文档库 最新最全的文档下载
当前位置:文档库 › ic厌氧处理新技术的应用进展

ic厌氧处理新技术的应用进展

ic厌氧处理新技术的应用进展
ic厌氧处理新技术的应用进展

IC 厌氧处理新技术的应用进展

摘 要:高浓度污泥和良好的传质效果使IC 反应器在厌氧处理技术方面比普通反应器(如UASB )更具有优势。IC 厌氧处理技术已被成功应用于工程实践中,由于反应器处理容量高、投资少、占地省、运行稳定,发展潜力很大。

关键字:内循环厌氧处理技术 IC 反应器 厌氧处理技术

1 引言

废水厌氧生物技术由于其巨大的处理能力和潜在的应用前景,一直是水处理技术研究的热点。从传统的厌氧接触工艺发展到现今广泛流行的UASB 工艺,废水厌氧处理技术已日趋成熟。随着生产发展与资源、

能耗、占地等因素间矛盾的进一步突出,现有的厌氧工艺又面临着严峻的挑战,尤其是如何处理生产发展带来的大量高浓度有机废水,使得研发技术经济更优化的厌氧工艺非常必要[1]

。内循环厌氧处理技术(以下简称IC 厌氧技术)就是在这一背景下产生的高效处理技术,它是20世纪80年代中期由荷兰PAQUES 公司研发成功,并推入国际废水处理工程市场,目前已成功应用于土豆加工、啤酒、食品和柠檬酸等废水处理中[2]。实践证明,该技术去除有机物的能力远远超过普通厌氧处理技术(如UASB ),而且IC 反应器容积小、投资少、占地省、运行稳定,是一种值得推广的高效厌氧处理技术。 2 现有厌氧处理技术的局限性

厌氧处理是废水生物处理技术的一种方法,要提高厌氧处理速率和效率,除了要提供给微生物一个良好的生长环境外,保持反应器内高的污泥浓度和良好的传质效果也是2个关键性举措。

以厌氧接触工艺为代表的第1代厌氧反应器,污泥停留时间(SRT )和水力停留时间(HRT )大体相同,反应器内污泥浓度较低,处理效果差[3]。为了达到较好的处理效果,废水在反应器内通常要停留几天到几十天之久。

以UASB 工艺为代表的第2代厌氧反应器,依靠颗粒污泥的形成和三相分离器的作用,使污泥在反应器中滞留,实现了SRT>HRT ,从而提高了反应器内污泥浓度,但是反应器的传质过程并不理想。要改善传质效果,最有效的方法就是提高表面水力负荷和表面产气负荷[4]。然而高负荷产生的剧烈搅动又会使反应器内污泥处于完全膨胀状态,使原本SRT>HRT 向SRT=HRT 方向转变,污泥过量流失,处理效果变差。

3 IC反应器工作原理及技术优点

3.1 IC反应器工作原理

IC反应器基本构造如图1所示,它相似由2层UASB反应器串联而成。按功能划分,反应器由下而上共分为5个区:混合区、第1厌氧区、第2厌氧区、沉淀区和气液分离区。

混合区:反应器底部进水、颗粒污泥和气液分离区回流的泥水混合物有效地在此区混合。

第1厌氧区:混合区形成的泥水混合物进入该区,在高浓度污泥作用下,大部分有机物转化为沼气。混合液上升流和沼气的剧烈扰动使该反应区内污泥呈膨胀和流化状态,加强了泥水表面接触,污泥由此而保持着高的活性。随着沼气产量的增多,一部分泥水混合物被沼气提升至顶部的气液分离区。

气液分离区:被提升的混合物中的沼气在此与泥水分离并导出处理系统,泥水混合物则沿着回流管返回到最下端的混合区,与反应器底部的污泥和进水充分混合,实现了混合液

的内部循环。

第2厌氧区:经第1厌氧区处理后的废水,除一部分被沼气提升外,其余的都通过三相分离器进入第2厌氧区。该区污泥浓度较低,且废水中大部分有机物已在第1厌氧区被降解,因此沼气产生量较少。沼气通过沼气管导入气液分离区,对第2厌氧区的扰动很小,这为污泥的停留提供了有利条件。

