文档库 最新最全的文档下载
当前位置:文档库 › 鲨鱼装与机器鱼──仿生减阻与仿生推进

鲨鱼装与机器鱼──仿生减阻与仿生推进

鲨鱼装与机器鱼──仿生减阻与仿生推进
鲨鱼装与机器鱼──仿生减阻与仿生推进

鲨鱼装与机器鱼──浅谈仿生减阻与仿生推进

92/05/12作者: 陈政宏成功大学造船及船舶机械工程学系

德瑞普(Draper)公司研发的机器鱼。

仿生流体工程学?

传统的生物学主流不论是研究生物的组织、结构、形态、类别及生态,或是二十世纪中叶以后的分子生物学,怎样也轮不到生物力学,特别是其中看似没有明显用途的流体力学,除了人工心脏与血管相关的问题外,大概没人会注意这方面的研究。但是这些年来,一些生物物理学家与流体力学工程师们,已经默默地将生物物理学与流体工程结合在一起,为人类科技的进展提供一条新的路线。在内流场方面,人工心脏及人体血液循环系统的研究成为追求长寿者的希望所在;在外流场方面,各式交通工具必备的推进系统也有诸多模仿生物的发展,以寻求更有效率、节省能源的推进方式。

在实验室里,工程师们有时会将「鱼类尾鳍重新吸收流场中的动能以增加推进效率」这一类生物运动的原理应用到工程机械上,我们称这种模仿生物的工程应用为「仿生工程学」。仿生工程在机械、化工等各方面都有发展,在此我们以流体力学方面的例子说明科学家与工程师是如何发展仿生工程的。??对流体力学家或工程师而言,诸如船与飞机等交通工具的阻力与推进是密不可分的问题,运动性能与操控也是如此,这两者都是他们最关切的问题。因此,当人类想要在流体中有更好的交通工具或机械时,不免会见贤思齐来模仿生物一番,看看动物有何妙招可以减少阻力、提高推进效率、或增加运动操控性能。?

虽然「仿生」一词是近年来的产物,其实这种想法早就存于我们远祖的脑中。游泳正是最好的例子:蝶式的下半身摆动是学鱼类的摆尾;近年来仰式很流行的出发及转身时的潜泳也是学鱼类的摆尾,如果练习得当,此方式既有效率又快速,所以已经被国际泳协明文规范限制以此方式游行的距离。否则,一来大家要比谁憋气较久,二来仰式可能要变「潜式」了。过去就有选手曾经在国际大赛中,出发后以此摆尾潜泳方式游了近40公尺才冒出水面换气的例子。一般而言,提升或改良某种事情不外乎开源与节流两种方法,最好能双管齐下,提高推进效率也是如此,以下我们分减阻与推进两方面来看。??仿生减阻

流场控制是减低阻力的方法之一,借着改变物体表面附近的流场来达到减低摩擦阻力的目的。生物学家观察许多鱼类及鲸豚类的皮肤后发现这些皮肤并不单纯,经过仔细的研究,想出了各种模仿鱼类或鲸豚类皮肤的方法。??表面构造减阻法:在适当的位置上挖一些微小的壕沟,这些壕沟会改变贴近物体表面的流场紊性边界层中原有的结构与速度分布,因而减少摩擦阻力。在鲨鱼表皮上发现这些微壕沟有特殊的V形结构,且以特别的方式排列,这些壕沟的形状与尺寸大小是否有不同的影响,是近年研究的重点。游泳选手的新泳装从头包到脚,称为鲨鱼装,可以减少阻力,就是这原理的应用。另外,这两年才在莲叶上发现的奈米级微小突起结构,改变了水滴的附着能力,它就是导致莲「出淤泥而不染」的原因;这种微小突起结构,也是未来应用奈米科技于交通工具减阻上热门的研究课题之一。

?一九六○年代,科学家发现海豚的皮肤不只光滑而且有特殊的弹性。于是他们分析海豚的皮肤构造,发现除了表皮外,下面有两层柔软的脂肪层,而这样的组合称为柔顺性表面,可使皮肤随着水流略微改变外形。据此,许多科学家模仿这种结构进行减阻实验,但是并非十分成功。不成功的原因究竟是在于未能适当地模仿,或是这样的柔顺性表面根本与减阻无关,至今仍有争议、尚无定论。

?主动壁减阻法:这种减阻方法主要是借着物体表面的活动来改变紊性边界层中原有的结构与速度分布,但是这牵涉到如何借着微侦测器感应紊性边界层中的流场速度变化,再加以适当地让物体表面配合活动。此类技术的困难度相当高,现有的研究报告并不多,但随着微机电系统开发的日渐成熟,或许将来大有可为。??表面材质或分泌物减阻法:科学家在研究鱼类及鲸豚类的皮肤时还发现,牠们的皮肤会分泌特殊的分泌物覆盖在表皮上。因而,科学家又想到另一类改变摩擦阻力的方法,这种改变表面材质的减阻方法有下列数种: ?

涂装减阻法是借着在物体表面涂装不同的漆料,以不同的化学性质改变物体表面与流体的摩擦系数,而减低摩擦阻力。这种表面加工技术对人类而言是最简便的,只要找对涂装漆料就似乎大功告成。然而,如何发现适当的涂料,什么涂料适合何种运动,以及在应用上须克服的腐蚀与剥落等问题,都亟待进一步研究。

?微喷减阻法是将微小物质由物体表面喷入周围的流场中。依喷入流场中物质的差异,微喷法也分为两种:同质流体与非同质物。这些方法如果运用得当,可以有效减低50%以上的阻力,但是若应用不当,反而有增加阻力的反效果。

喷入边界层中的可以是流场中相同的流体(如用于飞机的空气或船的水)。美国航天总署与空军曾以F-16战斗机为原型,联合开发一种三角翼的实验机F-16XL,并在其机翼上装上感应及微喷—微吸系统,来研究借着改变边界层中原有的速度分布,以控制边界层的剥离,减低黏性压差阻力的可行性。??与表面构造类的技术一样,微泡注入法也是想借着改变紊性边界层中原有的结构与速度分布,来减低阻力。其原理是利用气体与边界层中液体不同的密度与速度,来改变流场结构与速度分布。目前已发现微泡须注入紊性边界层中靠近中间区的缓冲层才有明显效果,日本学者也已在实验室中成功地应用于平底船的船底上。

?加入的物质也可以是微小的高分子聚合物,或是以高分子聚合物结合微泡注入法形成一种混合物注入边界层中,以模仿鱼类皮肤特殊的分泌物,借着改变流体分子间的摩擦力,使流体(一般而言是水)的黏滞性局部改变,从而改变摩擦阻力。但是这种方法需要另外准备高分子聚合材料,无法就地取材。?目前国内与造船工程相关的几个校系正进行这一方面的整合型研究计划,以船型及表面材质或分泌物的减阻方式为研究重点。?

