文档库 最新最全的文档下载
当前位置:文档库 › 初三数学几何综合题及答案(终审稿)

初三数学几何综合题及答案(终审稿)

初三数学几何综合题及答案(终审稿)
初三数学几何综合题及答案(终审稿)

初三数学几何综合题及

答案

公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

E

D

B

C E

D

B

C M

B

C

1. 在△ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,M 是BC 边中点中点,连接MD 和ME (1)如图1所示,若

AB=AC ,则MD 和ME 的数量关系是 (2)如图2所示,若AB ≠AC 其他条件不变,则MD 和ME 具有怎样的数量和位置关系请给出证明过

程;

(3) 在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧..

作等腰直角三角形,M 是BC 的中点,连接MD 和ME ,请在图3中补全图形,并直接判断△MED 的形状.

(1)MD=ME .

解:∵△ADB 和△AEC 是等腰直角三角形,

∴∠ABD=∠DAB=∠ACE=∠EAC=45°,∠ADB=∠AEC=90° 在△ADB 和△AEC 中,

图1

图2

图3

,∴△ADB≌△AEC(AAS),∴BD=CE,AD=AE,

∵M是BC的中点,∴BM=CM.∵AB=AC,∴∠ABC=∠ACB,

∴∠ABC+∠ABD=∠ACB+∠ACE,即∠DBM=∠ECM.

在△DBM和△ECM中,,∴△DBM≌△ECM(SAS),

∴MD=ME.

(2)如图,作DF⊥AB,EG⊥AC,垂足分别为F、G.

因为DF、EG分别是等腰直角三角形ABD和等腰直角三角形

ACE斜边上的高,所以F、G分别是AB、AC的中点.

又∵M是BC的中点,所以MF、MG是△ABC的中位线.

∴,,MF∥AC,MG∥AB.

∴∠BFM=∠BAC,∠MGC=∠BAC.∴∠BFM=∠MGC.所以∠DFM=∠MGE.∵DF、EG分别是直角三角形ABD和直角三角形ACE斜边上的中线,∴,.∴MF=EG,DF=MG.

在△DFM与△MGE中,

,∴△DFM≌△MGE(SAS).∴DM=ME.∠FMD=∠GEM ∴∠DME=∠FMD+∠FMG+∠GME=∠GEM+∠MGC+∠GME

∵EG⊥AC∴∠EGC=90°

∵∠GEM+∠MGC+∠GME+∠EGC=180°∴∠DME=90°

∴DM⊥EM.

(3)如图所示:

△MDE 是等腰直角三角形.

2.如图1,在ABC △中,90ACB ∠=°,2BC =,∠A=30°,点E ,F 分别是线段BC ,AC 的中点,连结EF .(1)线段BE 与AF 的位置关系是

________, AF

BE =________.(2)如图2,当CEF △绕点C 顺时针旋转

α时(0180α<<),连结AF ,BE ,(1)中的结论是否仍然成立.如果

成立,请证明;如果不成立,请说明理由.

(3)如图3,当CEF △绕点C 顺时针旋转α时(0180α<<),延长FC 交AB 于点D ,如果623AD =-,求旋转角α的度数.

(1)如图1,线段BE 与AF 的位置关系是互相垂直;∵∠ACB=90°,BC=2,∠A=30°, ∴AC=2

,∵点E ,F 分别是线段BC ,AC 的中点,∴

=

故答案为:互相垂直;

D

αF

E

C

B

A

图3

图2

αF

E

C

B

A

F

E

C B A

图1

D

A

C

(2)(1)中结论仍然成立.证明:如图2,∵点E ,F 分别是线段BC ,AC 的中点,

∴EC=BC ,FC=AC ,∴=

=,∵∠BCE=∠ACF=α,∴△BEC∽△AFC,

=

=

=

,∴∠1=∠2,延长BE 交AC 于点O ,交AF 于点M

∵∠BOC=∠AOM,∠1=∠2∴∠BCO=∠AMO=90°∴BE⊥AF;

(3)如图3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60° 过点D 作DH⊥BC 于H∴DB=4﹣(6﹣2)=2

﹣2,∴BH=

﹣1,DH=3

又∵CH=2﹣(

﹣1)=3﹣

,∴CH=DH,∴∠HCD=45°,

∴∠DCA=45°,∴α=180°﹣45°=135°.

3.(1)如图1,在四边形ABCD 中,∠B =∠C =90°,E 为BC 上一点,且

CE =AB ,BE =CD ,连结AE 、DE 、AD ,则△ADE 的形状是

_________________________.(2)如图2,在90ABC A ?∠=?中,,

D 、

E 分别为AB 、AC 上的点,连结BE 、CD ,两线交于点P .①当BD=AC ,CE=AD 时,在图中补全图形,猜想BPD ∠的度数并给予证

明.②当

3BD CE

AC AD

==时, BPD ∠的度数____________________.

(1)等腰直角三角形 -------------------------------------------------------------------------------1分

(2) 45°. -------------------------------------------------------------------------------------------2分 证明:过B 点作FB ⊥AB ,且FB=AD . ∴90FBD A ∠=∠=?,

∵BD=AC , ∴△FBD ≌△DAC. ∴∠FDB=∠DCA ,ED=DC

∵∠DCA+∠CDA=90?,∴∠FDB +∠CDA=90?, ∴∠CDF=90?,∴∠FCD=∠CFD =45?. ∵AD =CE ,∴BF =CE

∵90FBD A ∠=∠=?,∴180FBD A ∠+∠=?. ∴BF ∥EC .

∴四边形BECF 是平行四边形. ∴BE ∥FC .

∴45BPD FCD ∠=∠=?.-----------------------------------------------------------------------6分

(3)60?.--------------------------------------------------------------------------------------7分

A

4.在△ABC 中, AB AC ,A 0,将线段 BC 绕点 B 逆时针旋转 60得到

线段 BD ,再将线段BD 平移到EF ,使点E 在AB 上,点F 在AC 上.(1)如图 1,直接写出 ABD 和CFE 的度数;(2)在图1中证明: E CF ;(3)如图2,连接 CE ,判断△CEF 的形状并加以证明.

1)ABD= 15 °,CFE=

45 °.……………………………………… 2分

(2)证明:连结CD 、DF .

∵线段 BC 绕点 B

逆时针旋转 60得到线段 BD ,

∴BD BC ,CBD

0.

∴△BCD 是等边三

角形.

∴CD BD .

∵线段BD 平移到EF , ∴EF ∥BD ,EF BD .