沉淀区:第2厌氧区的泥水混合物在沉淀区进行固液分离,上清液由出水管排走,沉淀的颗粒污泥返回第2厌氧区污泥床。

从IC反应器工作原理中可见,反应器通过2层三相分离器来实现SRT>HRT,获得高污泥浓度;通过大量沼气和内循环的剧烈扰动,使泥水充分接触,获得良好的传质效果。

3.2 IC工艺技术优点

IC反应器的构造及其工作原理决定了其在控制厌氧处理影响因素方面比其它反应器更具有优势。

(1)容积负荷高:IC反应器内污泥浓度高,微生物量大,且存在内循环,传质效果好,进水有机负荷可超过普通厌氧反应器的3倍以上。

(2)节省投资和占地面积:IC反应器容积负荷率高出普通UASB反应器3倍左右,其体积相当于普通反应器的1/4~1/3左右,大大降低了反应器的基建投资[5]。而且IC反应器高径比很大(一般为4~8),所以占地面积特别省,非常适合用地紧张的工矿企业。

(3)抗冲击负荷能力强:处理低浓度废水(COD=2000~3000mg/L )时,反应器内循环流量可达进水量的2~3倍;处理高浓度废水(COD=10000~15000mg/L)时,内循环流量可达进水量的10~20倍[5]。大量的循环水和进水充分混合,使原水中的有害物质得到充分稀释,大大降低了毒物对厌氧消化过程的影响。

(4)抗低温能力强:温度对厌氧消化的影响主要是对消化速率的影响。IC反应器由于含有大量的微生物,温度对厌氧消化的影响变得不再显著和严重。通常IC反应器厌氧消化可在常温条件(20~25 ℃)下进行,这样减少了消化保温的困难,节省了能量。

(5)具有缓冲pH的能力:内循环流量相当于第1厌氧区的出水回流,可利用COD转化的碱度,对pH起缓冲作用,使反应器内pH保持最佳状态,同时还可减少进水的投碱量。

(6)内部自动循环,不必外加动力:普通厌氧反应器的回流是通过外部加压实现的,而IC反应器以自身产生的沼气作为提升的动力来实现混合液内循环,不必设泵强制循环,节省了动力消耗。

(7)出水稳定性好:利用二级UASB串联分级厌氧处理,可以补偿厌氧过程中K s高产生的不利影响。Van Lier[6]在1994年证明,反应器分级会降低出水VFA浓度,延长生物停留时间,使反应进行稳定。

(8)启动周期短:IC反应器内污泥活性高,生物增殖快,为反应器快速启动提供有利条件。IC反应器启动周期一般为1~2个月,而普通UASB启动周期长达4~6个月[7]。

(9)沼气利用价值高:反应器产生的生物气纯度高,CH4为70%~80%,CO2为20%~30%,其它有机物为1%~5%,可作为燃料加以利用[8]。

4 IC处理技术应用现状及发展前景

IC处理技术从问世以来已成功应用于土豆加工、菊苣加工、啤酒、柠檬酸和造纸等废水处理中。1985年荷兰首次应用IC反应器处理土豆加工废水,容积负荷(以COD计)高达35~50kg/(m3·d),停留时间4~6 h[9];而处理同类废水的UASB反应器容积负荷仅有10~15 kg/(m3·d),停留时间长达十几到几十个小时[3]。

在啤酒废水处理工艺中,IC技术应用得较多,目前我国已有3家啤酒厂引进了此工艺。从运行结果看,IC工艺容积负荷(以COD计)可达15~30 kg/(m3·d),停留时间2~4.2 h,COD去除率ηCOD>75%[9];而UASB反应器容积负荷仅有4~7 kg/(m3·d),停留时间近10 h[3]。

对于处理高浓度和高盐度的有机废水,IC反应器也有成功的经验。位于荷兰Roosendaal的一家菊苣加工厂的废水,COD约7900mg/L,SO42-为250mg/L,Cl-为4200mg/L。