在此值得一提的是,高分子聚合物的加入会改变流体的黏滞性与表面张力,使其应用范围扩大,目前有许多基础研究环绕在高分子聚合物对流体各种行为的改变上。法国的科学家最近发现,在液体中加入少量特别的高分子可以改变流体的黏滞性,使水从牛顿流体(即流体的剪应变与剪应力成线性正比)变成非牛顿流体,而使一滴液体落在固体表面时减少、甚至不会四溅,这项成果或可用于与喷嘴有关的应用中。另外有一种减阻技术是在物体尾部喷出流场中的流体,利用此喷流来改变流场中的流线,从而减少黏性压差阻力。此方法已被德国人成功应用于汽车上。

?仿生推进

?在推进方法上,人类的模仿也是多采多姿,有的是直接模仿生物推进的方法与型态;有的仅仅是应用相同的原理;有的是介于二者之间,应用生物推进的原理来改良人类原有的设计。??摆动翼片:除了前述人类游泳的方式外,摆动的翼片可说是我们最早模仿生物来推进交通工具的例子。我们现在可能无法确定中国人传统船只上摇橹的方式是否得自生物的启发,还是纯粹试误的结果,但是摇橹的推进原理与鱼类摆尾推进是一样的。近年日本的研究指出,一般橹的推进效率与现代设计良好的船用螺桨不相上下,甚至在特别良好的状况下,其效率可达80%,超过目前一般的螺桨。至于欧美近代的一些发展,则可以确定是来自观察鱼类运动的灵感,这些包括一八四八年英国人佛礼士(Robert F

阻力的产生及减阻措施

阻力的产生及减阻措施 飞机的各个部件,如机翼、机身和尾翼等,单独放在气流中产生的阻力的总和并不等于把它们组合成一架飞机时所产生的阻力,而后者往往大于前者。所谓“干扰阻力”指的就是飞机的阻力和单独各个部件阻力代数和的差值,是由于各个部件组合在一起时,流动相互干扰产生的额外阻力增量。换句话讲,飞机的零升阻力等于机翼的零升阻力、机身的零升阻力、尾翼(含平尾和立尾)的零升阻力和飞机干扰阻力之和。飞机干扰阻力又包括机翼机身之间的干扰阻力、尾翼机身之间的干扰阻力以及机翼尾翼之间的干扰阻力等。 当把机翼和机身组合在一起时,机身的侧面和机翼翼面之间形成一个横截面积先收缩后扩张的通道,低速气流流过扩张通道时,因逆压梯度的作用将使附面层产生严惩的分离,出现额外增加的粘性压差阻力。为了消除这一不利的干扰,一般都采用整流片来仔细修改机翼机身连接部分的外形,“填平补齐”,消除分离。上图的飞机采用了大整流片的目的也在于此。 由于机翼下表面压力大,上表面压力小,因此下表面压力大的气流就会向上表面流动,从而在翼尖处形成了一个旋涡,这个旋涡是由于升力诱导而产生的,因此称为诱导阻力。 飞机的零升阻力是纯粹的付出,不像下面要介绍的飞机的诱导阻力那样,是产生有用升力所必须付出的代价;自然,无论是飞机的零升阻力或是诱导阻力,都应该千方百计地减少它们。要减少低、亚声速飞行时飞机的零升阻力,主要有下列办法。 第一,采用层流翼型替代古典翼型来减小机翼的摩擦阻力。 第二,对飞机的其他部件都应当整流,做成流线外形。 第三,是减小干扰阻力。必须妥善地考虑和安排各个部件的相对位置,在这些部件之间必要时不定期应加装整流片。 超音速飞机在飞行时会产生激波阻力,减小激波阻力的主要措施是采用合适的气动外形。

仿生技术及其应用

仿生技术及其应用

一、仿生学的诞生 ?人们用化学、物理学、数学以及技术模型对生物系统开展着深入的研究, 促进了生物学的极大发展,对生物体内功能机理的研究也取得了迅速的进展。此时模拟生物不再是引人入胜的幻想,而成了可以做到的事实。 生物学家和工程师们积极合作,开始将从生物界获得的知识用来改善旧的或创造新的工程技术设备。生物学开始跨入各行各业技术革新和技术革命的行列,而且首先在自动控制、航空、航海等军事部门取得了成功。 于是生物学和工程技术学科结合在一起,互相渗透孕育出一门新生的科学——仿生学。 ?简言之,仿生学就是模仿生物的科学

二、仿生技术发展 现代仿生学已经延伸到很多领域,它的发展需要生物学、物理学、化学、医学、数学、材料学、机械学、动力学、控制论、航空、航天和航海工程等众多学科领域工作者的合作;反过来,仿生学的发展叉可以推动这些学科的进步。自20世纪60年代初仿生学诞生以来,仿生技术已得到迅速发展,在军事、医学、工业、建筑业、信息产业等系统获得了广泛应用,如仿生技术已成功地应用于精密雷达、声纳、导弹制导、机器人等领域中。

三、仿生技术分类及主要研究内容 ?仿生技术归纳为:结构仿生、功能仿生、材料仿生、力学仿生、控制仿生等类别。 ?1、结构仿生 ?结构仿生(Bionic Structure)是通过研究生物肌体的构造,建造 ?类似生物体或其中一部分的机械装置,通过结构相似实现功能相近。 ?1.昆虫仿生:模仿昆虫独特的形体结构和运动方式。 ?2.蛇类仿生:模仿蛇类运动的高冗余自由度。 ?3.变形虫仿生:模仿变形虫形体的几何可变性和自重构。 ?4.人体仿生:模仿人体的高度灵活性和功能复杂性。

新型功能材料发展趋势

新型功能材料发展趋势 功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。功能材料按使用性能分,可分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料和机敏(智能)材料。由于我们已把电子信息材料单独作为一类新材料领域,所以这里所指的新型功能材料是除电子信息材料以外的主要功能材料。 功能材料是新材料领域的核心,对高新技术的发展起着重要的推动和支撑作用,在全球新材料研究领域中,功能材料约占 85 % 。随着信息社会的到来,特种功能材料对高新技术的发展起着重要的推动和支撑作用,是二十一世纪信息、生物、能源、环保、空间等高技术领域的关键材料,成为世界各国新材料领域研究发展的重点,也是世界各国高技术发展中战略竞争的热点。 鉴于功能材料的重要地位,世界各国均十分重视功能材料技术的研究。 1989年美国200多位科学家撰写了《90年代的材料科学与材料工程》报告,建议政府支持的6类材料中有5类属于功能材料。从1995年至2001年每两年更新一次的《美国国家关键技术》报告中,特种功能材料和制品技术占了很大的比例。2001年日本文部省科学技术政策研究所发布的第七次技术预测研究报告中列出了影响未来的100项重要课题,一半以上的课题为新材料或依赖于新材料发展的课题,而其中绝大部分均为功能材料。欧盟的第六框架计划和韩国的国家计划等