∴四边形BDFE 是平行四边形,EF CD .……… 3分 ∵AB AC ,A 0, ∴ABC ACB .

∴ABD ABCCBDACD . ∴DFE ABD ,AEF ABD .

∴AEF ACD .…………………………………………………

4分

∵CFE A+AEF , ∴CFD CFEDFE .

∴ACFD .……………………………………………………

5分

∴△AEF ≌△FCD (AAS ). ∴E

CF . …………………………………………………………… 6分

(3)解:△CEF 是等腰直角三角形.

证明:过点E 作EG ⊥CF 于G , 图2

图1

A B

C

D

E

F F E D

B

A

∵CFE ,∴FEG .

∴EG FG .∵A 0,AGE , ∴12

EG AE =.

∵E CF ,∴12

EG CF =.∴12

FG CF =. ∴G 为CF 的中点. ∴EG 为CF 的垂直平分线. ∴EF EC . ∴CEF FEG=9.

∴△CEF 是等腰直角三角

形.………………………………………… 8分

5.将△ABC 绕点A 顺时针旋转α得到△ADE ,DE 的延长线与BC 相交于点F ,连接AF .(1)如图1,若BAC ∠=α=?60,BF DF 2=,请直接写出AF 与BF 的数量 关系;(2)如图2,若BAC ∠<α=?60,

BF DF 3=,猜想线段AF 与BF 的数量关系,并证明你的猜想;(3)如

图3,若BAC ∠<α,mBF DF =(m 为常数),请直接写出BF

AF

的值 (用含α、m 的式子表示). 解:

图1 图2 A

B

C

D

E F F

E

D

C

B

A

F

E

D

C

B A

解:(1)AF=BF.

理由如下:在DF上截取DG=BF,连接AG,(如图1),由旋转得

AD=AB,∠D=∠B,

在△ADG和△ABF中,,∴△ADG≌△ABF(SAS),∴AG=AF,∠DAG=∠BAF,

∴∠GAF=∠GAB+∠BAF=∠GAB+∠DAG=∠DAB=60°.∴△GAF是等边三角形,

又∵DF=2BF,∴AF=GF=DF﹣DG=DF﹣BF=BF,即AF=BF;

(2)解:猜想:AF=2BF.证明:在DF上截取DG=BF,连接AG(如图2).

由旋转得AD=AB,∠D=∠B,在△ADG和△ABF中,,

∴△ADG≌△ABF(SAS),

∴AG=AF,∠DAG=∠BAF,

∴∠GAF=∠GAB+∠BAF=∠GAB+∠DAG=∠DAB=60°,

∴△GAF是等边三角形,又∵DF=3BF,∴AF=GF=DF﹣DG=DF﹣BF=2BF,即AF=2BF;

(3)在DF上截取DG=BF,连接AG,(如图3),

由旋转得AD=AB,∠D=∠B,

在△ADG 和△ABF 中,

,∴△ADG≌△ABF(SAS ),∴AG=AF,∠DAG=∠BAF,

∴∠GAF=∠GAB+∠BAF=∠GAB+∠DAG=∠DAB=α,∴△GAF 是等腰三角形, ∵DF=mBF,∴GF=DF﹣DG=mBF ﹣BF=(m ﹣1)BF ,

过点A 作AH⊥DF 于H ,则FH=GF=(m ﹣1)BF ,∠FAH=∠GAF=α,

∵sin∠FAH=,∴sin =

,∴=.

6.已知:△ABD 和△CBD 关于直线BD 对称(点A 的对称点是点C ),

点E 、F 分别是线段BC 和线段BD 上的点,且点F 在线段EC 的垂直平分线上,连接AF 、AE ,AE 交BD 于点G .(1)如图l ,求证:∠

EAF =∠ABD ;

(2)如图2,当AB =AD 时,M 是线段AG 上一点,连接BM 、ED 、

MF ,MF 的延长线交ED 于点N ,∠MBF =12∠BAF ,AF =23

AD ,请

你判断线段FM 和FN 之间的数量关系,并证明你的判断是正确

的.

证明:(1)如图1,连接FE 、FC

∵点F 在线段EC 的垂直平分线上∴FE =FC ∴∠FEC =∠FCE

G

F

B

D

E

N

G F

D

B

E

M

图1 图2

∵△ABD和△CBD关于直线BD对称(点A的对称点是点C)

∴AB=CB,∠ABD=∠CBD

∵在△ABF与△CBF中

AB=CB

∠ABD=∠CBD

BF=BF

∴△ABF≌△CBF(SAS)∴∠BAF=∠FCE,FA=FC[来源:Z+xx+]

∴FE=FA,∠FEC=∠BAF ∴∠EAF=∠AEF[来源:学§科§网Z §X§X§K]

∵∠FEC +∠BEF=180°∴∠BAF+∠BEF=180°

∵∠BAF+∠BEF+∠AFE+∠ABE=360°

∴∠AFE+∠ABE=∠AFE+∠ABD+∠CBD =180°

又∵∠AFE+∠EAF+∠AEF=180°

∴∠EAF+∠AEF=∠ABD+∠CBD

∵∠ABD=∠CBD,∠EAF=∠AEF

∴∠EAF=∠ABD

(2)FM=7

2

FN

证明:由(1)可知∠EAF=∠ABD又∵∠AFB=∠GFA

∴△AFG∽△BFA∴∠AGF=∠BAF

又∵∠MBF=1

2∠BAF.∴∠MBF=1

2

∠AGF

又∵∠AGF=∠MBG+∠BMG∴∠MBG=∠BMG ∴BG=MG G F

C

B D

E

A

M

E

Q

P

D

C

B

∵AB=AD∴∠ADB=∠ABD=∠EAF

又∵∠FGA=∠AGD ∴△AGF∽△DGA

GF AG AF

AG GD AD

∴==∵AF=

2

3

AD

2

3

GF AG

AG GD

∴==

设GF=2a AG=3a.∴GD=9

2

a

∴FD=5

2

a ∵∠CBD=∠ABD∠ABD=∠ADB

∴∠CBD=∠ADB ∴

BE BG EG

GD AG

=

2

3

EG AG

BG GD

∴==

5

4

2

5

2

=

=

=

a

a

FD

GF

QE

GQ

QE

GQ

5

4

=

4

9

8

9

k

8

9

k

35

9

k

2

MF

FN QE

∴==

7

2

(2)如图2,若E是线段AC上的任意一点,其它条件不变,上述线段BE、EF的数量关系是否发生变化,写出你的猜想并加以证明.(3)如图

3,若E是线段AC延长线上的任意一点,其它条件不变,上述线段BE、

EF的数量关系是否发生变化,写出你的猜想并加以证明.

