文档库 最新最全的文档下载
当前位置:文档库 › 单相和三相逆变器SPWM调制技术的仿真与分析

单相和三相逆变器SPWM调制技术的仿真与分析

单相和三相逆变器SPWM调制技术的仿真与分析
单相和三相逆变器SPWM调制技术的仿真与分析

目录

1.引言 .......................................................................................... - 2 -

2.PWM控制的基本原理........................................................... - 2 -

3.PWM逆变电路及其控制方法............................................... - 3 -

4.电路仿真及分析 ...................................................................... - 4 -4.1双极性SPWM波形的产生 . (4)

4.2三相SPWM波形的产生 (6)

4.3双极性SPWM控制方式单相桥式逆变电路仿真及分析-7-

5.双极性SPWM控制方式的单相桥式逆变电路和三相逆变电路比较分析 .................................................................................. - 12 -

6.结论 ........................................................................................ - 13 -

7.参考文献 ................................................................................ - 13 -

1. 引言

PWM 技术的的应用十分广泛,目前中小功率的逆变电路几乎都采用了PWM 技术。它使电力电子装置的性能大大提高,因此它在电力电子技术的发展史上占有十分重要的地位。PWM 控制技术正是有赖于在逆变电路中的成功应用,才确定了它在电力电子技术中的重要地位。常用的PWM 技术包括:正弦脉宽调制(SPWM )、选择谐波调制(SHEPWM )、电流滞环调制(CHPWM )和电压空间矢量调制(SVPWM )。

2. PWM 控制的基本原理

PWM (Pulse Width Modulation )控制就是对脉冲的宽度进行调制的技术,即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形。PWM 控制技术的重要理论基础是面积等效原理,即:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。下面分析如何用一系列等幅不等宽的脉冲来代替一个正弦半波。把正弦半波分成N 等分,就可以把正弦半波看成由N 个彼此相连的脉冲序列所组成的波形。如果把这些脉冲序列用相同数量的等幅不等宽的矩形脉冲代替,使矩形脉冲的中点和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦波部分面积(冲量)相等,就可得到图1所示的脉冲序列,这就是PWM 波形。像这种脉冲的宽度按正弦规律变化而和正弦波等效的PWM 波形,也称为SPWM 波。

图1 单极性SPWM 控制方式波形

上图所示的波形称为单极性SPWM 波形,根据面积等效原理,正弦波还可等效为图2中所示的PWM 波,这种波形称为双极性SPWM 波形,而且这种方式在实际应用中更为广泛。

U d -U

图2 双极性SPWM 控制方式波形

3. PWM 逆变电路及其控制方法

PWM 逆变电路可分为电压型和电流型两种,目前实际应用的几乎都是电压型电路,因此本节主要分析电压型逆变电路的控制方法。要得到需要的PWM 波形有两种方法,分别是计算法和调制法。根据正弦波频率、幅值和半周期脉冲数,准确计算PWM 波各脉冲宽度和间隔,据此控制逆变电路开关器件的通断,就可得到所需PWM 波形,这种方法称为计算法。由于计算法较繁琐,当输出正弦波的频率、幅值或相位变化时,结果都要变化。与计算法相对应的是调制法,即把希望调制的波形作为调制信号,把接受调制的信号作为载波,通过信号波的调制得到所期望的PWM 波形。通常采用等腰三角波作为载波,在调制信号波为正弦波时,所得到的就是SPWM 波形。下面具体分析单相和三相逆变电路双极性控制方式。

图3是采用IGBT 作为开关器件的单相桥式电压型逆变电路。

图3 单相桥式PWM 逆变电路

O

t U

d - U d

单相桥式逆变电路双极性PWM 控制方式:在Ur 的半个周期内,三角波载波有正有负,所得PWM 波也有正有负,其幅值只有±d U 两种电平。同样在调制信号Ur 和载波信号Uc 的交点时刻控制器件的通断。Ur 正负半周,对各开关器件的控制规律相同。当Ur >Uc 时,给V1和V4导通信号,给V2和V3关断信号。如o i >0,V1和V4通,如o i <0,VD1和VD4通,o U =d U 。当Ur 0,VD2和VD3通,o U =-d U 。这样就得到图2所示的双极性的SPWM 波形。

图4是采用IGBT 作为开关器件的三相桥式电压型逆变电路。

图4 三相PWM 逆变电路

当c rU U U >时,给V1导通信号,给V4关断信号,2/`'d UN U U =;当c rU U U <时,给V4导通信号,给V1关断信号,2/`'d UN U U -=。 当给V1(V4)

加导通信号时,可能是V1(V4)导通,也可能是VD1 ( VD4 )导通。

`'UN U 、`'VN U 和`'WN U 的PWM 波形只有2/d U +两种电平。UV U 波形可由`'UN U 、`'VN U 得出,当1和6通时,UV U =Ud ,当3和4通时,UV U =Ud -,当1和3或4和6通时,UV U =0。VW U 、WU U 的波形可同理得出。

4. 电路仿真及分析

4.1 双极性SPWM 波形的产生:仿真电路图如图5所示。

在Simulink 的“Source”库中选择“Clock”模块,以提供仿真时间t,乘以r f π2后再通过一个“sin”模块即为sin t ω,乘以调制比m 后可得到所需的

正弦波调制信号。三角载波信号由“Source”库中的“Repeating Sequence”模块产生,参数设置为【0 1/c f /4 3/c f /4 1/c f 】和【0 1 -1 0】,便可生成频率为c f 的三角载波。将调制波和载波通过一些运算与比较,即可得出图6所示的双极性SPWM 触发脉冲波形。