仿生学应用综述

仿生学应用综述 仿生学是一门既古老又年轻的学科。人们研究生物体结构与功能的工作原理,并根据这些原理发明出新的设备和工具,创造出适用于生产,学习和生活的先进技术。某些生物具有的功能迄今比任何人工制造的机械都优越得多,仿生学就是要在工程上实现并有效地应用生物功能的一门学科。例如关于信息接受(感觉功能)、信息传递(神经功能)、自动控制系统等,这种生物体的结构与功能在机械设计方面给了很大启发。 仿生学也被认为是与控制论有密切关系的一门学科,而控制论主要是将生命现象和机械原理加以比较,进行研究和解释的一门学科。 仿生学在很多方面都有应用,对当今的科学技术发展提供了源源不断的动力。以下就是一些精彩的案例。 我们学校以纺织专业著称,而一种好的纺织材料是大家都追求的。在这方面,科学家也进行过研究。比如, 蜘蛛丝仿生材料概述及应用 采用仿生学原理, 设计、合成并制备新型仿生材料是近年来快速发展的研究领域.天然蜘蛛丝是一种生物蛋白弹性体纤维, 具有高比强度(约为钢铁的5倍)、优异弹性(约为芳纶的10倍)和坚韧性(断裂能为所有纤维中最高), 为自然界产生最好的结构和功能材料之一, 它在航空航天、军事、建筑及医学等领域表 现出广阔应用前景.受自然界蜘蛛丝启发, 天然蜘蛛丝仿生材料 的研究迎来了机遇, 同时也给人们展示了许多新颖的仿生设计

方法。1.材料学院无机非1302班武艳琪1310220226。 生活中一些微不足道的事物也会成为仿生学的应用。比如小小的苍蝇。苍蝇为人类做出了的伟大的贡献。令人讨厌的苍蝇,与宏伟的航天事业似乎风马牛不相及,但仿生学却把它们紧密地联系起来了。苍蝇是声名狼藉的“逐臭之夫”,凡是腥臭污秽的地方,都有它们的踪迹。苍蝇的嗅觉特别灵敏,远在几千米外的气味也能嗅到。但是苍蝇并没有“鼻子”,它靠什么来充当嗅觉的呢? 原来,苍蝇的“鼻子”——嗅觉感受器分布在头部的一对触角上。每个“鼻子”只有一个“鼻孔”与外界相通,内含上百个嗅觉神经细胞。若有气味进入“鼻孔”,这些神经立即把气味刺激转变成神经电脉冲,送往大脑。大脑根据不同气味物质所产生的神经电脉冲的不同,就可区别出不同气味的物质。因此,苍蝇的触角像是一台灵敏的气体分析仪。仿生学家由此得到启发,根据苍蝇嗅觉器官的结构和功能,仿制成一种十分奇特的小型气体分析仪。这种仪器的“探头”不是金属,而是活的苍蝇。就是把非常纤细的微电极插到苍蝇的嗅觉神经上,将引导出来的神经电信号经电子线路放大后,送给分析器;分析器一经发现气味物质的信号,便能发出警报。这种仪器已经被安装在宇宙飞船的座舱里,用来检测舱内气体的成分。这种小型气体分析仪,也可测量潜水艇和矿井里的有害气体。利用这种原理,还可用来改进计算机的输入装置和有关气体色层分析仪的结构原理中。另外苍蝇的楫翅(又叫平衡棒)是个“天然导航仪”,人们模仿它制成了“振动陀螺仪”。这种仪器目前已经应用在火箭和高速飞机上,实现了自动驾驶2. 39

仿生表面微结构减阻优化及机理研究综述

龙源期刊网 https://www.wendangku.net/doc/b417050612.html, 仿生表面微结构减阻优化及机理研究综述 作者:王政李田李明张继业 来源:《河北科技大学学报》2017年第04期 摘要:介绍了自然界中几种较为典型的非光滑结构表面生物,阐明了合理表面微结构可以改变近壁区湍流结构的规律,针对表面微结构的类型、减阻研究实例、减阻机理和减阻应用等4个方面进行了评述,提出了沟槽扩展类型,并指出减阻机理研究应拓展至复杂形态结构。分析表明:微结构类型对减阻效果有较大影响,减阻优化及其机理研究是仿生表面微结构减阻工作的重点,仿生表面微结构减阻优化可进一步提高节能降耗的效率,在飞行器、高速列车、汽车等工程领域具有广泛的应用前景。 关键词:仿生学;表面微结构;减阻;湍流结构;气动阻力 中图分类号:Q692文献标志码:A 收稿日期:20161206;修回日期:20170323;责任编辑:王海云基金项目:国家自然科学基金(51605397);牵引动力国家重点实验室自主研究课题资助项目(2016TPL_T02)第一作者简介:王政(1993—),男,河南南阳人,硕士研究生,主要从事列车空气动力学方面的研究。通信作者:李田博士。Email:litian2008@https://www.wendangku.net/doc/b417050612.html,王政,李田,李明,等.仿生表面微结构减阻优化及机理研究综述[J].河北科技大学学报,2017,38(4):325334. WANG Zheng,LI Tian,LI Ming,et al.Review of mechanical research and aerodynamic drag reduction of bionic surface microstructures[J].Journal of Hebei University of Science and Technology,2017,38(4):325334.Review of mechanical research and aerodynamic drag reduction of bionic surface microstructures WANG Zheng1, LI Tian1, LI Ming2, ZHANG Jiye1 (1.State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu,Sichuan 610036, China; 2.CRCC Tangshan Company Limited, Tangshan, Hebei 064000,China) Abstract:Some typical living creatures with a nonsmooth surface in nature are introduced. The law of the fact that an appropriate microstructure surface can transform the turbulent structure of nearwall region is briefly stated. The research status of the type of microstructure surface, the drag reduction of microstructure surface, the mechanism of drag reduction of microstructure surface and its application so far are commented. The extended types of grooves are proposed, and it is suggested that the current research on drag reduction should be extended for structures with complex