P

E

C

A

B

D

图2

F

C

A

B

图1

A

B C

E

F

A

B C

E

F

图2

A

B

C

E

F

图3

31

2

F

C

A

B

D

1

3

2

F

P

E

C

A

B

D

(1)答:猜想BE与EF的数量关系为:BE=EF;

证明:(1)∵△ABC是等边三角形,E是线段AC的中点,

∴∠CBE=∠ABC=30°,AE=CE,

∵AE=CF,∴CE=CF,∴∠F=∠CEF,∵∠F+∠CEF=∠ACB=60°,

∴∠F=30°,

∴∠CBE=∠F,∴BE=EF;

(2)答:猜想BE=EF.证明如下:如图2,过点E作EG∥BC,交AB于点G,

∵△ABC是等边三角形,∴AB=AC,∠ACB=60°,又∵EG∥BC,

∴∠AGE=∠ABC=60°,

又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE,∴BG=CE,

又∵CF=AE,∴GE=CF,在△BGE与△ECF中,,

∴△BGE≌△ECF(SAS),∴BE=EF;

(3)BE=EF.

证明如下:如图3,过点E作EG∥BC交AB延长线于点G,

∵△ABC是等边三角形,∴AB=AC,∠ACB=60°,

又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,

∴AG=AE,∴BG=CE,又∵CF=AE,∴GE=CF,

又∵∠BGE=∠ECF=60°,∴在△BGE 与△ECF 中,,

∴△BGE≌△ECF(SAS ),∴BE=EF.

10.如图1,已知ABC ?是等腰直角三角形,?=∠90BAC ,点D 是BC 的中点.作正方形DEFG ,使点A 、C 分别在DG 和DE 上,连接AE ,

BG . (1)试猜想线段BG 和AE 的数量关系是 ;

(2)将正方形DEFG 绕点D 逆时针方向旋转)3600(?≤

4==DE BC ,当AE 取最大值时,求AF 的值.

图1 图2

(1)BG=AE .

理由:如图1,∵△ABC 是等腰直角三角形,∠BAC=90°,点D 是BC 的中点,

∴AD⊥BC,BD=CD ,∴∠ADB=∠ADC=90°. ∵四边形DEFG 是正方形,∴DE=DG. 在△ADE 和△BDG 中,

,∴△ADE≌△BDG

F

G

E

D

C

A

B B

A

C

D

E

G

F

(SAS),

∴BG=AE.

故答案为:BG=AE;

(2)①成立BG=AE.理由:如图2,连接AD,

∵在Rt△BAC中,D为斜边BC中点,∴AD=BD,

AD⊥BC,

∴∠ADG+∠GDB=90°.∵四边形EFGD为正

方形,

∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,

∴∠BDG=∠ADE.

在△BDG和△ADE中,,∴△BDG≌△ADE(SAS),

∴DG=AE;

②∵BG=AE,∴当BG取得最大值时,AE取得最大值.

如图3,当旋转角为270°时,BG=AE.

∵BC=DE=4,∴BG=2+4=6.∴AE=6.

在Rt△AEF中,由勾股定理,得AF==,∴AF=2.

11.在△ABC中,CA=CB,在△AED中, DA=DE,点D、E分别在CA、AB 上,(1)如图①,若∠ACB=∠ADE=90°,则CD与BE的数量关系

是;(2)若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图②所示的位置,则CD与BE的数量关系是;,(3)若∠ACB=∠ADE

=2α(0°< α< 90°),将△AED绕点A旋转至如图③所示的位置,探究线段CD 与BE的数量关系,并加以证明(用含α的式子表示).

解:(1)如图①,作DM∥AB,交BC 于点M,∵∠ACB=∠ADE=90°,CA=CB,DA=DE,

∴∠CAB=∠CBA=∠DEA=45°,∴DE∥BC,∴四边形EBMD是平行四边形,∴DM=BE,∵DM∥AB,∴∠CDM=45°,∴DM=CD,∴BE=CD;

故答案为:BE=CD;

(2)如图②,

∵CA=CB,∠ACB=120°∴∠CAB=∠CBA=30°,∴AB=AC,

同理AE=AD,∴==,∠CAD=∠BAE=30°+∠BAD,

∴△CAD∽△BAE,==∴BE=CD;

故答案为:BE=CD;

(3)BE=2CD?sinα,

证明:如图③,分别过点C、D作CM⊥AB于点M,DN⊥AE于点N,D

A

图①

D

A

D

A

G

P

M

F

E

D

C

B

A

∵CA=CB,DA=DE ,∠ACB=∠ADE=2α,∴∠CAB=∠DAE,∠ACM=∠ADN=α,AM=AB ,AN=AE .∴∠CAD=∠BAE,Rt△ACM 和Rt△AD N 中,sin∠ACM=,sin∠ADN=,

∴,∴

,又∵∠CAD=∠BAE,∴△BAE∽△CAD,

∴BE=2DC?sinα.

12.如图,正方形ABCD 的边长是2,M 是AD 的中点.点E 从点A 出发,沿AB 运动到点B 停止.连接EM 并延长交射线CD 于点

F ,过M 作EF 的垂线交射线BC 于点

G ,连接EG 、FG .(1)设AE =x 时,△EGF 的面积为y .求y 关于x

的函数关系式,并写出自变量x 的取值范围;(2)P 是

MG 的中点,求点P 运动路线的长.

解:(1)当点E 与点A 重合时,x=0,y=×2×2=2 当点E 与点A 不重合时,0<x≤2 在正方形ABCD 中,∠A=∠ADC=90° ∴∠MDF=90°,∴∠A=∠MDF

在△AME 和△DMF 中

,∴△AME≌△DMF(ASA )∴ME=MF

在Rt△AME中,AE=x,AM=1,ME=∴EF=2ME=2

过M作MN⊥BC,垂足为N(如图)

则∠MNG=90°,∠AMN=90°,MN=AB=AD=2AM

∴∠AME+∠EMN=90°

∵∠EMG=90°∴∠GMN+∠EMN=90°∴∠AME=∠GMN

∴Rt△AME∽Rt△NMG∴=,即=∴MG=2ME=2

∴y=EF×MG=×2×2=2x2+2 ∴y=2x2+2,其中0≤x≤2;(2)如图,PP′即为P点运动的距离;

在Rt△BMG′中,MG⊥BG′;

∴∠MBG=∠G′MG=90°﹣∠BMG;

∴tan∠MBG==2,

∴tan∠GMG′=tan∠MBG==2;

∴GG′=2MG=4;

△MGG′中,P、P′分别是MG、MG′的中点,

∴PP′是△MGG′的中位线;∴PP′=GG′=2;即:点P运动路线的长为2.