采用22m高、1100m3容积的IC反应器,容积负荷(以COD计)达31 kg/(m3·d),ηCOD>80%,平均停留时间仅6.1 h[9]。

我国无锡罗氏中亚柠檬有限公司的IC厌氧处理系统自1998年12月运行以来一直都很稳定,进水COD一般在8000mg/L以上,pH5.0左右,容积负荷(以COD计)可达30 kg/(m3·d),出水COD基本在2000mg/L以下,且每千克COD产沼气0.42m3[10]。1996年IC反应器首次应用于纸浆造纸行业,并迅速获得客户欢迎,至今全世界造纸行业已建造IC反应器23个[11]。

表1列出了IC反应器和UASB反应器处理典型废水的对照结果,从表中数据可以看出,IC反应器在很大程度上解决了UASB的不足,大大提高了反应器单位容积的处理容量。

表1 IC反应器与UASB反应器处理相同废水的对比结果[1]

随着生产的发展,经济高效、节能省地的厌氧反应器越来越受到水处理工作者的青睐。IC反应器的一系列技术优点及其工程成功实践,是现代厌氧反应器的一个突破,值得进一步研究开发。而且由于反应器容积小,生产、运输、安装和维修都十分方便,产业化前景也很乐观。

5 IC反应器存在的几个问题

COD容积负荷大幅度提高,使IC反应器具备很高的处理容量,同时也带来了不少新的问题:

(1)从构造上看,IC反应器内部结构比普通厌氧反应器复杂,设计施工要求高。反应器高径比大,一方面增加了进水泵的动力消耗,提高了运行费用;另一方面加快了水流上

升速度,使出水中细微颗粒物比UASB多,加重了后续处理的负担[12]。另外内循环中泥水混合液的上升还易产生堵塞现象,使内循环瘫痪,处理效果变差。

(2)发酵细菌通过胞外酶作用将不溶性有机物水解成可溶性有机物,再将可溶性的大分子有机物转化成脂肪酸和醇类等,该类细菌水解过程相当缓慢[13]。IC反应器较短的水力停留时间势必影响不溶性有机物的去除效果。

(3)在厌氧反应中,有机负荷、产气量和处理程度三者之间存在着密切的联系和平衡关系。一般较高的有机负荷可获得较大的产气量,但处理程度会降低[13]。因此,IC反应器的总体去除效率相比UASB反应器来讲要低些。

(4)缺乏在IC反应器水力条件下培养活性和沉降性能良好的颗粒污泥关键技术。目前国内引进的IC反应器均采用荷兰进口的颗粒污泥接种[2],增加了工程造价。

上述问题有待在对IC厌氧处理技术内部规律进行更深入探讨的基础上,结合工程实践加以克服,使这一新技术更加完善。

6 参考文献

1 张忠波. IC反应器技术的发展. 环境污染与防治,2000,22(3):39~41.

2 吴静、陆正禹、胡纪萃,等. 新型高效内循环(IC)厌氧反应器. 中国给水排水,2001,17(1):26~29.

3 贺廷龄. 废水的厌氧生物处理. 北京:中国轻工业出版社,1998:9~10.

4 娄金生. 水污染治理新工艺与设计. 北京:海洋出版社,1999,53~54.

5 胡纪萃. 试论内循环厌氧反应器. 中国沼气,1999,17(2):3~6.

6 马志毅.工业废水的厌氧生物技术.北京:中国建筑工业出版社,2001:23.

7 吴允、张勇、刘红阁. 啤酒生产废水处理新技术——内循环反应器. 环境保护,1997,9:18~19.

8 何晓娟. IC-CIRCOX工艺及其在啤酒废水处理的应用. 给水排水,1997,23(5).

9 Pereboom J H F. Methanogenic Granule debelopment in full scale internal circulation reactor. Water cience and Technology ,1994,30(8):9~21.

10 王江全.柠檬酸废水处理工艺——IC厌氧反应器和好氧生化技术.江苏环境科技,2000,13(2):21~23.

11 戚恺.IC反应器在造纸行业的应用.国际造纸,2000,20(3):58~59.