减阻措施

旋风除尘器的几种减阻措施 前言: 旋风除尘器是一种利用含尘气体旋转所产生的离心力将粉尘从气流中分离出来的干式气分离装置。因其具有结构简单、造价低、内部没有活动件、维修方便以及耐高温、高压等特点, 广泛应用于化工、采矿、冶金、机械、轻工、环保等领域。衡量旋风除尘器工作性能的重要指标是压力损失和除尘效率。目前, 已研制出许多低阻旋风除尘器。 1、旋风除尘器的结构及工作原理 当含尘气流由进气管进入旋风除尘器时, 气流将由直线运动变为圆周运动。旋转气流的绝大部分沿器壁自圆筒体呈螺旋形向下, 朝锥体流动。通常称此为外旋气流。含尘气体在旋转过程中产生离心力, 将重度大于气体的尘粒甩向器壁。尘粒一旦与器壁接触, 便失去 惯性力而靠入口速度的动量和向下的重力沿壁面下落, 进入排灰管。旋转下降的外旋气流在到达锥体时, 因圆锥形的收缩而向除尘器中心靠拢。根据旋转矩不变原理, 其切向速度不断提高。当气流到达锥体下端某一位置时, 即以同样的旋转方向从旋风除尘器中部, 由下反转而上, 继续作螺旋形流动, 即内旋气流。最后净化气经排气管排出旋风除尘器外。一部分未被捕集的尘粒也由此逃失。 3、影响旋风除尘器压力损失的因素 ( 1) 在旋风除尘器中, 由于内旋气流进入排气管时仍处于旋转状态, 因而具有较高的能量。弗斯特在一次实验中发现, 离开除尘器出口至少相当于连接管直径27倍的地方还存在着旋转。所以, 采取各种措施消旋减阻, 回收排气管中的能量是很有意义的。 ( 2) 通过旋风除尘器内部气流流动研究认为: 旋风除尘器气流速度分布在径向上, 呈不对称或出现偏心, 尤其在锥体下部靠近排尘口附近, 有明显的“偏心”; 排气管下口附近, 径向气流速度较大, 有“短路”现象。气流偏心或短路不利于粉尘分离。 ( 3) 旋风除尘器内气流运动非常复杂, 有旋流场及若干干扰涡流场, 这些涡流场在不同程度上影响除尘效率和阻力损失, 尤其是短路流构成上部气流回转, 使一部分流体在旋风筒中转一周后斜向吹到刚从入口进来的气体上, 导致入口进气偏向筒壁而产生所谓的压缩现象。压缩现象使壁面处流速增大, 壁面摩擦力增大, 同时使气流在旋风筒上部的回转圈数增多, 必然导致压力损失增大。因此, 可以通过抑制压缩现象来降低压力损失。 (4) 旋风除尘器旋涡流场的能量损失主要由外旋涡流能量损失和内旋涡流能量损失组成。其中外旋涡流对颗粒的捕集起决定性作用, 属于有效能量;而内旋涡流对捕集分离不起作用, 属于消耗性能量。内涡旋造成的能量损失, 除了内涡旋轴上气流速度梯度不同造成的内摩擦损失以及排气口连接管段内气流旋转造成的摩擦损失外, 主要是由于内涡旋造成的向外的径向速度与外涡旋造成的向内的径向速度相互干扰, 造成了内、外涡旋场的掺混、碰撞和摩擦损失。 4、旋风除尘器的减阻措施 4. 1 排气管减阻装置现有的排气管减阻装置可分为2 类: ( 1) 改变排气管形状回收能量。如采用锥形排气管, 但该方法效果不显著。 ( 2) 不改变排气管形状, 而在排气管内部或后部附加减阻装置回收能量。此类有以下几种方法: ①在排气管内装整流叶片, 其中以D-3 型效果最好,可使阻力减少22.8% , 而除尘效率仅降低0.5%~0.8% ; ②在排气管出口装设渐开线蜗壳, 此法可使阻力降低5%~10%, 且对除尘效率影响较小; ③在排气管出口加设圆锥形扩散器( 当净化气体直接排入大气时) , 若取合适的扩散角, 可获得10%~33%的压力回收; ④在排气管弯头后水 平安装双锥圆筒减阻器, 若双锥圆筒采用优化尺寸, 可使阻力减少7%~25%, 而除尘效率仅下降0.3%。

顶管施工质量的技术保证措施

穿墙止水 为避免地下水和泥土大量涌进工作井,在穿墙管内事先填埋经夯实的黄粘土,打开穿墙管闷扳,应立即将工具管顶进。此时穿墙管内的黄粘土受挤压,堵住穿墙管与工具管的环缝,起临时止水作用。当工具管尾部接近穿墙管而泥浆环尚未进洞时,停止顶进,绕盘根,表轧兰,再借助管道顶进的顶力,带动轧兰将盘根压入穿墙管环缝。盘根压得不宜过紧,以不漏浆为宜留下一定的压缩量,以便盘根磨损后再次压紧止水。 顶进阶段的测量和纠偏 (1)测量与放线:根据建设单位提供的控制点施测污水管线的中心线和高程桩。根据中线控制桩用全站仪将顶管中线桩分别测设在顶管工作坑的前后,使前后两桩互相通视,并与管线在同一条线上。顶管工作坑内的水准点由坑上一次引测,经过校核,误差不得大于±5mm。每座顶管坑内设2个水准点。 ⑵顶管测量与纠偏: 在顶第一节管时,以及在校正偏差过程中,测量间距不应超过30cm,以保证管道入土的位置正确;管道进入土层后的正常顶进,测量间隔不宜超过300cm。 中心测量:拟采用垂球拉线的方法进行测量,要求两垂球的间距尽可能的拉大,用水平尺测量头一节管前端的中心偏差,并且每顶进12m用全站仪检测一次。

高程测量:用水准仪及特制高程尺,根据工作坑内设置的水准点,测头一节管前端与后端的管内底高程,以掌握头一节管的走向,测量后应与工作坑内另一个水准点闭合。 每工作班要求做好顶管记录和交接班记录,全段顶完后,应在每个管节接口处测量其中心位置与高程,有错口时应测出其错口的高差。 顶管误差校正逐步进行。形成误差后不可立即将已顶好的管子校正到位,应缓慢进行,使管子逐渐复位,切忌猛纠硬调,以防产生相反的结果。纠偏过程中应加强测量密度,每10~20cm测量一次,根据实际情况采取有针对性的纠偏方式。 常用的纠偏方法有以下三种: ①超挖纠偏法:偏差为1~2cm时,可采取此法。即在管子偏向的反侧适当超挖,而在偏向侧不超挖甚至留坎,形成阻力,使管子在顶进中向阻力小的超挖侧偏向,逐步回到设计位置。 ②顶木纠偏:偏差大于2cm时,在超挖纠偏不起作用时采用。用圆木或方木的一端顶在管子偏向的另一侧内壁上,另一端斜撑在钢板或木板的管前土壤上,支顶牢固后,在顶进过程中配合超挖纠偏法,边顶边支。利用顶进时的斜支撑分力产生的阻力,使顶管向阻力小的一侧校正。 ③千斤顶纠偏法:方法基本同顶木纠偏法,只是在顶木上用小千斤顶强行将管慢慢移位纠正。