13.将等腰Rt△ABC和等腰Rt△ADE按图1方式放置,∠A=90°, AD边与AB边重合, AB=2AD=4.将△ADE绕点A逆时针方向旋转一个角度α(0°≤α≤180°),BD的延长线交直线CE于点P.(1)如图2,BD与CE的数量关系是 , 位置关系是;

(2)在旋转的过程中,当AD⊥BD时,求出CP的长;(3)在此旋转过

程中,求点P运动的路线长.B

B B

解:

(1)BD=EC,BD⊥CE;理由:∵等腰Rt△ABC和等腰Rt△ADE按图1方式放置,

∠A=90°, AD边与AB边重合, AB=2AD=4,∴D,E分别是AB和AC的中点,故BD=EC=AD=AE,BD⊥CE;故答案为:BD=EC,BD⊥CE;

(2)如图3所示:∵△ABC和△ADE都是等腰三角形,∴AB=AC,

AD=AE,

∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,

∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠1=∠2,∴BP⊥CE,

∵AD⊥BP,∠DAE=90°,AD=AE,∴四边形ADPE为正方形,∴AD=PE=2,∵∠ADB=90°,AD=2,AB=4,∴∠ABD=30°,∴BD=CE=2,∴CP=CE﹣PE=2﹣2;

(3)如图4,取BC的中点O,连接OP、OA,∵∠BPC=∠BAC=90°,

∴OP=OA=BC=2,在此旋转过程中(0°≤α≤180°),由(2)知,

当α=60°时,

∠PBA最大,且∠PBA=30°,此时∠AOP=60°,∴点P运动的路线是以O 为圆心,OA长为半径的+,∴点P运动的路线长为:L

=+=2=×2 =π.

14.如图1,正方形ABCD 与正方形AEFG 的边AB 、AE (AB <AE )在一条直线上,正方形AEFG 以点A 为旋转中心逆时针旋转,设旋转角为α. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE 、

DG .(1)当正方形AEFG 旋转至如图2所示的位置时,求证:BE =DG ;

(2)当点C 在直线BE 上时,连接FC ,直接写出∠FCD 的度数;(3)如图3,如果α=45°,AB =2,AE

=G 到BE 的距离.

A B

C

D E F

G

图2

A B

C D E F

G

图3

G

F

E

D C

B

A 图1

(1)证明:如图2,∵四边形ABCD 是正方形,∴AB=AD ,∠BAE +∠

EAD =90°.

∵四边形AEFG 是正方形,∴AE=AG ,∠EAD +∠DAG =90°. ∴∠BAE =∠DAG . ∴△ABE ≌△(SAS)ADG .∴BE=DG .

(2)解:45°或135°.

(3)解:如图3,连接GB 、GE . 由已知

α=45°,

可知∠BAE =45°. 又∵GE 为正方形AEFG 的对角线,

∴∠AEG =45°. ∴AB ∥GE .

∵AE =∴GE =8,

图3

G

F

E D C

B

A H

中考数学复习检测第2部分专题突破专题十解答题突破—代数几何综合题(涉及二次函数)

2019-2020年中考数学复习检测第2部分专题突破专题十解答题突破—代数几何综合题(涉及二次函数) 类型一以几何图形为背景的综合题 【例1】(xx·苏州一模)如图1①,四边形ABCD中,AD∥BC,DC⊥BC,AD =6 cm,DC=8 cm,BC=12 cm.动点M在CB上运动,从C点出发到B点,速度每秒2 cm;动点N在BA上运动,从B点出发到A点,速度每秒1 cm.两个动点同时出发,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒). (1)求线段AB的长. (2)当t为何值时,MN∥CD? (3)设三角形DMN的面积为S,求S与t之间的函数关系式. (4)如图1②,连接BD,是否存在某一时刻t,使MN与BD互相垂直?若存在,求出这时的t值;若不存在,请说明理由. 图1

【例2】(xx·吉林)如图2,在等腰直角三角形ABC中,∠BAC=90°,AC=8 2 cm,AD⊥BC于点D,点P从点A出发,沿A→C方向以 2 cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2) 图2 备用图 (1)当点M落在AB上时,x=____________; (2)当点M落在AD上时,x=____________; (3)求y关于x的函数解析式,并写出自变量x的取值范围.

1.(xx·宁夏)如图3,在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC 向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒 (0<x≤3),解答下列问题: (1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值; 图3 (2)是否存在x的值,使得QP⊥DP?试说明理由. 2.(xx·梅州)如图4,在Rt△ABC中,∠ACB=90°,AC=5 cm,∠BAC=60°,动点M 从点B出发,在BA边上以每秒2 cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒 3 cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN. 图4 (1)若BM=BN,求t的值; (2)若△MBN与△ABC相似,求t的值; (3)当t为何值时,四边形ACNM的面积最小?并求出最小值.

高一数学立体几何练习题及部分答案大全

立 体几何试题 一.选择题(每题4分,共40分) 1.已知AB 0300300150空间,下列命题正确的个数为( ) (1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形 (3)平行于同一条直线的两条直线平行 ;(4)有两边及其夹角对应相等的两个三角形全等 A 1 B 2 C 3 D 4 3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是( ) A 平行 B 相交 C 在平面内 D 平行或在平面内 4.已知直线m αα过平面α外一点,作与α平行的平面,则这样的平面可作( ) A 1个 或2个 B 0个或1个 C 1个 D 0个 6.如图,如果MC ⊥菱形ABCD 所在平面,那么MA 与BD 的位置关系是( ) A 平行 B 垂直相交 C 异面 D 相交但不垂直 7.经过平面α外一点和平面α内一点与平面α垂直的平面有( ) A 0个 B 1个 C 无数个 D 1个或无数个 8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥? B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=?I D ,//,//m n m n αβ⊥ 10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个 二.填空题(每题4分,共16分) 11.已知?ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________ 12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有 _____________条 13.一块西瓜切3刀最多能切_________块