12 Pereboom J. H. F. Size dletribution model for methanogenic granules from full

scale UASB and IC reactors. Water Science and Technology.1994,30(12):211~221 .

13 张自杰. 环境工程手册-水污染防治卷. 北京:高等教育出版社,1996:659~661. 1.基本概念

IC反应器- Internal Circulation,即内循环厌氧反应器,由2层UASB反应器串联而成。其由上下两个反应室组成,下面第一个 UASB 反应器产生的沼气作为提升的内动力,使升流管与回流管的混合液产生密度差,实现下部混合液的内循环,使废水获得强化预处理。上面的第二个UASB 反应器对废水继续进行后处理(或称精处理),使出水达到预期的处理要求。

UASB的设计计算

UASB 的设计计算 6.1 UASB 反应器的有效容积(包括沉淀区和反应区) 设计容积负荷为)//(0.53d m kgCOD N v = 进出水COD 浓度)/(112000L mg C = ,)/(1680L mg C e =(去除率85%) V= 3028560 .585 .02.111500m N E QC v =??= 式中Q —设计处理流量d m /3 C 0—进出水CO D 浓度kgCOD/3 m E —去除率 N V —容积负荷,)//(0.53d m kgCOD N v = 6.2 UASB 反应器的形状和尺寸 工程设计反应器3座,横截面积为矩形。 (1) 反应器有效高为m h 0.6=则 横截面积:)(4760 .62856 2m h V S =有效= = 单池面积:)(7.1583 4762m n S S i === (2) 单池从布氺均匀性和经济性考虑,矩形长宽比在2:1以下较合适。 设池长m l 16=,则宽m l S b i 9.916 7 .158=== ,设计中取m b 10= 单池截面积:)(16010162'm lb S i =?== (3) 设计反应器总高m H 5.7=,其中超高0.5m 单池总容积:)(1120)5.05.7(160'3 ' m H S V i i =-?=?= 单池有效反应容积:)(96061603 'm h S V i i =?=?=有效 单个反应器实际尺寸:m m m H b l 5.71016??=?? 反应器总池面积:)(48031602 ' m n S S i =?=?= 反应器总容积:)(336031120'3 m n V V i =?=?=

施工课程设计计算书讲解

多层砖混结构办公楼施工组织课程设计

目录 任务与指导书 (3) 第一章总则 (12) 第二章工程概况 (13) 第三章施工方案制定 (17) 第四章施工进度计划的编制 (35) 第五章施工准备与资源配置计划 (40) 第六章施工平面图设计 (45) 第七章施工组织措施 (46) 第八章其他管理措施 (49)

