谱与吸收光谱。 第一节电磁辐射的基本性质 1、电磁辐射 2、光的二象性 3、辐射能参数 4、辐射能的特性 第二节原子光谱与分子光谱 1、原子光谱 2、分子光谱 第三节光分析法的分类 1、光谱法 2、非光谱法 第二章原子发射光谱 [教学目的] 掌握发射光谱法(AES)基本原理,影响谱线强度的因素;谱线强度与组分浓度的关系、定性、定量分析方法。理解内标法原理,了解AES仪器的组成及各部伯的作用。 [教学重点与难点]AES方法原理,定性定量分析方法,仪器结构及各部分的功能。 第一节方法原理 1、原子光谱的产生 2、谱线强度 3、谱线的自吸和自蚀 第二节仪器装置 1、光源 2、分光原件 3、检测器 第三节分析方法 1、光谱定性分析 2、光谱半定量分析 3、光谱定量分析 第三章原子吸收光谱法与原子荧光光谱法 [教学目的] 掌握原子吸收光谱法(AAS)基本原理AAS分析中的干扰及消除,定量分析方法。理解发积分吸收与峰值吸收,仪器构造及各部分的功能。 [教学重点与难点]AAS、AFS方法原理,AAS定量分析方法,AAS光度计的构造及各部件的功能。 第一节概述 第二节原子吸收分光光度法基本原理 1、基态原子与激发态原子的关系 2、原子吸收线的宽度

仪器分析总结习题

第一章 气象色谱法 1.死时间tM 2.保留时间tR 3.调整保留时间t ’R 4.死体积VM 5.保留体积VR 6.调整保留体积 7.相对保留值γ21 8.标准偏差σ 9.半峰宽度Y1/210.峰底宽度Y 1、若一个溶质的分配比为0.2,计算它在色谱柱流动相中的质量分数(83.3%) 2、在一根色谱柱上分离苯和甲苯,保留时间分别为2.5和5.5min ,死时间为1min ,问:甲苯停留在固定相中的时间是苯的几倍? 甲苯的分配系数是苯的几倍?(3,3) 3、某色谱条件下,组分A 的分配比为4,死时间为30s ,求组分A 的保留时间(150s ) 4、下列哪些参数改变会引起相对保留值变化? A 、柱长 B 、相比 C 、柱温 D 、流动相流速 5、在气液色谱中,下列变化对溶质的保留体 积几乎没有影响的是 A 、改变载气流速 B 、改变固定液化学性质 C 、增加柱温 D 、增加柱长 E 、增加固定液的量 例1已知某组分峰Y =40s ,tR=400s 。计算理论塔板数n 。 例2已知一根1米长的色谱柱,neff =1600块,组份A 在柱上的调整保留时间为100s ,试求A 峰的半峰宽和Heff 。 例3在一定条件下,两个组分的调整保留时间分别为85秒和100秒,要达到完全分离,即R=1.5。计算需要多少块有效塔板。若填充柱的塔板高度为0.1cm ,柱长是多少? 1600)40 400(16)(1622===Y t n R 理'21/25.54() R t L n H Y n ==有效有效有效

解:γ2,1=100/85=1.18 n有效=16R2[γ2,1/(γ2,1-1)]2 =16×1.52×(1.18/0.18)2 =1547(块) L有效=n有效·H有效=1547×0.1=155cm 即柱长为1.55米时,两组分可以得到完全分离。 例2有一根1m长的柱子,分离组分1和2得到如图的色谱图。图中横坐标l 为记录笔走纸距离。若欲得到R=1.2的分离 度,有效塔板数应为多少?色谱柱要加到多长? 解:先求出组分2对组分1的相对保留值r2,1 (1)从图中可以看出,tR2=17min,Y2=1min, 所以;n=16(tR2/Y2)2=4624 (2)t’R1=tR1-tM=14-1=13mint’R2=tR2–tM=17-1=16min (3)相对保留值α=t’R2/t’R1=16/13 neff=16(t’R2/Y)2=4096 Heff=L/neff=3/4096 根据公式:L=16R2Heff=16(1.5)2[(16/13)/(16/13-1)]2×(3/4096)=0.75m另