初三数学《几何计算训练题》

F 初三数学《几何计算训练题》 班级: 姓名: 评分: 一、填空题:(每小题3分,共15分) 1、60°的余角等于 。 2、等腰直角三角形的一个锐角的余弦值等于 。 3、△ABC 中,∠A ,∠ B 均为锐角,且有2|tan 2sin 0B A -+=(,则△AB C 是: 。 (填什么三角形) 4、钟表的轴心到分针针端的长为5cm ,那么经过40分钟,分针针 端转过的弧长是: 。 5、如上图,AC 为正方形ABCD 的对角线,延长AB 到E ,使AE = AC , 为一边作菱 形AEFC ,若菱形的面积为29,则正方形的面积为 。 二、解答题: 6、有一个角是60°的直角三角形,求它的面积Y 与斜边X 的函数关系是式。(6分) 7、某公园中央地上有一个大理石球,小明想测量球的半径,于是找了两块厚10cm 的砖塞在球的两侧(如图所示),他量了下两砖之间的距离刚好是60cm ,聪明的你也能算出这个大石球的半径了吗?请你建立一个用于求大理石球的几何模型,并写出你的计算过程。(6分)

C 8、已知:如图,在△ABC 中,∠C=90,D 是BC 的中点,DE ⊥AB ,垂足为E ,tanB=2 1,AE=7,求DE 的长。(6分) 9、如图,小岛A 在港口P 的南偏西?45方向,距离港口100海里处,甲船从A 出发,沿AP 方向以10海里/时的速度驶向港口,乙船从港口P 出发,沿南偏东?60方向以20海里/时的速度驶离港口。现两船同时出发,出发后几小时乙船在甲船的正东方向?(结果保留根号)(6分)

10、如图,四边形ABCD 为菱形,已知A (0,6),D (-8,0). (1)求点C 的坐标; (2)设菱形ABCD 对角线AC 、BD 相交于点E ,求经过点E 的反比例函数解析式.(8分) 11、如图,在梯形ABCD 中,AD BC ∥,AB AC ⊥,45B ∠=o ,AD =BC =DC 的长.(8分) 12、已知在Rt△ABC 中,∠C=90°,A D 是∠BAC 的角平分线,以AB 上一点O 为圆心,AD 为弦作⊙O. A B C D 10题图

代数几何综合题含答案

代数几何综合题 代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。 例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作P C P B ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式; (2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。 解:(1) P C P B B O P O ⊥⊥, ∴∠+∠=?∠+∠ ∴∠=∠C P A O P B P B O O P B C P A P B O 90, A (2,0),C (2,y )在直线a 上 ∴∠=∠=? B O P P A C 90 ∴??B O PP A C ~ ∴ =P O A C B O P A ,∴=+||||||x y x 2 2 , x y x y x <<∴= -002 2,,∴=-+y x x 122 (2) x <0,∴x 的最大整数值为-1 , 当x =-1时,y =- 32,∴=CA 3 2

B O a B O Q C A Q O Q A Q B O C A //~,,∴∴=?? 设Q 点坐标为()m ,0,则A Q m =-2 ∴-=∴=m m m 2232 8 7 , ∴Q 点坐标为()8 7 0, 说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。关键是搞清楚用坐标表示的数与线段的长度的关系。 练习 1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO. (1)求证:CD ∥AO ;(3分) (2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。(4分) B

高中数学立体几何测试题及答案一)

高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分) 1,三个平面可将空间分成n个部分,n的取值为() A,4;B,4,6;C,4,6,7 ;D,4,6,7,8。 2,两条不相交的空间直线a、b,必存在平面α,使得() A,a?α、b?α;B,a?α、b∥α;C,a⊥α、b⊥α;D,a?α、b⊥α。 3,若p是两条异面直线a、b外的任意一点,则() A,过点p有且只有一条直线与a、b都平行;B,过点p有且只有一条直线与a、b都垂直;C,过点p有且只有一条直线与a、b都相交;D,过点p有且只有一条直线与a、b都异面。 4,与空间不共面四点距离相等的平面有()个 A,3 ;B,5 ;C,7;D,4。 5,有空间四点共面但不共线,那么这四点中() A,必有三点共线;B,至少有三点共线;C,必有三点不共线;D,不可能有三点共线。 6,过直线外两点,作与该直线平行的平面,这样的平面可有()个 A,0;B,1;C,无数;D,涵盖上三种情况。 7,用一个平面去截一个立方体得到的截面为n边形,则() A,3≤n≤6 ;B,2≤n≤5 ;C,n=4;D,上三种情况都不对。 8,a、b为异面直线,那么() A,必然存在唯一的一个平面同时平行于a、b;B,过直线b 存在唯一的一个平面与a平行;C,必然存在唯一的一个平面同时垂直于a、b;D,过直线b 存在唯一的一个平面与a垂直。 9,a、b为异面直线,p为空间不在a、b上的一点,下列命题正确的个数是() ①过点p总可以作一条直线与a、b都垂直;②过点p总可以作一条直线与a、b都相交;③

过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。 A ,1; B ,2; C ,3; D ,4。 10,异面直线a 、b 所成的角为80°,p 为空间中的一定点,过点p 作与a 、b 所成角为40° 的直线有( )条 A ,2; B ,3; C ,4; D ,6。 11,P 是△ABC 外的一点,PA 、PB 、PC 两两互相垂直,PA=1、PB=2、PC=3,则△ABC 的 面积为( )平方单位 A ,25; B ,611; C ,27; D ,2 9。 12,空间四个排名两两相交,以其交线的个数为元素构成的集合是( ) A ,{2,3,4}; B ,{1,2,3,}; C ,{1,3,5}; D ,{1,4,6}。 13,空间四边形ABCD 的各边与对角线的长都是1,点P 在AB 上移动 ,点Q 在CD 上移 动,点P 到点Q 的最短距离是( ) A ,21; B ,22; C ,23; D ,4 3。 14,在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC ,PA=8,则P 到BC 的距离是( ) A ,45; B ,43; C ,25; D ,23。 15,已知m ,n 是两条直线,α,β是两个平面,下列命题正确的是( ) ①若m 垂直于α内的无数条直线,则m ⊥α;②若m 垂直于梯形的两腰,则m 垂直于梯形所 在的平面;③若n ∥α,m ?α,则n ∥m ;④若α∥β,m ?α,n ⊥β,则n ⊥m 。 A ,①②③; B ,②③④; C ,②④; D ,①③。 16,有一棱长为1的立方体,按任意方向正投影,其投影最大面积为( )

一次函数的与几何图形综合的题目(含答案)