仿生功能材料

《功能材料概论》期末小论文 浅谈仿生功能材料 摘要:随着人民生活质量的进一步改善和提高 ,人们的生活对各种科学技术的要求也不断提高,而许多科技产品的发展都需要新型材料的支持,而新型功能材料正好能为科技提供发展基础。什么是功能材料?功能材料具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,有特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。功能材料市场将很快转化为充满勃勃生机的现实市场,从而创造出巨大的社会经济效益,成为国民经济的一个支柱产业。下面我想谈谈功能材料的一个分支-----仿生功能材料 一、什么是仿生功能材料? 仿生功能材料指模仿生物的各种特点或特性而开发的材料。自然界中存在的天然生物材料有着人工材料无可比拟的优越性能。我们通过研究他们的特点特性,制造我们能使用的材料,例如研究萤火虫发明人工冷光、研究电鱼发明伏特电池;研究苍耳属植物发明尼龙搭扣、研究鲨鱼发明特质泳衣…… 二、仿生功能材料的基本原理 现实生活中我们接触过许多动物与植物,例如屹立几百年而不倒的大树;几乎不发热量的冷血昆虫,而地球上所有生物都是由一些简单且廉价的无机和有机材料通过组装而形成,他们仅仅利用极少的几种元素,主要是碳、氢、氧、氮等组合而成,便能发挥出多种多样的功能,这实在令人叹服!在高分子化学世界里,我们已经制造出了聚乙烯、聚氯乙烯、聚碳酸脂、聚酰胺等人工材料,具有多种多样的功能。但是,人类所创造的材料与自然界生物体的构成材料还有很大的不同,迄今为止,再高明的材料科学家也做不出具有高强度和高韧性的动物牙釉质;海洋中长出的色彩斑斓、坚固又不被海水腐蚀的贝壳。如果我们眼光投向生物体的材料构造与形成过程,在充分的理解生物现象之后,用生物材料的观点来思考人工材料,从生物功能的角度来设计与制作适合人类生活所需的材料。 三、仿生功能材料的运用举例及原理 1、自清洁玻璃

!鲨鱼盾鳞肋条结构的减阻仿生研究进展

鲨鱼盾鳞肋条结构的减阻仿生研究进展3 刘 博1,2,姜 鹏1,李旭朝3,桂泰江3,田 黎2,秦 松1 (1 中国科学院海洋研究所,青岛266071;2 青岛科技大学化工学院,青岛266042;3 海洋化工研究院,青岛266071)  3973前期研究专项(2005CCA00800)  刘博:男,1983年生,硕士研究生 E 2mail :liu21cnbo @https://www.wendangku.net/doc/b417050612.html, 秦松:通讯作者,男,1968年生,研究员,博士 E 2mail :sqin @https://www.wendangku.net/doc/b417050612.html, 摘要 鲨鱼体表覆有一层细小的盾鳞(Placoid scale ),盾鳞上的脊状突起称为肋条(Riblet ),肋条之间构成具圆 弧底的沟槽。这种沟槽形态的鲨鱼盾鳞肋条结构(Riblet surfaces )具有良好的减阻作用。从盾鳞的结构、形态和功能出发,详细介绍了鲨鱼盾鳞肋条结构减阻相关的流体动力学机理及其仿生材料模型的设计与测试方法,概括了目前肋条结构仿生材料的减阻应用情况,并展望了其未来的发展方向。 关键词 仿生材料 鲨鱼皮 盾鳞 肋条结构 沟槽 减阻 Drag 2R eduction Bionic R esearch on Riblet Surfaces of Shark Skin L IU Bo 1,2,J IAN G Peng 1,L I Xuzhao 3,GU I Taijiang 3,TIAN Li 2,Q IN Song 1 (1 Institute of Oceanology ,Chinese Academy of Sciences ,Qingdao 266071;2 College of Chemical Engineering ,Qingdao University of Science and Technology ,Qingdao 266042;3 Marine Research Institute of Chemical Industry ,Qingdao 266071) Abstract Fast 2swimming sharks have small placoid scales on their skin ,of which the riblet surfaces (grooved surfaces )can improve swimming performance of these relatively giant fishes.Shark skin 2imitated products have already met needs in several areas.Investigation into the drag 2reduction mechanism of riblet surfaces makes placoid scale a per 2fect object to biomaterial research.In this review placoid scale ′s structure ,shapes and the drag 2reduction f unction of its riblet surfaces are introduced.The development of related hydrokinetic mechanism ,model design ,model test and bionic applications are presented in detail.The f uture development in bionic application of riblet surfaces is also discussed. K ey w ords bionic material ,shark skin ,placoid scale ,riblet surface ,groove ,drag reduction 0 前言 1936年英国生物学家James Gray 计算发现,当海豚以平均20节泳速游动时,其理论作功能耗是实际摄食能量的7倍,这就是著名的格雷悖论(Gray ′s paradox )[1]。问题的提出引发了 对海洋大型快速游泳动物减阻仿生学的研究。其后,由于鲨鱼 盾鳞肋条结构(也称为沟槽结构)为刚性结构并具规律排列特性,便于模仿,逐渐成为减阻仿生学中的主要研究对象。 人类的技术系统在解决运输工具速度方面过于依靠能量的使用,海洋中的快速鲨鱼(Fast 2swimming shark )却在漫长的进化中获得了优异的减阻能力。深入研究表明,快速鲨鱼体表覆盖着一层独特的盾鳞,通过优化鲨鱼体表边界层的流体结构,能有效减小水阻,从而降低能量依赖度,获得极高的速度。Walsh 等的流体动力学试验表明:在高速流体流动状况下,盾鳞肋条结构表面的减阻效果高达8%[2,3]。 近年来,肋条结构的减阻仿生学研究获得了更多关注与发展,在航空[4]、泳衣及管道[5]等应用领域已逐步迈向应用。本文从鲨鱼盾鳞的组织结构、形态和功能出发,对鲨鱼盾鳞肋条结构减阻相关的流体动力学机理、仿生材料模型的设计和测试,以及减阻应用进行了系统的介绍,并对其未来的研究方向进行了展望。 1 盾鳞的组织结构、形态和功能 1.1 盾鳞的组织结构 盾鳞是包括鲨鱼在内的一些软骨鱼类所特有的鳞片,也是 现生鱼类中最原始的一种鱼鳞(图1(a ))。盾鳞与牙齿在进化上同源,具相似的组织结构[2,6],其最外层为珐琅质,中间层是象牙质,中央是髓腔(图1(b ))。盾鳞的这种刚性组织结构有利于对其进行结构仿生研究。 图1 盾鳞的一般形态与组织结构 Fig.1 G eneral shape and structure of the placoid scale 1.2 盾鳞形态与功能的多样性 鲨鱼盾鳞的径向长度通常在1mm 以内,其形态因鲨鱼种 ?41?材料导报 2008年7月第22卷第7期