图5 双极性PWM 逆变器触发脉冲发生电路

图6 双极性SPWM 波形

从上图可以看出,对于双极性SPWM 控制方式,在正弦调制波半个周期内,三角载波在正负极性之间连续变化,SPWM 波也是在正负之间变化。

4.2 三相SPWM 波形的产生:仿真图如下所示。

图7 三相SPWM 逆变器触发脉冲发生电路

本文中采用单三角载波和三个幅值、频率相同相位互差120度的三相交流波形作为调制波。同上,在Simulink 的“Source”库中选择“Clock”模块,以提供仿真时间t,乘以r f π2后再通过一个“sin”模块即为sin t ω,乘以调制比m 后可得到所需的正弦波调制信号,通过设置即可产生三相正弦波信号。三角载波信号由“Source”库中的“Repeating Sequence”模块产生,参数设置为

【0 1/c f /4 2/c f /4 1/c f 】和【-1 0 1 -1】,便可生成频率为c f 的三角载波。将调制波和载波通过一些运算与比较,即可得出三相SPWM 触发脉冲波形。三角载波与调制波的波形如图8所示:

图8 三相调制波与三角载波波形

4.3 双极性SPWM 控制方式的单相桥式逆变电路仿真及分析

双极性SPWM 方式下的单相桥式逆变电路主电路图如下图所示:

图9 单相桥式PWM 逆变器主电路图

为了使仿真界面简洁,仿真参数易于修改,通用桥(Universal Bridge )的触发脉冲是图5所示部分封装成的子模块。对于单相SPWM 控制方式的逆变电路,有如下重要参数:

载波比N ——载波频率c f 与调制信号频率r f 之比,即N = c f /r f 。

调制度m ――调制波幅值r A 与载波幅值c A 之比,即m =r A /c A 。

输出电压基波幅值m 1d U =d mU ,其中,d U 为直流侧电源

电压。

将调制度m 设置为0.9,调制波频率设为50Hz ,载波频率设为基波的30倍(载波比N=30),即1500Hz ,仿真时间设为0.04s ,在powergui 中设置为离散仿真模式,采样时间设为1e-006s ,运行后可得仿真结果,建立m 文件,程序如下所示:(示波器名称设置为inv )

subplot(2,1,1);

plot(inv.time,inv.signals(1).values);

title('输出电压波形');

subplot(2,1,2);

plot(inv.time,inv.signals(2).values);

title('输出电流波形');

运行此文件后,可得输出电压和电流波形如图10所示:

图10 双极性SPWM 方式下的逆变电路输出波形

从上图中可以看出,输出电压o U 为单极性PWM 型电压,脉冲宽度符合正弦规律变化,交流电流o I 接近于正弦波形,直流电流含有直流分量。利用MATLAB 提供的powergui 模块,对上图中的输出电压o U 和输出电流o I 进行FFT 分析,得图11、图12所示结果:

图11 双极性控制方式单向桥式逆变电路输出电压o U 的FFT 分析

图12 双极性控制方式单向桥式逆变电路输出电流0I 的FFT 分析

由图11可知:在d U =300V ,m=0.9,c f =1500Hz,r f =50Hz ,即N=30时,输出电压的基波电压的基波幅值为m 1d U =269.5V ,基本满足理论上的m 1d U =d U ?m (即300?0.9=270V)。谐波分布中最高的为30次谐波,考虑最高频率为4500Hz 时的THD 达到121%。

由图12可知:输出电流基波幅值m 1d I 为246.8A ,谐波分布中最高的为30次谐波,考虑最高频率为4500Hz 时的THD=9.47%,输出电流近似为正弦波。

4.3.1 SPWM 控制方式下的三相逆变电路

SPWM 控制方式下的三相逆变电路主电路如图13所示:

图13 三相逆变电路主电路

设置参数使之与单极性SPWM 方式下的单相桥式逆变电路参数相同,即将调制度m 设置为0.9,调制波频率设为50Hz ,载波频率设为基波的30倍(载波比N=30),即1500Hz ,仿真时间设为0.04s ,在powergui 中设置为离散仿真模式,采样时间设为1e-006s ,运行仿真图形,然后建立m 文件,程序如下所示:

subplot(3,1,1);

plot(inv.time,inv.signals(1).values);

title(Uab'线电压波形');

subplot(3,1,2);

plot(inv.time,inv.signals(2).values);

title('A 相输出电压Ua 波形');

subplot(3,1,3);

plot(inv.time,inv.signals(3).values);

axis([0 0.04 -300 300]);

title('A 相输出电流波形');

运行此文件后,可得输出交流电压,交流电流和直流电流如图14所示:

图14 SPWM 方式下的三相逆变电路输出波形

分析上图可知,输出线电压PWM 波由±Ud 和0三种电平构成负载相电压PWM 波由(±2/3)Ud 、(±1/3)Ud 和0共5种电平组成。利用MATLAB 提供的powergui 模块,对上图中的输出相电压A U 和输出电流A I 进行FFT 分析,得图15、图16所示结果:

图15 SPWM 控制方式三相逆变电路输出相电压A U 的FFT 分析

图16 SPWM 控制方式三相逆变电路输出电流A I 的FFT 分析

由图15可知:在d U =300V ,m=0.9,c f =1500Hz,r f =50Hz ,即N=30时,输出相电压的基波电压的基波幅值为m 1d U =134.7V ,谐波分布中最高的为28和32次谐波,考虑最高频率为4500Hz 时的THD 达到79.74%。由图16可知:考虑最高频率为4500Hz 时的THD=5.15%,输出电流近似为正弦波。

5. 双极性SPWM 控制方式的单相桥式逆变电路和三相逆变电路比较分析

经比较分析可以看出,在调制比和载波比都相同的情况下,三相逆变电路比单向桥式逆变电路的谐波含量小得多,因此,从谐波含量的角度考虑,三相逆变电路的输出波形更接近正弦波。同时,从SPWM 触发产生电路可以看出,三相逆变电路的触发产生电路要比单相桥式逆变电路复杂。通过设置适当的m 和N 的值,就可以很好的实现逆变电路的运行要求。