一次函数与几何图形综合专题讲座 思想方法小结 : (1)函数方法. 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题. (2)数形结合法. 数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用. 知识规律小结 : (1)常数k ,b 对直线y =kx +b (k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b =0时,直线经过原点; 当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-k b >0时,直线与x 轴正半轴相交; 当b =0时,即- k b =0时,直线经过原点; 当k ,b 同号时,即-k b ﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b =0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b =0时,图象经过第二、四象限;

当b <O ,b <O 时,图象经过第二、三、四象限. (2)直线y =kx +b (k ≠0)与直线y =kx (k ≠0)的位置关系. 直线y =kx +b (k ≠0)平行于直线y =kx (k ≠0) 当b >0时,把直线y =kx 向上平移b 个单位,可得直线y =kx +b ; 当b ﹤O 时,把直线y =kx 向下平移|b |个单位,可得直线y =kx +b . (3)直线b 1=k 1x +b 1与直线y 2=k 2x +b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2?y 1与y 2相交; ②?? ?=≠2 12 1b b k k ?y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2) ; ③???≠=21 21,b b k k ?y 1与y 2平行; ④?? ?==2 121, b b k k ?y 1与y 2重合. 例题精讲: 1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB (1) 求AC (2) 在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC 于Q ,试探究BP 与PQ 的数量关系, 并证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M ,BP 交AC 于N ,下面两个结论:①(MQ +AC )/PM x y

初三数学代数几何综合题

代数几何综合题 【题型特征】代数、几何知识相结合的综合题是以几何知识为主体,以代数知识为工具(背景),来确定图形的形状、位置、大小(坐标)的问题.解答时往往需要从代数几何的结合点或在几何图形中寻找各元素之间的数量关系或在代数条件中探讨各个量的几何模型,进行数与形之间的互相转化,使问题得到解决. 为了讲解方便,我们将代数几何综合题按题目叙述的背景分为:坐标系、函数为背景的代数几何综合题和以几何图形为背景的代数几何综合题. 【解题策略】几何图形为背景的代数几何综合题,建立函数表达式的常见思路是:利用图形的面积公式建立函数表达式;或利用勾股定理或解直角三角形知识建立函数表达式;或利用相似三角形的线段成比例建立函数表达式. 类型一坐标系、函数为背景 典例1(2015·湖南怀化)如图(1),在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的面积为y. (1)求y与x之间的函数表达式; (2)当x=3秒时,射线OC平行移动到O'C',与OA相交于点G,如图(2),求经过G,O,B三点的抛物线的表达式; (3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在三角形POB的面积S=8的情况?若存在,求出点P的坐标,若不存在,请说明理由. (1)

(2) 【全解】 (1)∵AB=OB,∠ABO=90°, ∴△ABO是等腰直角三角形. ∴∠AOB=45°. ∵∠yOC=45°, ∴∠AOC=(90°-45°)+45°=90°. ∴AO⊥CO. ∵C'O'是CO平移得到, ∴AO⊥C'O'. ∴△OO'G是等腰直角三角形. ∵射线OC的速度是每秒2个单位长度, ∴OO'=2x. ∴其以OO'为底边的高为x. ∴点G的坐标为(3,3). 设抛物线表达式为y=ax2+bx,

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E B F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC = ,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又 平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴ ……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ? 面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

初三数学几何综合练习题

初三数学几何综合练习题 1.在△ABC中,∠C=90°,AC=BC,点D在射线BC上(不与点B、C重合),连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE. (1)如图1,点D在BC边上. ①依题意补全图1; ②作DF⊥BC交AB于点F,若AC=8,DF=3,求BE的长; (2)如图2,点D在BC边的延长线上,用等式表示线段AB、BD、BE之间的数量关系 (直接写出结论). 图1图2

B A C 2. 已知:Rt △A ′BC ′和 Rt △ABC 重合,∠A ′C ′B =∠ACB =90°,∠BA ′C ′=∠BAC =30°,现将Rt △A ′BC ′ 绕点B 按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C ′C 和线段AA ′相交于点D ,连接BD . (1)当α=60°时,A ’B 过点C ,如图1所示,判断BD 和A ′A 之间的位置关系,不必证明; (2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明; (3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由. 3.如图1,已知线段BC =2,点B 关于直线AC 的对称点是点D ,点E 为射线CA 上一点,且ED =BD ,连接DE ,BE .

(1) 依题意补全图1,并证明:△BDE 为等边三角形; (2) 若∠ACB =45°,点C 关于直线BD 的对称点为点F ,连接FD 、FB .将△CDE 绕点D 顺时针旋转α度(0°<α<360°)得到△''C DE ,点E 的对应点为E ′,点C 的对应点为点C ′. ①如图2,当α=30°时,连接'BC .证明:EF ='BC ; ②如图3,点M 为DC 中点,点P 为线段'' C E 上的任意一点,试探究:在此旋转过程中,线段PM 长度的取值范围? 4.(1)如图1 ,在四边形ABCD 中,AB=BC ,∠ABC =80°,∠A +∠C =180°,点M 是AD 边上一点,把射线BM 绕点B 顺时针旋转40°,与CD 边交于点N ,请你补全图形,求MN ,AM ,CN 的数量关系; 图1 图2 图3

代数几何综合题(含答案)

代数几何综合题 x<0,连 1、如图,已知平面直角坐标系中三点A(2,0),B(0,2),P(x,0)() ⊥交过点A的直线a于点C(2,y) 结BP,过P点作PC PB (1)求y与x之间的函数关系式; (2)当x取最大整数时,求BC与PA的交点Q的坐标。 2.如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,⊙O的直径BD为6,连结CD、AO. (1)求证:CD∥AO; (2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围; (3)若AO+CD=11,求AB的长. B

3.如图,A 、B 两点的坐标分别是(x 1,0)、(x 2,O),其中x 1、x 2是关于x 的方程x 2 +2x+m-3=O 的两根,且x 1<0

1、已知抛物线)0(22 >--=m m x x y 与y 轴的交于C 点,C 点关于抛物线对称轴的对称点为C ′。 (1)求抛物线的对称轴及C 、C ′的坐标(可用含m 的代数式表示); (2)如果点Q 在抛物线的对称轴上,点P 在抛物线上,以点C 、C ′、P 、Q 为顶点的四边形是平行四边形,求Q 点和P 的坐标(可用含m 的代数式表示); (3)在(2)的条件下,求出平行四边形的周长。 2、如图,抛物线)0(2≠++=a c bx ax y 与x 轴、y 轴分别相交于 A (-1,0)、 B (3,0)、 C (0,3)三点,其顶点为 D . (1)求:经过A 、B 、C 三点的抛物线的解析式; (2)求四边形ABDC 的面积; (3)试判断△BCD 与△COA 是否相似若相似写出证明过程;若不相似,请说明理由. A B D C o x y