圆柱绕流全向裹覆减阻减振措施

第11卷第4期中国水运V ol.11 N o.4 2011年4月Chi na W at er Trans port A pri l 2011 收稿日期:3作者简介:韩韶英(5),女,青岛市人,中国海洋大学工程学院,硕士生。 圆柱绕流全向裹覆减阻减振措施 韩韶英 (中国海洋大学工程学院,山东青岛266100) 摘 要:圆柱绕流全向裹覆减阻减振措施主要包括开孔管套、丝网、轴向棒条和轴向板条,由此演变出的相应装置 在工程实践中有所应用,但目前尚未完全了解其作用机理。本文总结评述各种全向裹覆减阻减振措施和研究成果,可为相关研究工作和工程实践提供参考。 关键词:全向裹覆;减阻;减振;开孔管套;丝网;轴向棒条;轴向板条中图分类号:TU 431文献标识码:A 文章编号:1006-7973(2011)04-0146-05 一、引言 研究圆柱绕流的物理特性,寻求有效的涡激振动控制方法,减小结构所受的振动和阻力具有重要的意义。20世纪60年代,一些学者提出了“卷吸层”(E nt rain men t Layer )和“汇流点”(Con flu en ce Poin t )的概念[1,2],用以解释涡脱落机理和相关的现象,提出了一些影响卷吸层的裹覆类减阻减振方法,本文就其中的全向性方法(开孔管套、丝网、轴向棒条、轴向板条)的研究成果进行回顾和评述,以便为今后的研究工作和工程实践提供参考。 二、减阻减振被动控制措施1.旋涡形成脱落机理Gerra rd [3] 阐述了旋涡形成脱落机理。他认为,上面的 旋涡在它所在一侧剪切层的涡量供应下,涡量强度不断增长,拖曳对面的剪切层穿过尾迹,这些被拖曳的剪切层携带着具有反方向涡量的流体,切断了上面旋涡的涡量供应,最终导致了旋涡的脱落。接下来,下面的旋涡成长充分之后,将会拖曳上面的剪切层携带着具有反方向涡量的流体穿过尾迹,从而造成下面旋涡脱落到下游。这个过程不断重复造成旋涡交替脱落,在圆柱下游形成了涡街。涡的形成和脱落有两个重要因素:(1)剪切层必须卷起,形成具有充分强度的旋涡;(2)剪切层之间的相互作用。因此,破坏这两个因素中的任意一个因素,都有可能达到抑制涡激振动的目的。另外,除剪切层提供的有旋流体之外,其中的卷吸层对于无旋流体的挟带输送效应对于旋涡的成长也是必需的[4]。而汇流点(图1标示圆柱体两侧的卷吸层相遇和相互作用的区域)从尾流轴线的一侧移动到另一侧与涡脱落有关[4] 。上述原理如图1所示。 2.减阻减振被动控制方法 为有效降低绕流阻力及振动所造成的破坏,避免涡激振动的产生,各国学者进行了大量研究[5,6]。人们提出很多减阻减振及涡激振动抑制方法,主要分为主动控制和被动控制两种,主动控制方法目前尚处于理论研究阶段[3]。被动控制直接改变结构表面形状或者附加额外的装置以改变绕流场,从而控制旋涡的形成和发展过程,抑制涡脱落。与主动控制相比,被动控制装置设计简单、易于制作、安装,维护成本 较低,因此得到了广泛应用。 a 、 b 表示流体的挟带输送, c 为分离剪切层卷起形成的逆流。 图1原理示意图 图2全向裹覆减租减振方法示意图 Zd ravk ovich [2]将被动控制方法分为三类:(1)表面突起,影响分离线或分离剪切层,如螺纹、线条、翼片、螺栓和半球面等;(2)裹覆,影响卷吸层,如穿孔、丝网、控制杆和轴向板条等;(3)近尾流稳定器,阻止卷吸层的相互作用,如飘带、整流罩、分隔板、导向翼、底排和狭缝等。前两类方法中大部分具有全向性,如螺纹、线条和裹覆等,它们对于各种来流方向都有效;第一类中的部分和所有第三类方法是单向性的,仅对单一来流方向有效,如翼片、部分裹覆和近尾流稳定器等。为了解决方向敏感性问题,人们将某些单向性装置安装在可自由转动的推力套环上,使其能够按 2011-0-12 198-

仿生材料学

仿生材料学 自然界中的动植物经过45亿年物竞天择的优化,其结构与功能已达到近乎完美的程度。由于仿生材料的优良特性,在世界各地各个领域得到了广泛的应用。所以,如何以材料的观点研究生物材料的结构和功能特点,并且用以设计和制造先进的复合材料是当前国际上材料研究的一大热点。 仿生材料是指模仿生物的各个特点或特性而研制开发的材料。通常把仿照生命系统的运行模式和生物材料的结构规律而设计制造的人工材料称为仿生材料。而仿生材料的设计不仅要模拟生物对象的结构,更要模拟其功能。将材料科学、生命科学、仿生学相结合,对于推动材料科学的发展有重大意义。 如今仿生材料的应用非常广泛。在医学、能源、建筑、军事等领域都有应用。可以说,仿生学已经融入到我们的生活中了。就拿我们材料成型专业来说,对于汽车外壳的设计就要用到仿生学,通过模仿鸟的流线体型可以达到减小阻力的目的,这样设计出来的车子能够跑得更快,耗能更少。受自然界荷叶效应的启发,通过在漆膜表面喷砂,植入纳米二氧化硅低表面能氟修饰获得了表面均匀程度良好的超疏水表面,这种表面很好的起到了荷叶“出淤泥而不染”的特性,有着很好的防水性能和清洁性能。现在的高强度材料就是运用了仿生学的原理,模仿蜂房的形状,做出的材料结构不仅强度高,塑性也非常好,有些仿生材料的强度甚至比钢铁还强几百倍。蝴蝶身体表面生长着一层细小的鳞片,这些鳞片有调节体温的作用。每当气温上升、阳光直射时,鳞片自动张开,以减少阳光的辐射角度,从而减少对阳光热能的吸收;当外界气温下降时,鳞片自动闭合,紧贴体表,让阳光直射鳞片,从而把体温控制在正常范围之内。科学家经过研究,为人造地球卫星设计了一种犹如蝴蝶鳞片般的控温系统。这些都是材料仿生的应用,可以说材料仿生学小到普通人的生活,大到宇宙开发探索都起着重要的推动作用。 大自然向人类展示着精妙绝伦的生命形态和绚丽多姿的悦人色彩,同时,大自然还无声地阐释了自然界的生存哲学——和谐与共生。这种和谐的设计哲学呼吁人类社会与大自然之间的高度和谐统一,共生的设计哲学则呼吁着人与机器、生态自然与人造自然之间合理的建构。因此,要学会师法自然的仿生性设计思维,创造人、自然、机器和谐共生的对话平台。仿生设计的应用有着巨大的潜力和发展前景,随着科学的高速发展和人们对自然界认识的不断提高,将会有更多的仿生发明应用科技领域。 重视并创新仿生学,是提升科学技术原始创新能力的一个重要方向。仿生学将为我国科学技术创新提供新思路、新原理和新理论。为适应我国科学和技术源头创新的需要,进一步推动我国经济和社会实现跨越式发展,我们材料学者应以积极主动的姿态学习世界前沿的科学知识,开发出更有前景、更有科技含量的仿生材料。