6.结论

通过适当的参数设置,根据不同应用场合的要求,选择能够满足实际要求的控制方式,运用PWM控制技术,可以有效减小输出电压和输出电流的谐波分量,改善输出波形,可以很好的实现逆变电路的运行要求。

7.参考文献

[1]林飞,杜欣,电力电子应用技术的MATLAB仿真,中国电力出版社,2009.1

[2]王兆安,刘进军,电力电子技术,机械工业出版社,2009.5

[3]汤才刚,朱红涛,李莉,陈国桥,基于PWM的逆变电路分析,《现代电子技术》2008年第1期总第264期。

四桥臂三相逆变器的控制策略

四桥臂三相逆变器的控制策略 阮新波严仰光 摘要提出了一种新型的三相四线逆变器,它有四个桥臂,第四个桥臂用来构成中点,从而省去了三相三桥臂逆变器中的中点形成变压器,减小了逆变器的体积和重量。针对这种逆变器,本文提出了一种电流调节器,它根据三相滤波电感电流和给定电流的误差值最大的那相选择逆变器的开关模态。为了消除输出相电压的静态误差,本文讨论 了一种基于PI调节器改进的电压调节方案。仿真结果表明,本文的思路是可行的。本 文为构造大功率、高效率的三相四线逆变器提供了可靠的理论基础。 关键词:三相逆变器控制策略 The Control Strategy for Three-Phase Inverter with Four Bridge Legs Ruan Xinbo Yan Yangguang (Nanjing University of Aeronaut ics & Astronautics 210016 China) Abstract A novel three phase inverter with four bridge legs i s presented in this paper.The inverter eliminates the neutral forming transforme r by adding a bridge leg to form neutral point to provide balanced voltages to a ny kinds of three phase loads.The principle of the inverter is analyzed,and a ne w current regulator,which chooses switching modes a ccording to the maximum cur rent error of filter inductance current and the reference current is proposed.Th e modified voltage regulator on the basis of PI regulator is proposed to elimina te output voltage static error under any load conditions. Keywords:Three-phase Inverters Control strategies 1 引言 三相逆变器一般是采用三个桥臂组成的拓扑结构,为了给不对称负载供电,必须在 输出端加入一个中点形成变压器(Neutral Formed Transformer,NFT),如图1所示。中点形成变压器是变比为1的自耦变压器,工作频率为输出交流电的频率,体积和重 量很大,而且体积和重量随着负载不对称的程度变化而变化,不对称度越大,NFT的体积重量也就越大。

单相逆变器并网工作原理分析与仿真设计

第2章 基于定频积分的逆变器并网控制 2.1 引言 本章探索了一种基于定频积分控制的可选择独立工作和并网运行两种工作模式的光伏逆变器控制方案,对其工作原理以及并网电流纹波影响因素进行了理论分析,推导了控制方程,并给出了计算机仿真分析结果。 2.2 逆变器并网控制系统总体方案设计 如本文第一章所述,并网型逆变器主要应用在可再生新能源并网发电技术中,因此,对逆变器并网控制方案的研究也必须结合新能源发电的特点,达到最大限度的利用可再生资源。作者设计了一种既可以控制逆变器工作在并网送电状态,又可以控制逆变器工作在独立带载状态的逆变器并网控制系统。逆变器的具体工作模式由工作场合和用户需求决定,系统具有多功能。 本系统采用以定频积分为核心的控制方案。逆变器并网工作时采用基于定频积分的电流控制方案;独立工作时,在并网电流控制方案的基础上加入电压PI 外环,实现输出电压控制。定频积分控制不仅将并网输出电流控制和独立输出电压控制有机地融合在一起,而且使系统在两种工作模式下都具有良好的性能。 2.3 定频积分控制的一般理论 所谓定频积分控制是指保持电路工作的开关频率S f 不变,而通过积分器和 D 触发器来控制开关器件在每个周期的导通时间on T 和关断时间off T 。图2-1所示为定频积分控制的一般原理图。 定频积分控制是基于单周期控制的一种控制方法[43~45]。单周期控制是一种非线性控制技术, 该控制方法的突出特点是:无论是稳态还是暂态,它都能保持受控量(通常为斩波波形)的平均值恰好等于或正比于给定值,即能在一个开关周期,有效的抵制电源侧的扰动,既没有稳态误差,也没有暂态误差,这种控制技术可广泛应用于非线性系统的场合,比如脉宽调制、谐振、软开关式的变换器等。下面具体从理论上分析基于单周控制的定频积分控制的一般原理和特点。

三相PWM逆变器的设计_毕业设计

湖南文理学院 课程设计报告 三相PWM逆变器的设计 课程名称:专业综合课程设计 专业班级:自动化10102班

摘要 本次课程设计题目要求为三相PWM逆变器的设计。设计过程从原理分析、元器件的选取,到方案的确定以及Matlab仿真等,巩固了理论知识,基本达到设计要求。 本文将按照设计思路对过程进行剖析,并进行相应的原理讲解,包括逆变电路的理论基础以及Matlab仿真软件的简介、运用等,此外,还会清晰的介绍各个环节的设计,比如触发电路、控制电路、主电路等,其中部分电路的绘制采用Proteus软件,最后结合Matlab Simulink仿真,建立了三相全控桥式电压源型逆变电路的仿真模型,进而通过软件得到较为理想的实验结果。 关键词:三相PWM 逆变电路Matlab 仿真