中考数学代数几何综合题2

中考数学代数几何综合题2 Ⅰ、综合问题精讲: 代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式显现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数和几何知识解题. Ⅱ、典型例题剖析 【例1】(2005,温州,12分)如图,已知四边形ABCD 内接于⊙O,A 是BDC 的中点,AE⊥AC 于A ,与⊙O 及CB 的延长线分别交于点F 、E ,且BF AD =,EM 切⊙O 于M 。 ⑴ △ADC∽△EBA ;⑵ AC2=1 2 BC·CE; ⑶假如AB =2,EM =3,求cot∠CAD 的值。 解:⑴∵四边形ABCD 内接于⊙O,∴∠CDA=∠ABE, ∵BF AD =,∴∠DCA=∠BAE, ∴△CAD∽△AEB ⑵ 过A 作AH⊥BC 于H(如图) ∵A 是BDC 中点,∴HC=HB =1 2 BC , ∵∠CAE=900,∴AC 2 =CH·CE=12 BC·CE ⑶∵A 是BDC 中点,AB =2,∴AC=AB =2, ∵EM 是⊙O 的切线,∴EB·EC=EM 2 ① ∵AC 2 =12 BC·CE,BC·CE=8 ② ①+②得:EC(EB +BC)=17,∴EC 2 =17 ∵EC 2 =AC 2 +AE 2 ,∴AE=17-22=13 ∵△CAD∽△ABE,∴∠CAD=∠AEC, ∴cot∠CAD=cot∠AEC =AE AC =13 2 点拨:此题的关键是树立转化思想,将未知的转化为已知的.此题表现的专门突出.如,将∠CAD 转化为∠AEC 就专门关键. 【例2】(2005,自贡)如图 2-5-2所示,已知直线y=2x+2分 别与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内 作等腰直角△ABC ,∠BAC=90○ 。过C 作CD ⊥x 轴,D 为垂足. (1)求点 A 、B 的坐标和AD 的长; (2)求过B 、A 、C 三点的抛物线的解析式。

空间立体几何练习题(含答案)

第一章 空间几何体 [基础训练A 组] 一、选择题 1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A.棱台 B.棱锥 C.棱柱 D.都不对 2.棱长都是1的三棱锥的表面积为( ) 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( ) A .25π B .50π C .125π D .都不对 4.正方体的内切球和外接球的半径之比为( ) A B 2 C . 5.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( ) A. 92π B. 72π C. 52π D. 32 π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题 1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。 2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。 3.正方体1111ABCD A BC D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。 4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形 E BFD 1在该正方体的面上的射影可能是____________。 5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长 方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题 1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用) ,已建的仓库的 主视图 左视图 俯视图

中考数学几何综合题汇总.doc

如图 8,在Rt ABC中,CAB 90,AC 3 , AB 4 ,点 P 是边 AB 上任意一点,过点 P 作PQ AB 交BC于点E,截取 PQ AP ,联结 AQ ,线段 AQ 交BC于点D,设 AP x ,DQ y .【2013徐汇】 (1)求y关于x的函数解析式及定义域;( 4 分) (2)如图 9,联结CQ,当CDQ和ADB相似时,求x的值;( 5 分) (3)当以点C为圆心,CQ为半径的⊙C和以点B为圆心,BQ为半径的⊙B相交的另一个交点在边 AB 上时,求 AP 的长.( 5 分) C Q D E A P B (图 8) C Q D E A (图 9) P B C A B (备用图) 【2013 奉贤】如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点 C作 AB的垂线交⊙ O于点 D,联结 OD,过点 B 作 OD的平行线交⊙ O于点 E、交射 线CD于点 F. (1)若 ⌒ ED BE⌒ ,求∠ F 的度数; (2)设CO x, EF y,写出y 与x之间的函数解析式,并写出定义域;

(3)设点 C 关于直线 OD 的对称点为 P ,若△ PBE 为等腰三角形,求 OC 的长. 第 25 题 【 2013 长宁】△ ABC 和△ DEF 的顶点 A 与 D 重合,已知∠ B = 90 . ,∠ BAC = 30 . , BC=6,∠ FDE = 90 , DF=DE=4. (1)如图①, EF 与边 、 分别交于点 ,且 . 设 DF a ,在射线 上取 AC AB G 、H FG=EH DF 一点 P ,记: DP xa ,联结 CP. 设△ DPC 的面积为 y ,求 y 关于 x 的函数解析式,并写 出定义域; (2)在( 1)的条件下,求当 x 为何值时 PC // AB ; ( 3)如图②,先将△ DEF 绕点 D 逆时针旋转,使点 E 恰好落在 AC 边上,在保持 DE 边与 AC 边完 全重合的条件下, 使△ DEF 沿着 AC 方向移动 . 当△ DEF 移动到什么位置时, 以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 图① 图② 【 2013 嘉定】已知 AP 是半圆 O 的直径,点 C 是半圆 O 上的一个动点 (不与点 A 、P 重合),联结 AC ,以直线 AC 为对称轴翻折 AO ,将点 O 的对称点记为 O 1 ,射线 AO 1 交半圆 O 于 点 B ,联结 OC . (1)如图 8,求证: AB ∥ OC ; (2)如图 9,当点 B 与点 O 1 重合时,求证: AB CB ;

代数几何综合题含答案

代数几何综合题 1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0) ()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式; (2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。 2.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO. (1)求证:CD ∥AO ; (2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)若AO +CD =11,求AB 的长. 3.如图,A 、B 两点的坐标分别是(x 1,0)、(x 2,O),其中x 1、x 2是关于x 的方程x 2+2x+m -3=O 的两根,且x 1<0--=m m x x y 与y 轴的交于C 点,C 点关于抛物线对称轴的对称点为C ′。 (1)求抛物线的对称轴及C 、C ′的坐标(可用含m 的代数式表示); (2)如果点Q 在抛物线的对称轴上,点P 在抛物线上,以点C 、C ′、P 、Q 为顶点的四边形是平行四边形,求Q 点和P 的坐标(可用含m 的代数式表示); (3)在(2)的条件下,求出平行四边形的周长。 B