《仪器分析》课程标准

《仪器分析》课程标准 (供2009级药物分析技术专业用) 第一部分前言 一、课程背景 药学高等职业教育肩负着培养面向药学生产、建设、服务和管理一线需要的高技能人才的使命,为了适应新形势下高职药学专业教育改革和发展的需要,进一步提高教学水平和办学质量,在学院领导和教务处的大力支持下,我系根据高等职业院校课程建设必须贯彻“以服务为宗旨,以就业为导向,走产学结合发展道路”以专业建设为龙头,加快课程改革和强化特色的要求,于2006年12月开始组织高职高专药品类专业(包括药学、药品经营与管理、药物制剂技术、生物制药技术专业)的教学计划(草稿)和课程标准的编制工作,为了进一步完善教学计划,编写好课程标准,我们在岗位调研和深入部分校企合作单位征求意见的基础上,先后召开了药学专业的改革与发展研讨会和组织系教学指导委员会全体成员进行了多次专题讨论,为了了解和学习国内同类专业的课程建设情况和经验,我系先后派出8名教师参加卫生部教材办组织的新一轮全国高职高专药品类专业教学大纲和教材的编写工作。通过学习、调研和讨论,我们在总结多年药学专业教改实践经验的基础上,突破以学科设置专业课程的传统模式,初步形成“针对专业岗位对毕业生的知识、能力和素质要求构建体现‘四化’特色的复合型药学应用性人才培养课程体系”的共识。 1.教育理念职业化人才培养方案以市场需求为导向,贯穿“工学结合”的教育理念。以培养“一专多能的复合型药学应用性人才”为目标。 2.培养方向动态化课程体系应体现“以宽口径平台支撑多个就业方向”特色,充分体现在统一基础知识平台上进行分流培养的原则;体现“以人为本”,有利于学生的个性化培养的原则。为学生发现自己兴趣与潜能,及时调整学习方向,适应社会需求动态变化提供可能。 3.课程体系模块化突破传统“三段式”课程模式,设计适合复合型药学应用性人才培养特点的六个课程模块,从分析学生专业岗位能力入手,在确定岗位目标的基础上,根据岗位能力的确定和分解,明确岗位课程。 4.知识体系综合化课程目标和课程标准应根据高职教育规律、特点和多个岗位需求,体现对专业相关知识的综合性要求,在专业理论知识和技术原理方面、前沿技术了解和掌握程度方面,复合型人才的知识和能力体现方面都要有明确的要求,以便及时适应药学行业技术不断升级和高新技术转化迅速的特点。 二、课程性质 1.仪器分析法包括物理分析法和物理化学分析法,具有灵敏、快速、准确的特点,应用非常广泛。按照测量过程中所观测的性质分类,仪器分析法可分为电化学分析法、一般光学分析法、光谱分析法、色谱分析法、质谱分析法等。近几年来,电子技术、计算机技术和激光技术的发展,推动了仪器分析方法的快

仪器分析个人总结

1、气相色谱 1、分离原理: 是混合物中各组分在两相间进行分配,其中一相是不动的,称为固定相,另一相是携带混合物流过此固定相的流体,称为流动相。当流动相中所含混合物经过固定相时,就会与固定相发生作用。由于各组分在性质和结构上的差异,与固定相发生作用的大小,强弱也有差异,因此在同一推动力作用下,不同组分在固定相中的滞留时间有长有短,从而按先后不同的次序从固定相中流出。 2、几个重要的值 ( 1 )死时间: tM ( 2)保留时间: tR ( 3)调整保留时间: tR ' =tR-tM ( 4)相对保留值: r12=tR1 ' tR2' (5)标准偏差:(T (6)半峰宽度:Y12=2.35b (7)峰底宽度:Y=4c ( 8)分配系数:K=cScM ( 9)分配比(容量因子) :k=mSmM K=k xp (相比) ( 10)滞留因子:RS=tMtR= (uSu) ( 11 )塔板理论n=LH H 有效作为柱效能指标H 有效=Ln 有效 n 有效=5.54 (tR ' Y1)22=16 (tR ')Y2 (12)分离度:R=tR2‘-tR1' 12(Y1+Y2)分离度是柱效能、选择性影响因素的总和,故可用其作为色谱柱的总分离效能指标。 ( 13)选择性系数: 3、固定液的要求 ( 1 )挥发性小; ( 2)热稳定性好; ( 3)对试样各组分有适当的溶解度; ( 4)具有较高的选择性; ( 5)化学稳定性好。 4、检测器 ( 1 )热导池(所有的物质,质量型) ( 2)氢火焰离子化(所有的有机物,浓度性) ( 3)电子俘获(电负性强)

(4)火焰光度(硫和磷) (5)要求:响应快,灵敏度高,稳定性好,线性范围宽,通用范围好。 5、保留指数 I=100(logXi-logXZlogXZ+1-l ogXZ+Z) 6 、定量 (1)归一化法: wi=fiAifiAi (2)内标法 wi=AiA 内标?m 内标m?fi x 100% 7、相似相溶 极性分子间的电性作用,使得极性分子组成的溶质易溶于极性分子组成的溶剂,难溶于非极性分子组成的溶剂;非极性分子组成的溶质易溶于非极性分子组成的溶剂,难溶于极性分子组成的溶剂。 2、液相色谱 1、特点 (1)三高一广一快:高压、高效、高灵敏度,高速,可以测定75-80% 的有机物。 2、六大分离原理 (1)液-液分配色谱:可以分离各种有机无机物 (2)液-固色谱:可以分离中等相对分子质量的油溶性物质 (3)离子对色谱:可以分离碱 (4)离子交换色谱:可以分离无机化合物、有机化合物和生物分子 (5)离子色谱: 可以分离无机化合物、有机化合物和生物分子 (6)空间排阻色谱: 可以分离高分子 2、选择流动相时应注意的因素(1)流动相纯度要高(2)应避免使用会引起柱效损失或保留 特性变化的溶剂 (3)对试样要有适宜的溶解度 (4)溶剂的粘度小些为好 (5)应与检测其相匹配 3、梯度洗提流动相中含有两种或两种以上不同极性的溶剂,在分离过程中按一定的程序连续改变流动相中溶剂的配比和极性,通过流动相中极性的变化来改变被分离组分的容量因子k 和选择性因子,以提高分离效果。

相关文档
相关文档 最新文档