Abstract The curriculum design subject requirements for the design of the three-phase PWM inverter. Design process from the principle of analysis, selection of components, to scheme and the Mat-lab simulation, etc., to consolidate the theoretical knowledge, basic meet the design requirements. This article will be carried out in accordance with the design of process analysis, and the corresponding principles, including the theoretical foundation of the inverter circuit and introduction, using Matlab simulation software, etc., in addition, will also clearly introduces the design of every link, such as trigger circuit, control circuit, main circuit, etc., some of the drawing of the circuit using Proteus software, finally combined with Matlab Simulink, established a three-phase fully-controlled bridge voltage source type inverter circuit simulation model, and then through the software to get the ideal results. Keywords: Matlab simulation, three-phase ,PWM, inverter circuit

单相电压源型逆变器控制系统设计

单相电压源型逆变器控制系统设计 摘要:大量UPS系统在为许多不允许供电中断的重要用电设备提供不间断供电,研发UPS的关键便是电压源型逆变器,控制输出高质量电压波形,且带非线性负载和负载突变的情况下,仍能保持电压的稳定和高质量。本文的主要内容是研究单相电压源型逆变器,采用电压电流双环瞬时值反馈控制技术,并详细讨论了基于极点配置的双环PI控制参数的整定。同时提出单环超前滞后电压瞬时值反馈控制,并做了大量仿真研究,显示这两种控制方式都具有优越的控制性能。 关键词:双环控制;极点配置;超前滞后;电压源型逆变器 The control system design of single-phase voltage source inverter Abstract:Uninterruptible Power Supply (UPS) systems are widely used for supplying critical equipment which can’t afford utility power failure. The core of a UPS system is a inverter which Control the output voltage waveform with high quality. Even connected with nonlinear load and mutational load, it still can maintain the stability of voltage and the quality. this paper is to study the single-phase voltage source inverter, adopting the instantaneous values of voltage and current double-loop feedback control technology. The dual-loop PI control parameters setting based on pole assignment is discussed in detail. At the same time single-loop instantaneous voltage value with the lead-lag control strategy. And lots of simulation have been achieved. A inverter is the core of a UPS system. To achieve nearly sinusoidal output voltage even with nonlinear loads, many waveform correction techniques have been proposed. This dissertation focuses on the research of the instantaneous feedback technology of PWM inverters. Both control methods show excellent performance. Keywords: dual-loop control;PWM inverter;CVCF;lead-lag control strategy 1 引言 能源的紧张,让人们越来越重视能源利用的高效性。电能成为生产生活使用最直接最重要的能源,在电能的生产、传输和利用过程中,高效利用电能离不开电能变换;同时高精密设备对电能稳定性和高质量的要求,也迫切需要电力电子电能变化的迅速发展。 对于逆变电源的控制策略,可以采用重复控制、无差拍控制、滑模变结构控制或者PID控制。但是现实实际应用中,现今普遍采用的电压电流双环控制,分为电感电流内环电压外环和电容电流内环电压外环两类,由于电感电流闭环没有把负载电流包括在内,导致系统对扰动敏感,所以本文重点研究了单相逆变器电容电流内环电压外环双环控制系统特性。 2 单相全桥PWM逆变器数学模型 单相全桥PWM逆变器主电路原理图如图1所示,交流输出侧由滤波电感L与滤波电容C构成低通滤波器,r 为考虑滤波电感L 的等效串联电阻、死区效应、开关管导通压降、线路电阻等逆变器中各种阻尼因素的综合等效电阻,直流母线电压Udc,逆变器输出电压ur,流过滤波电感的电流il, 负载电压电流为u0、i0. L 图1 单相全桥PWM逆变器主电路原理图 2.1 单相逆变器连续域数学模型 将输出电压uo和电感电流il作为状态变量,ur 和i0分别为输入量和扰动量,输出电压uo为输出量,可以得到逆变器输出滤波器线性双输入、单输出状态空间模型,其在连续域下的状态方程可以表示为: 00 1 1 1 1r l l u u C u i C i r i L L L ?? ?? ?? ?? ???- ?? ??? ?? =++ ?? ??????? ?? ??? ?? ?? ?--???? ?? ?? (1)根据单相全桥PWM逆变器数学模型做出系统框

(完整版)三相逆变器matlab仿真

三相无源逆变器的构建及其MATLAB仿真1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)……………. 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路

日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。 4MATLAB仿真 Matlab软件作为教学、科研和工程设计的重要方针工具,已成为首屈一指的计算机仿真平台。该软件的应用可以解决电机电器自动化领域的诸多问题。利用其中的Simulink模块可以完成对三相无源电压型SPWM逆变器的仿真,并通过仿真获取逆变器的一些特性图等数据。 图 2 系统Simulink 仿真 所示为一套利用三相逆变器进行供电的系统的Matlab仿真。系统由一个380v的直流电源供电,经过三相整流桥整流为三相交流电,并进行SPWM正弦脉宽调制。输出经过一个三相变压器隔离后通入一个三相的RLC负载模块(Three phase parallel RLC)。加入了两个电压测量单元voltage measurement和voltage measurement1,并将结果输出到示波器模块Scope1.