立体几何大题训练及答案

1、如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形, (1)线段的中点为,线段的中点为, 求证:; (2)求直线与平面所成角的正切值. 解:(1)取AB 的中点为N ,连MN ,PN ,则//MN EB ,//PN BC ∴ PMN EBC ∴//PM BCE 平面FE ⊥EBC FCE ∴∠ ⊥//AB DE (1)求证:AO ⊥平面CDE ; (2)求直线BD 与平面CBE 所成角的正弦值 3、如图,在△ABC 中,?=∠90C ,a BC AC 3==,点P 在AB 上,BC PE //交AC 于 E ,AC P F //交BC 于F .沿PE 将△APE 翻折成△PE A ',使平面⊥PE A '平面 ABC ;沿PF 将△BPF 翻折成△PF B ',使平面⊥PF B '平面ABC . (1)求证://'C B 平面PE A '; (2)若PB AP 2=,求二面角E PC A --'的平面角的正切值. 解:(1)因为PE FC //,?FC 平面PE A ',所以//FC 平面PE A '. 因为平面⊥PE A '平面PEC ,且PE E A ⊥',所以⊥E A '平面ABC . …2分 同理,⊥F B '平面ABC ,所以E A F B '//',从而//'F B 平面PE A '. …4分 所以平面//'CF B 平面PE A ',从而//'C B 平面PE A '. …6分 (2)因为a BC AC 3==,BP AP 2=, 所以a CE =,a A E 2=',a PE 2=,a PC 5=. …8分 A B C D E F M . . C B F P A F C ' B ' A E

武汉市中考数学几何综合题专题汇编

武汉市中考数学几何综合题专题汇编(2) 1、(2013?绍兴)矩形ABCD 中,AB=4,AD=3,P ,Q 是对角线BD 上不重合的两点,点P 关于直线AD ,AB 的对称点分别是点E 、F ,点Q 关于直线BC 、CD 的对称点分别是点G 、H .若由点E 、F 、G 、H 构成的四边形恰好为菱形,求PQ 的长。 2、(2013陕西压轴题)问题探究 (1)请在图①中作出两条直线,使它们将圆面四等分; (2)如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M ),使它们将正方形ABCD 的面积四等分,并说明理由. 问题解决 (3)如图③,在四边形ABCD 中,AB ∥CD ,AB+CD=BC ,点P 是AD 的中点,如果AB=a ,CD=b ,且a b ,那么在边BC 上是否存在一点Q ,使PQ 所在直线将四边形ABCD 的面积分成相等的两部分?若存在,求出BQ 的长;若不存在,说明理由. 图① 图② A B C D M B 图③ A C D P (第25题图)

3、(2013?温州压轴题)如图,在平面直角坐标系中,直线AB 与x 轴,y 轴分别交于点A (6,0),B (0.8),点C 的坐标为(0,m ),过点C 作CE ⊥AB 于点E ,点D 为x 轴上的一动点,连接CD ,DE ,以CD ,DE 为边作?CDEF . (1)当0<m <8时,求CE 的长(用含m 的代数式表示); (2)当m=3时,是否存在点D ,使?CDEF 的顶点F 恰好落在y 轴上?若存在,求出点D 的坐标;若不存在,请说明理由; (3)点D 在整个运动过程中,若存在唯一的位置,使得?CDEF 为矩形,请求出所有满足条件的m 的值. 4、(13年北京)在△ABC 中,AB=AC ,∠BAC=α(?<

2019届中考数学总复习:代数几何综合问题

2019届中考数学总复习:代数几何综合问题 【中考展望】 代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键. 题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题. 题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口. 【方法点拨】 方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明. 函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等. 函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型. 几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力. 1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现. 2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等. 3.几何论证题主要考查学生综合应用所学几何知识的能力. 4.解几何综合题应注意以下几点: (1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系; (2)注意推理和计算相结合,力求解题过程的规范化; (3)注意掌握常规的证题思路,常规的辅助线作法; (4)注意灵活地运用数学的思想和方法. 【典型例题】 类型一、方程与几何综合的问题 1.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE =10,则CE的长为_________.

立体几何练习题(含答案)

《立体几何 》练习题 一、 选择题 1、一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( ) A 、垂直 B 、平行 C 、相交不垂直 D 、不确定 2. 在正方体1111ABCD A B C D -中, 与1A C 垂直的是( ) A. BD B. CD C. BC D. 1CC 3、线n m ,和平面βα、,能得出βα⊥的一个条件是( ) A.βα//n ,//m ,n m ⊥ B.m ⊥n ,α∩β=m ,n ?α C.αβ?⊥m n n m ,,// D.βα⊥⊥n m n m ,,// 4、平面α与平面β平行的条件可以是( ) A.α内有无穷多条直线与β平行; B.直线a//α,a//β C.直线a α?,直线b β?,且a//β,b//α D.α内的任何直线都与β平行 5、设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是( ) A.①和② B.②和③ C.③和④ D.①和④ 6.点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O,若PA=PB=PC , 则点O 是ΔABC 的( ) A.内心 B.外心 C.重心 D.垂心 7. 若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面, 则下列命题中为真命题的是( ) A .若//,,l n αβαβ??,则//l n B .若,l αβα⊥?,则l β⊥ C. 若,//l l αβ⊥,则αβ⊥ D .若,l n m n ⊥⊥,则//l m 8. 已知两个平面垂直,下列命题中正确的个数是( ) ①一个平面内的已知直线必垂直于另一个平面的任意一条直线; ②一个平面内的已知直线必垂直于另一个平面的无数条直线; ③一个平面内的任一条直线必垂直于另一个平面; ④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面. A.3 B.2 C.1 D.0 9. 设m.n 是两条不同的直线,α.β是两个不同的平面, ( ) A .若m∥α,n∥α,则m∥n B .若m∥α,m∥β,则α∥β C .若m∥n,m⊥α,则n ⊥α D .若m∥α,α⊥β,则m⊥β

(完整)初三数学几何的动点问题专题练习

动点问题专题训练 1、如图,已知ABC △中,10 AB AC ==厘米,8 BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q第一次在ABC △的哪条边上相遇? 2、直线 3 6 4 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发, 同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度, 点P沿路线O→B→A运动. (1)直接写出A B 、两点的坐标; (2)设点Q的运动时间为t秒,OPQ △的面积为S,求S与t之间的函数关系式; (3)当 48 5 S=时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行四 边形的第四个顶点M的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

相关文档
相关文档 最新文档