鲨鱼装与机器鱼──仿生减阻与仿生推进

鲨鱼装与机器鱼──浅谈仿生减阻与仿生推进 92/05/12作者: 陈政宏成功大学造船及船舶机械工程学系 德瑞普(Draper)公司研发的机器鱼。 仿生流体工程学? 传统的生物学主流不论是研究生物的组织、结构、形态、类别及生态,或是二十世纪中叶以后的分子生物学,怎样也轮不到生物力学,特别是其中看似没有明显用途的流体力学,除了人工心脏与血管相关的问题外,大概没人会注意这方面的研究。但是这些年来,一些生物物理学家与流体力学工程师们,已经默默地将生物物理学与流体工程结合在一起,为人类科技的进展提供一条新的路线。在内流场方面,人工心脏及人体血液循环系统的研究成为追求长寿者的希望所在;在外流场方面,各式交通工具必备的推进系统也有诸多模仿生物的发展,以寻求更有效率、节省能源的推进方式。 在实验室里,工程师们有时会将「鱼类尾鳍重新吸收流场中的动能以增加推进效率」这一类生物运动的原理应用到工程机械上,我们称这种模仿生物的工程应用为「仿生工程学」。仿生工程在机械、化工等各方面都有发展,在此我们以流体力学方面的例子说明科学家与工程师是如何发展仿生工程的。??对流体力学家或工程师而言,诸如船与飞机等交通工具的阻力与推进是密不可分的问题,运动性能与操控也是如此,这两者都是他们最关切的问题。因此,当人类想要在流体中有更好的交通工具或机械时,不免会见贤思齐来模仿生物一番,看看动物有何妙招可以减少阻力、提高推进效率、或增加运动操控性能。? 虽然「仿生」一词是近年来的产物,其实这种想法早就存于我们远祖的脑中。游泳正是最好的例子:蝶式的下半身摆动是学鱼类的摆尾;近年来仰式很流行的出发及转身时的潜泳也是学鱼类的摆尾,如果练习得当,此方式既有效率又快速,所以已经被国际泳协明文规范限制以此方式游行的距离。否则,一来大家要比谁憋气较久,二来仰式可能要变「潜式」了。过去就有选手曾经在国际大赛中,出发后以此摆尾潜泳方式游了近40公尺才冒出水面换气的例子。一般而言,提升或改良某种事情不外乎开源与节流两种方法,最好能双管齐下,提高推进效率也是如此,以下我们分减阻与推进两方面来看。??仿生减阻 流场控制是减低阻力的方法之一,借着改变物体表面附近的流场来达到减低摩擦阻力的目的。生物学家观察许多鱼类及鲸豚类的皮肤后发现这些皮肤并不单纯,经过仔细的研究,想出了各种模仿鱼类或鲸豚类皮肤的方法。??表面构造减阻法:在适当的位置上挖一些微小的壕沟,这些壕沟会改变贴近物体表面的流场紊性边界层中原有的结构与速度分布,因而减少摩擦阻力。在鲨鱼表皮上发现这些微壕沟有特殊的V形结构,且以特别的方式排列,这些壕沟的形状与尺寸大小是否有不同的影响,是近年研究的重点。游泳选手的新泳装从头包到脚,称为鲨鱼装,可以减少阻力,就是这原理的应用。另外,这两年才在莲叶上发现的奈米级微小突起结构,改变了水滴的附着能力,它就是导致莲「出淤泥而不染」的原因;这种微小突起结构,也是未来应用奈米科技于交通工具减阻上热门的研究课题之一。

仿生结构及其功能材料研究发展

仿生结构及其功能材料研究进展 摘要本文结合作者课题组的相关工作, 就多种仿生材料的研究现状进行简要的综述, 并概要展望了其发展趋势. 关键词仿生合成结构材料功能材料智能材料浸润性离子通道 1.光子晶体材料 光子晶体,这是一类特殊的晶体,其原理很像半导体,有一个光子能隙,在此能隙里电磁波无法传播。蛋白石是其中的典型,它的组成仅仅是宏观透明的二氧化硅,其立方密堆积结构的周期性使其具有了光子能带结构,随着能隙位置的变化,反射光也随之变化,最终显示出绚丽的色彩.模仿蛋白石的微观结构,可以合成人工蛋白石结构的光子晶体. 矿物或生物结构色中光子晶体的分子结构、微/纳米结构、周期性结构及其功能的深入研究将为开发新一代光学材料、存储材料及显示材料提供重要的指导作用. 2.仿生空心结构材料 自然界中的许多生物采用了多通道的超细管状结构, 例如: 许多植物的茎都是中空的多通道微米管, 这使其在保证足够强度的前提下可以有效节约原料及输运水分和养料; 为减轻重量以及保温, 鸟类的羽毛也具有多通道管状结构; 许多极地动物的皮毛具有多通道或多空腔的微/纳米管状结构, 使其具有卓越的隔热性能. 3.仿生离子通道材料 生物膜对无机离子的跨膜运输有被动运输(顺离子浓度梯度)和主动运输(逆离子浓度梯度)两种方式. 被动运输的通路称为离子通道, 主动运输的离子载体称为离子泵. 离子通道实际上是控制离子进出细胞的蛋白质, 广泛存在于各种细胞膜上, 具有选择透过性. 生物纳米通道在生命的分子细胞过程中起着至关重要的作用, 如生物能量转换, 神经细胞膜电位的调控, 细胞间的通信和信号传导等[26]. 纳米通道在几何尺寸上与生物分子相近, 利用纳米通道作为生物传感器或传感器载体, 在分子水平上对组成和调控生命体系结构和运行的离子、生物分子和小分子进行检测和分离, 甚至在人工合成的纳米通道体系内模拟某些生物体系的结构和功能, 已成为化学、生命科学、材料学及物理学等领域的研究热点. 4.仿生超强韧纤维材料 天然蜘蛛丝由于具有轻质、高强度、高韧性等优异的力学性能和生物相容性等特性, 因此在国防、军事、建筑、医学等领域具有广阔的应用前景. 随着蜘蛛丝微观结构与性能关系的进一步揭示, 利用不同的合成技术, 国内外许多课题组已成功制备了多种仿蜘蛛丝超强韧纤维材料. 纳米碳管作为一维纳米材料, 重量轻, 具有良好的力学、电学和化学性能, 这为仿生合成具有类似蜘蛛丝性能的功能材料提供了可能并已经得到了验证. 研究发现, 自然界某些生物体中(如昆虫角质层、下颌骨、螫针、钳螯、产卵器等)含有极为少量的金属元素(如Zn、Mn、Ca、Cu等), 以增强这些部位的刚度、硬度等力学性能. 受此启发, 采用改进的原子层沉积处理技术,提高天然蜘蛛牵引丝的抗断裂或变形能力, 增强蜘蛛丝的韧性. 该研究对制造超强韧纤维材料及高科技医疗材料, 包括人工骨骼、人工肌腱、外科手术线等具有重要的指导意义. 5.仿生特殊浸润性表面 自然材料的多尺度微/纳米多级结构赋予其表面特殊浸润性能, 如植物叶表面的自清洁性、滚动各向异性; 昆虫翅膀的自清洁性、水黾腿的超疏水性等. 通过对生物体表面的结构仿生可以实现结构与性能的统一.