两电平三相逆变器控制方法

两电平三相逆变器控制方法

————————————————————————————————作者:————————————————————————————————日期: 2

两电平三相逆变器控制方法 黄洋 (上海大学机自学院) 摘要:目前三相逆变器的控制方法主要采用的是PWM控制,根据两电平三相逆变器的工作原理,经过比较,选择空间矢量PWM控制。了解其控制原理,通过合理地选择、安排开关变量(开关器件的通断状态)的转换顺序和通、断持续时间,利用特定位置的电压空间矢量和零矢量合成任意空间矢量,可以调控三相输出电压的大小和相位,以实现两电平三相逆变器的PWM控制。 关键词:空间矢量PWM控制;三相逆变器 Control methods of two-level and three-phase inverter Huang yang (Shanghai University) Abstract: At present, the three-phase inverter’s control methods mainly adopt the PWM. According to the two-level and three-phase inverter’s working principle, we choose the Space-vector PWM. After understand its control principle, we can control and adjust the amplitude and phase of three-phase output voltage, which used specific position voltage space-vector and zero-vector to synthesize arbitrary space-vector by select and arrange the switch variables (Switch devices’ On-Off states) reasonably. Therefore, we can achieve the control of two-level and three-phase inverter. Key words: Space-vector PWM; three-phase inverter 1引言 逆变器是一种将直流电压变换成交流电压的装置。依据不同的分类规则,逆变器有多种分类方式。根据直流环节直流电源性质的不同,可以分为电压源型和电流源型;根据相数又可以分为单相、三相和多相;另外根据逆变器的主电路结构又可以分为简单两电平逆变器、多电平逆变器和多重化逆变器。 PWM技术可以用于电压型逆变器,也可以用于电流型逆变器,它对逆变技术的发展起了巨大的推动作用。它具有以下显著优点: (1)电路简单,只用一个功率控制级就可以调节电压和频率。 (2)可以使用不可控整流桥,使系统对电网的功率因数与逆变器输出电压值无关。 (3)可以同时进行调频、调压,与中间直流环节的元件参数无关,系统的动态响应速度快。 (4)可以获得更好的波形改善效果。 正是由于这些优点,使PWM技术在当今逆变器控制领域占据了绝对的主导地位。 2三相逆变器简介

三相SVPWM逆变电路MATLAB仿真

基于电压空间矢量控制的三相逆变器的研究 1、SVPWM逆变电路的基本原理及控制算法 图1.1中所示的三相逆变器有6个开关,其中每个桥臂上的开关工作在互补状态,三相桥臂的上下开关模式得到八个电压矢量,包括6个非零矢量(001)、()、(011)、(100)、(101)、(110)和两个零矢量(000)、(111). 图1.-1 三相桥式电压型有源逆变器拓扑结构 在平面上绘出不同的开关状态对应的电压矢量,如图1.2所示。由于逆变器能够产生的电压矢量只有8个,对与任意给定的参考电压矢量,都可以运用这8个已知的参考电压矢量来控制逆变器开关来合成。 图1.2 空间电压矢量分区 图1.2中,当参考电压矢量在1扇区时,用1扇区对应的三个空间矢量U sv1 、U sv2 、U sv3来等效参考电压矢量。若1.2 合成矢量 ref U所处扇区N的判断 三相坐标变换到两相β α-坐标: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ) ( ) ( ) ( 2 3 - 2 3 2 1 - 2 1 - 1 3 2 ) ( ) ( t t t t t u u u u u co bo ao β α (1.1) 根据u α 、u β 的正负及大小关系就很容易判断参考电压矢量所处的扇区位

置。如表1.1所示。 表1.1 参考电压矢量扇区位置的判断条件 可以发现,扇区的位置是与u β、 u u βα-3及u u βα--3的正负有关。为 判断方便,我们设空间电压矢量所在的扇区N N=A+2B+3C (1.2) 其中,如果u β >0,那么A=1,否则A=0 如果u u βα-3 >0,那么B=1,否则B=0 如果u u βα--3 >0,那么C=1,否则C=0 1.3 每个扇区中基本矢量作用时间的计算 在确定参考电压矢量的扇区位置后,根据伏秒特性等效原理,采用该扇区三个顶点所对应的三个电压空间矢量来逼近参考电压矢量。以参考电压矢量位于3扇区为例,如图1.3所示,参考电压U ref 与U 4的夹角为γ。

3KVA三相逆变器的设计

3KVA三相逆变器设计 1概述 随着各行各业自动化水平及控制技术的发展和其对操作性能要求的提高,许多行业的用电设备(如通信电源、电弧焊电源、电动机变频调速器等)都不是直接使用交流电网作为电源,而是通过形式对其进行变换而得到各自所需的电能形式,它们所使用的电能大都是通过整流和逆变组合电路对原始电能进行变换后得到的。 当今世界逆变器应用非常广泛。逆变器是将直流变为定频定压或调频调压交流电的变换器,传统方法是利用晶闸管组成的方波逆变电路实现,但由于其含有较大成分低次谐波等缺点,近十余年来,由于电力电子技术的迅速发展,全控型快速半导体器件BJT,IGBT,GTO 等的发展和PWM 的控制技术的日趋完善,使SPWM 逆变器得以迅速发展并广泛使用。PWM 控制技术是利用半导体开关器件的导通与关断把直流电压变成电压脉冲列,并通过控制电压脉冲宽度和周期以达到变压目的或者控制电压脉冲宽度和脉冲列的周期以达到变压变频目的的一种控制技术,SPWM 控制技术又有许多种,并且还在不断发展中,但从控制思想上可分为四类,即等脉宽PWM 法,正弦波PWM 法(SPWM 法),磁链追踪型PWM 法和电流跟踪型PWM 法,其中利用SPWM 控制技术做成的SPWM 逆变器具有以下主要特点:(1)逆变器同时实现调频调压,系统的动态响应不受中间直流环节滤波器参数的影响。 (2)可获得比常规六拍阶梯波更接近正弦波的输出电压波形,低次谐波减少,在电气传动中,可使传动系统转矩脉冲的大大减少,扩大调速范围,提高系统性能。 (3)组成变频器时,主电路只有一组可控的功率环节,简化了结构,由于采用不可控整流器,使电网功率因数接近于1,且与输出电压大小无关。 本次课程设计要完成的是设计容量为3KVA的三相逆变器。初始条件为:输入直流电压220V。要求输出220V三相交流电,完成总电路的设计,并计算电路中各元件的参数。

三相逆变器的建模

三相逆变器的建模 1.1 逆变器主电路拓扑与数学模型 三相全桥逆变器结构简单,采用器件少,并且容易实现控制,故选择三相三线两电平全桥逆变器作为主电路拓扑,如图 1所示。 图 1三相三线两电平全桥逆变拓扑 图 1中V dc 为直流输入电压;C dc 为直流侧输入电容;Q 1-Q 6为三个桥臂的开关管;L fj (j =a ,b ,c )为滤波电感;C fj (j =a ,b ,c )为滤波电容,三相滤波电容采用星形接法;N 为滤波电容中点;L cj (j =a ,b ,c )就是为确保逆变器输出呈感性阻抗而外接的连线电感 ;v oj (j =a ,b ,c )为逆变器的滤波电容端电压即输出电压;i Lj (j =a ,b ,c )为三相滤波电感电流,i oj (j =a ,b ,c )为逆变器的输出电流。 由分析可知,三相三线全桥逆变器在三相静止坐标系abc 下,分析系统的任意状态量如输出电压v oj (j =a ,b ,c )都需要分别对abc 三相的三个交流分量v oa 、v ob 、v oc 进行分析。但在三相对称系统中,三个交流分量只有两个就是相互独立的。为了减少变量的个数,引用电机控制中的Clark 变换到三相逆变器系统中,可以实现三相静止坐标系到两相静止坐标系的变换,即将abc 坐标系下的三个交流分量转变成αβ坐标系下的两个交流分量。由自动控制原理可以知道,当采用PI 控制器时,对交流量的控制始终就是有静差的,但PI 控制器对直流量的调节就是没有静差的。为了使逆变器获得无静差调节,引入电机控制中的Park 变换,将两相静止坐标系转换成两相旋转坐标系,即将αβ坐标系下的两个交流分量转变成dq 坐标系下的两个直流分量。 定义αβ坐标系下的α轴与abc 三相静止坐标系下的A 轴重合,可以得到Clark 变换矩阵为: 11122230Clark T ? ?--?? ? =??? (1) 两相静止坐标系αβ到两相旋转坐标系dq 的变换为Park 变换,矩阵为:

最新三相逆变器Matlab仿真精编版

2020年三相逆变器M a t l a b仿真精编版

三相无源电压型SPWM逆变器的构建及其MATLAB仿真 09 电气工程及其自动化邱迪 摘要:本文简要介绍了三相无源电压型SPWM输出的逆变器的构建和工作方式及其MATLAB仿真。 关键词:三相逆变器正弦脉宽调制(SPWM)技术 MATLAB仿真 Abstract: This paper introduces briefly the construction of 3-phase inverter which output SPWM wave and the MATLAB-based simulation. Key word: Three-phase inverter Sinusoidal Pulse Width Modulation Power electronic technology 1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 [1] 1.2逆变器涉及的技术 逆变器的构建应用了电力电子学科中的很多关键技术。电路中电流的可控流通断开的过程中应用了多种可控硅类型的电力电子器件;开关的控制过程应用了基于微处理

器的现代控制技术;对于正弦波形的仿制过程应用了正弦波脉宽调制(SPWM)技术等等。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管 逆变等等。 5)按输出稳定的参量,可分为电压型逆变和电流型逆变。 6)按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆 变。 7)按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变。[2] 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。

PWM逆变器Matlab仿真设计

PWM逆变器MATLAB仿真 1设计方案的选择与论证 从题目的要求可知,输入电压为110V直流电,而输出是有效值为220V的交流电,所以这里涉及到一个升压的问题,基于此有两种设计思路第一种是进行DC-DC升压变换再进行逆变,另一种是先进行逆变再进行升压。除此之外,要得到正弦交流电压还要考虑滤波等问题,所以这两种方案的设计框图分别如下图所示: 图1-1方案一:先升压再逆变 图1-2方案二:先逆变,再升压 方案选择: 方案一:采用DC-DC升压斩波电路其可靠性高、响应速度、噪声性能好,效率高,但不适用于升压倍率较高的场合,另外升压斩波电路在初期会产生超调趋势(这一点将在后文予以讨论),在与后面的逆变电路相连时必须予以考虑,我们可以采用附加控制策略的办法来减小超调量同时达到较短的调节时间,但这将增加逆变器的复杂度和设计成本。 方案二:采用变压器对逆变电路输出的交流电进行升压,这种方法效率一般可达90%以上、可靠性较高、抗输出短路的能力较强,但响应速度较慢,体积大,波形畸变较重。 从以上的分析可以看出两种方案有各自的优缺点,但由于方案二设计较为简便,因此本论文选择方案二作为最终的设计方案,但对于方案一的相关容也会在后文予以讨论。 2逆变主电路设计 2.1逆变电路原理及相关概念