仿生材料

仿 生 材 料 专业无机非金属_______班级 09-01____________学号310906010129_____姓名姚自强___________

仿生材料 一.仿生材料的起源. 在高分子化学世界里,我们已经制造出了聚乙烯、聚氯乙烯、聚碳酸脂、聚酰胺等人工材料,具有多种多样的功能。但是,人类所创造的材料与自然界生物体的构成材料还有很大的不同。举几个简单的例子:海鳗的发电器瞬间可以发出800 伏的电压,足以电死一头大象,但是它的发电器不是金属等导电器材,而是蛋白质的分子集合体;深海里有一种软体动物,其身体无疑也是由细胞材料所构成,但是却可承受很高的海水压力而自由地生存着。这些例子说明,许多生物体的某些构成材料是我们完全不知道的,这些材料大多数是在常温常压的条件下形成,并能发挥出特有的性能。当人们对这些生物现象有了充分的理解之后,把它们应用于材料科学技术方面,就形成了仿生材料学。因此,仿生材料学的研究内容就是以阐明生物体的材料构造与形成过程为目标,用生物材料的观点来思考人工材料,从生物功能的角度来考虑材料的设计与制作。一.定义和研究范围 1.1定义 受生物启发或者模仿生物的各种特性而开发的材料称为仿生材料 1.2研究范围 材料仿生的研究范围广泛,包括微结构、生物组织形成

机制、结构和过程的相互关系,并最终利用所获得的结 果进行材料的设计与合成。 二.仿生材料的分类 2.1从仿生材料的使用的场合来看可分为医用材料、工程材料和功能材料等。从材料学的角度可以把材料仿生分为几大方面:成分和结构、过程和加工制备仿生、功能和性能仿生。 三. 仿生材料的成果. 3.1雌蛾求爱-防治害虫我国科学家破译了雌蛾的化学语言后,研制出“仿生诱芯”,即人工合成雌性飞蛾吸引雄性飞蛾的激素的气味. 然后将其加入一种硅橡皮塞中,置于诱捕器中,使其缓缓释放,引诱大量的雄蛾自投罗网,既杀虫,又可根据诱捕量预测害虫的发生期。迄今为止,我国科学家已研制成功60多种“仿生诱芯”,对我国主要农林害虫的测报和防治起了重要作用。 3.2鲨鱼皮肤-泳衣一件泳衣,在悉尼奥运会上改变了世界泳坛的格局。几乎大半金牌得主都穿上一种特殊的泳衣———连体鲨鱼装。这种鲨鱼装仿造了海中霸王鲨鱼的皮肤结构,泳衣上设计了一些粗糙的齿状凸起,能有效地引导水流,并收紧身体,避免皮肤和肌肉的颤动。 此后,仿生泳衣越仿越精。第二代鲨鱼装又增加了一些新的亮点,加入了一种叫做“弹性皮肤”的材料,可使人在水中受到的阻力减少4%。此外,还增加了两个附件,附在前臂上由钛硅树脂做成的缓冲器能使

顶管注浆减阻技术

顶管注浆减阻技术 近年来,顶管技术朝着大管径、长距离的施工方向发展。特别是在繁华大都市的市政建设项目中,长距离地下顶管技术以其独有的优势被广泛地应用。 然而由于我市土质多为亚粘土、沙性土,顶进中摩阻系数大而使顶进长度受到限制。所以开发新的减阻技术,是实现大管径、长距离顶进的关键。 1 长距离顶进的方法、减阻材料及工艺效果 目前实现顶管的长距离施工的技术保证措施,除了设置中继间外,更重要的是通过注浆工艺来减小管材与土壤的摩擦阻力。采用注浆工艺润滑、减阻后可以使顶距提高40%一70%。 减阻用的主要材料是膨润土和水。当膨润土与水混合后,由于水掺人膨润土中,膨润土在水中膨胀重量可以达到膨润土原重量的600%—700%。经搅拌储存呈凝状,在有外力作用下呈流动状态,这种材料注夹在管外壳与土壤之间,会大大降低管节推进的摩阻力。静止时泥浆有良好的稳定性。为使膨润浆液有良好的性能,在制浆过程中要适量加一些辅助原料:如纯碱、纤维素CMC、缓凝剂等。 膨润土又分为钙基膨润土和钠基膨润土,吸收钙离子多的为钙基,吸收钠离子多的为钠基膨润土,根据不同的土质选用不同的配方。通过施工我们总结发现:在沙性土中钠基膨润土减阻效果较明显,资料分析显示它比钙基膨润土多含一层极薄的硅酸盐,它与膨润土中的蒙脱石小

粒子结合中易形成空隙构造,从而使浆液膨润性增加。触变以后流动性好,静止下来有胶凝性与固化性。 高效钠基膨润土浆液配方是:膨润土24kg,水76kg,碱0.8kg。 在不同的土质和施工条件下,对减阻泥浆性能有不同的要求。在沙性土质中,土层易塌方,流沙与地下水压向整个管壁,普通浆液达不到减阻效果,如在淤流沙层内,土层无水板结,遇水成流沙,膨润土会被流沙层内的水稀释,减阻效果就差。在这种情况下,①、要提高浆液粘度;②、应掺入CMC经甲基纤维素,以提高浆液抗剪切能力及润溶性。配方中的纯碱可提高浆液稠度,增加钠离子改变土粒子水化性能,但若加倍过量投入会破坏浆液的性能。 将搅拌好的浆液放入储浆罐中,须经3—4h存储待膨润土颗粒充分吸水膨胀(吸水率2h,430%)方可使用。此时浆液性能几项指标约为:粘度80s,静切力21mg/cm2,pH值0.8—10,比重约为1.17。粘稠度适中,用木锨棒插入液中能立住。 应注意的是:各地生产的膨润土成分特性相差较大,使用前要取样做试验。 在被顶进的混凝土管材上预留3—4个注浆孔,用口径为1英寸(0.0 254m)的橡胶管与各注浆孔连接,接到主注浆管上,再用软管连接到注浆泵上,泵的一端连接到储浆罐上。 近些年由于顶管采用注浆减阻工艺使顶管工程的口径及顶距都有大幅度提高,最大管径和最大顶距分别达到2400mm和290m。 2 注浆工艺中的顶力、摩擦力确定

相关文档