逆变与整流是相对应的,把直流电变为交流电的过程称为逆变。根据交流侧是否与交流电网相连可将逆变电路分为有源逆变和无源逆变,在不加说明时,逆变一般指无源逆变,本论文针对的就是无源逆变的情况;根据直流侧是恒流源还是恒压源又将逆变电路分为电压型逆变电路和电流型逆变电路,电压型逆变电路输出电压的波形为方波而电流型逆变电路输出电流波形为方波,由于题目要求对输出电压进行调节,所以本论文只讨论电压型逆变电路;根据输出电压电流的相数又将逆变电路分为单相逆变电路和三相逆变电路,由于题目要求输出单相交流电,所以本论文将只讨论单相逆变电路。 2.2逆变电路的方案论证及选择 从上面的讨论可以看出本论文主要讨论单相电压型无源逆变电路,电压型逆变电路的特点除了前文所提及的之外,还有一个特点即开关器件普遍选择全控型器件如IGBT,电力MOSFET等,有三种方案可供选择,下面分别予以讨论: 方案一:半桥逆变电路,如下图所示,其特点是有两个桥臂,每个桥臂有一个可控器件和一个反并联二极管组成。在直流侧接有两个相互串联的足够大的电容,两个电容的连接点为直流电源的中点。反并联二极管为反馈电感中储存的无功能量提供通路,直流侧电容正起着缓冲无功能量的作用。其优点为简单,使用器件少,缺点为输出交流电压的幅值仅为直流电源电压的一半,且直流侧需要两个电容器串联,工作时还要控制两个电容器电压的均衡,因此它只适用于几千瓦以下的小功率逆变电路。 VD2 图2-1 半桥逆变电路 方案二:全桥逆变电路,如下图所示:其特点是有四个桥臂,相当于两个半桥电路的组合,其中桥臂1和4作为一对,桥臂2和3作为一对,成对的两个桥臂同时导通,两对

3KVA三相逆变电源设计

课程设计 题目3KVA三相逆变电源设计学院自动化学院 专业自动化 班级 姓名 指导教师朱国荣 2014 年 1 月 2 日

课程设计任务书 学生姓名:专业班级:自动化1102 指导教师:朱国荣工作单位:自动化学院 题目: 3KVA三相逆变电源设计 初始条件: 输入直流电压110V。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 设计容量为3KVA的三相逆变器,要求达到: 1、输出380V,频率50Hz三相交流电。 2、完成总电路设计。 3、完成电路中各元件的参数计算。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) 1 设计要求、意义及思路 (2) 1.1 设计意义 (2) 1.2 设计要求 (2) 1.3 设计思路 (3) 2 方案设计及原理 (3) 2.1逆变电路 (3) 2.2 SPWM采样方法选择 (4) 2.3 LC滤波 (5) 2.4 升压变压器 (6) 3 主电路设计及参数设计 (7) 3.1 IGBT三相桥式逆变电路 (7) 3.2 脉宽控制电路的设计 (9) 3.2.1 SG3524芯片 (9) 3.2.2 调制波及载波的产生 (10) 3.3 触发电路的设计 (11) 3.3.1 IR2110芯片构成的触发 (11) 3.3.2 M57962L芯片构成的触发电路 (12) 3.4其他部分的参数设计 (13) 结束语 (15) 参考文献 (16) 附录一: (17) 附录二:主电路图 (18)

(整理)三相逆变器Matlab仿真.

三相无源电压型SPWM逆变器的构建及其MATLAB仿真 09 电气工程及其自动化邱迪 摘要:本文简要介绍了三相无源电压型SPWM输出的逆变器的构建和工作方式及其MATLAB 仿真。 关键词:三相逆变器正弦脉宽调制(SPWM)技术MATLAB仿真 Abstract: This paper introduces briefly the construction of 3-phase inverter which output SPWM wave and the MATLAB-based simulation. Key word:Three-phase inverter Sinusoidal Pulse Width Modulation Power electronic technology 1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。[1] 1.2逆变器涉及的技术 逆变器的构建应用了电力电子学科中的很多关键技术。电路中电流的可控流通断开的过程中应用了多种可控硅类型的电力电子器件;开关的控制过程应用了基于微处理器的现代控制技术;对于正弦波形的仿制过程应用了正弦波脉宽调制(SPWM)技术等等。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。

2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管逆变等等。 5)按输出稳定的参量,可分为电压型逆变和电流型逆变。 6)按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆变。 7)按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变。[2] 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路 日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。

三相电压型逆变器课程设计

三相电压型逆变器 一.电力电子器件的发展: 1.概述: 1957年可控硅(晶闸管)的问世,为半导体器件应用于强电领域的自动控制迈出了重要的一步,电力电子开始登上现代电气传动技术舞台,这标志着电力电子技术的诞生。20世纪60年代初已开始使用电力电子这个名词,进入70年代晶闸管开始派生各种系列产品,普通晶闸管由于其不能自关断的特点,属于半控型器件,被称作第一代电力电子器件。随着理论研究和工艺水平的不断提高,以门极可关断晶闸管(GTO)、电力双极性晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展,被称作第二代电力电子器件。80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合型第三代电力电子器件异军突起,而进入90年代电力电子器件开始朝着智能化、功率集成化发展,这代表了电力电子技术发展的一个重要方向 电子技术被认为是现代科技发展的主力军,电力电子就是电力电子学,又称功率电子学,是利用电子技术对电力机械或电力装置进行系统控制的一门技术性学科,主要研究电力的处理和变换,服务于电能的产生、输送、变换和控制。(电力电子的发展动向)电力电子技术包括功率半导体器件与IC 技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控创电路中

的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。广义上电力电子器件可分为电真空器件(Electron Device)和半导体器件(Semiconductor Device)两类。 2.发展: A.整流管: 整流管是电力电子器件中结构最简单、应用最广泛的一种器件。目前主要有普通整流管、快恢复整流管和肖特基整流管三种类型。电力整流管在改善各种电力电子电路的性能、降低电路损耗和提高电源使用效率等方面发挥着非常重要的作用。目前,人们已通过新颖结构的设计和大规模集成电路制作工艺的运用,研制出集PIN整流管和肖特基整流管的优点于一体的具有MPS、SPEED和SSD等结构的新型高压快恢复整流管。它们的通态压降为IV 左右,反向恢复时间为PIN整流管的1/2,反向恢复峰值电流为PIN整流管的1/3。 B.晶闸管: 自1957年美国通用电气公司GE研制出第一个晶闸管开始,其结构的改进和工艺的改革,为新器件开发研制奠定了基础,其后派生出各种系列产品。1964年,GE公司成功开发双向晶闸管,将其应用于调光和马达控制;1965年,小功率光触发晶闸管问世,为其后出现的光耦合器打下了基础;60年代后期,出现了大功率逆变晶闸管,成为当时逆变电路的基本元件;逆导晶闸管和非对称晶闸管于1974年研制完成。 C.门极可关断晶闸管: GTO可达到晶闸管相同水平的电压、电流等级,工作频率也可扩展到

无源三相PWM逆变器控制电路设计

目录 第一章:课程设计的目的及要求 (2) 第二章整流电路 (5) 第三章逆变电路 (9) 第四章 PWM逆变电路的工作原理 (11) 第五章三相正弦交流电源发生器 (14) 第六章三角波发生器 (15) 第七章比较电路 (16) 第八章死区生成电路 (18) 第九章驱动电路 (20) 附录 参考文献 课程设计的心得体会

第一章:课程设计的目的及要求 一、课程设计的目的 通过电力电子计术的课程设计达到以下几个目的: 1、培养学生文献检索的能力,特别是如何利用Internet检索 需要的文献资料。 2、培养学生综合分析问题、发现问题和解决问题的能力。 3、培养学生运用知识的能力和工程设计的能力。 4、培养学生运用仿真工具的能力和方法。 5、提高学生课程设计报告撰写水平。 二、课程设计的要求 1. 自立题目 题目:无源三相PWM逆变器控制电路设计 注意事项: ①学生也可以选择规定题目方向外的其它电力电子装置设计,如开关电源、镇流器、UPS电源等, ②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。首先要明确自己课程设计的设计内容。

C d1 C d2 三相交流电源 逆变器 三相正弦波P W M 驱动 M 比较电路 三角波发生器 驱动电路 死区生成电路 控制框图 设计装置(或电路)的主要技术数据 主要技术数据 输入交流电源: 三相380V , f=50Hz 交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用三相桥式电压型逆变主电路,控制方法为SPWM 控制原理 输出交流: 电流为正弦交流波形,输出频率可调,输出负载为三相 异步电动机,P=5kW 等效为星形RL 电路,R=10Ω,L=15mH 设计内容: 整流电路的设计和参数选择 滤波电容参数选择 三相逆变主电路的设计和参数选择 IGBT 电流、电压额定的选择 三相SPWM 驱动电路的设计 画出完整的主电路原理图和控制电路原理图 2. 在整个设计中要注意培养灵活运用所学的电力电子技术

第五章--单相并网逆变器

第5章单相并网逆变器 后级的DC- AC部分,采用单相全桥逆变电路,将前级 DC- DC输出的400V 直流电转换成220V/50Hz 正弦交流电,完成逆变向电网输送功率。光伏并网逆变器实现并网运行必须满足要求:输出电压与电网电压同频同相同幅值,输出电流与电网电压同频同相(单位功率因数),而且其输出还应满足电网的电能质量要求,这些都依赖于逆变器的有效并网控制策略。 光伏并网逆变器拓扑结构 按逆变器主电路的拓扑结构分类,主要有推挽逆变器、半桥逆变器和全桥逆变器。 5.1.1推挽式逆变电路 推挽式逆变电路由两只共负极的功率开关元件和一个原边带有中心抽头的升压变压器组成。它结构简单,两个功率管可共同驱动,两个开关元件的驱动电路具有公共地,这将简化驱动电路的设计。 U 图5-1 推挽式逆变器电路拓扑 推挽式电路的主要缺点是很难防止输出变压器的直流饱和,另外和单电压极性切换的全桥逆变电路相比,它对开关器件的耐压值也高出一倍。因此适合应用于直流母线电压较低的场合。此外,变压器的利用率较低,驱动感性负载困难。推挽式逆变器拓扑结构如图5-1 所示。 5.1.2半桥式逆变电路 } 半桥式逆变电路使用的功率开关器件较少,电路结构较为简单,但主电路的交流输出电压幅值仅为输入电压的一半,所以在同等容量条件下,其功率开关的额定电流要大于全桥逆变电路中功率元件额定电流,数值为全桥电路的2 倍。由于分压电容的作用,该电路具有较强的抗电压输出不平衡能力,同时由于半桥

式逆变电路控制较为简单,且使用元件少、成本低,因此在小功率等级的逆变电源中常被采用。其主要缺点是直流侧电压利用率低,在同样的开关频率下电网电流的谐波较大。 图5-2 半桥式逆变器电路拓扑 5.1.3全桥式逆变电路 全桥逆变电路可以认为是由2 个半桥逆变电路组成的,在单相电压型逆变电路中是应用最多的电路,主要用于大容量场合。在相同的直流输入电压下,全桥逆变电路的最大输出电压是半桥式逆变电路的2 倍。这意味着输出功率相同时,全桥逆变器的输出电流和通过开关元件的电流均为半桥式逆变电路的一半。 本文采用的是单相全桥式逆变器,其拓扑结构如图5-3 所示,它结构简单且易于控制,在大功率场合中广为应用,可以减少所需并联的元件数。其不足是要求较高的直流侧电压值。 图5-3 单相全桥逆变器电路拓扑 光伏并网逆变器的控制 光伏并网逆变器按控制方式分类,可分为电压源电压控制、电压源电流控制、电流源电压控制和电流源电流控制四种方法。以电流源为输入的逆变器,其直流侧需要串联大电感提供稳定的直流电流输入,但由于此大电感往往会导致系统动态响应差,因此当前大部分并网逆变器均采用以电压源输入为主的方式,即电压型逆变器。采用电压型逆变主电路,可以实现有源滤波和无功补偿的控制,在实际中已经得到了广泛的研究和应用,同时可以有效地进行光伏发电、提高供电质

相关文档
相关文档 最新文档