多层砖混结构办公楼 施工组织设计任务书及指导书 一、目的 本课程设计为单位工程施工组织设计,是《建筑工程施工组织设计》课程的主要教学环节之一,它是对已学过的建筑施工知识进行综合性的演练运用过程。 通过本课程设计,初步掌握单位工程施工组织设计的内容,设计步骤和方法,巩固所学的理论知识;并运用所学知识,分析和解决施工组织和管理及实施过程中的各种问题。 二、设计条件(即:工程概况) 1.建筑物概况 本工程为某省××公司的办公楼(兼单身职工宿舍),位于××市郊××公路边,总建筑面积为6262m2,平面形式为L型,南北方向长61.77m,东西方向总长为39.44m。该建筑物主体为五层,高18.95m;局部六层,高22.45m,附楼(F~M轴)带地下室,在11轴线处有一道伸缩缝,在F轴线处有一道沉降缝,其总平面、底层平面、立面示意图见附图。 本工程承重结构除门庭部分为现浇钢筋混凝土框架外,皆采用砖混结构,基础埋深 1.9m,在c15素混凝土垫层上砌条形砖基础,基础中设有钢筋混凝土地圈梁;多孔砖墙承重,层层设现浇钢筋混凝土圈梁;内外墙交接处和外墙转角处设抗震构造柱;除厕所、盥洗室采用现浇楼板外,其余楼盖和屋面均采用预制预应力混凝土多孔板,大梁、楼梯及挑檐均为现浇钢筋混凝土构件。 室内地面除门厅、走廊、实验室、厕所、楼梯踏步为水磨石面层外,其它皆采用水泥砂浆地面。室内装修主要采用白灰砂浆外喷乳胶漆涂料;室外装饰以马赛克为主,腰线、窗套为贴面砖。散水为无筋混凝土一次抹光。 屋面保温层为炉渣混凝土。上做两毡三油防水层上铺绿豆砂。上人屋面部分铺设预制混凝土板。 设备安装及水,暖,电工程配合土建施工。 2.地质及环境条件、 根据勘测报告:天然地基承载力为150KN/m2,地下水位在地表下7~8m。本地土壤最大冻结深度为0.5米。 建筑场地南侧为已建成建筑物;北侧和西侧为本公司地界的围墙,东面为XX公路,距道牙3米内的人行道不得占用,沿街树木不得损伤。人行道一侧上方尚有高压输电线及电话线通过(见总平面图)。 3.施工工期 本工程定于三月二十日开工,要求在本年十二月三十日竣工。限定总工期九个月,日历工期为286天。 4.气象条件 施工期间主导风向偏东,雨季为九月份,冬季为十二月到第二年的二月份。 5.施工技术经济条件 施工任务由市建某公司承担,由该公司某项目经理部承包建设,可提供的施工工人有瓦工20人,木工16人以及其它辅助工种工人如钢筋工、机工、电工及普工等,根据施工需要可以调入。装修阶段可从其他工地调入抹灰工,最多调入70人。 施工中需要的水、电均从城市供水供电网中接引。 建筑材料及予制品件均可用汽车运入工地。多孔板由市建总公司予制厂制作(运距7公

厌氧塔计算手册

1. 厌氧塔的设计计算 1.1 反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为 5.0 /( 3 / ) N v kgCOD m d 进出水 COD 浓度 C 0 2000( mg / L) , E=0.70 QC 0 E 3000 20 0.70 8400m 3 3 V= 5.0 ,取为 8400 m N v 式中 Q ——设计处理流量 m 3 / d C 0——进出水 CO D 浓度 kgCOD/ 3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器 3 座,横截面积为圆形。 1) 反应器有效高为 h 17.0m 则 横截面积: S V 有效 8400 =495(m 2 ) h 17.0 单池面积: S i S 495 165(m 2 ) n 3 2) 单池从布水均匀性和经济性考虑,高、直径比在 1.2 : 1 以下较合适。 设直径 D 15 m ,则高 h D*1.2 15 * 1.2m 18 ,设计中取 h 18m 单池截面积: S i ' 3.14 * ( D )2 h 3.14 7.52 176.6( m 2 ) 2 设计反应器总高 H 18m ,其中超高 1.0 m 单池总容积: V i S i ' H ' 176.6 (18.0 1.0) 3000( m 3 ) 单个反应器实际尺寸: D H φ15m 18m 反应器总池面积: S S i ' n 176.6 3 529.8(m 2 ) 反应器总容积: V V 'i n 3000 3 9000(m 3 )

厌氧塔试水方案

厌氧塔试水方案 厌氧塔在施工结束后要进行充水检验是否有渗漏点及基础沉降观测,以保证投入运行时能够达到设计施工标准。厌氧系统设备按照下列标准执行,工艺和材料符合下列标准和规定的最新版本的要求: 1)《苏州科特环保设备有限公司企业标准》SP-037 2)《钢制焊接常压容器》JB4735-97 1、前期准备 1.1塔体制作安装完毕,塔体焊接的所有构件及附件应全部完工, 达到验收标准。塔内废铁、焊条以及废物清理干净,封门前请甲方、监理验收,形成验收文件。 1.2试水应有各个工种配合,具体要求铆焊、管道、电气、机装人 员协调处理。 2、试水步骤 2.1试水前测量塔体垂直度(取4监测点)及圆度(取4监测点) 并通过业主确认记录监测数据。 2.2 先向塔体内充水到1/4水位处,观察24小时后塔体垂直度及圆 度,无异常变化后充水到1/2处,同样观察。24小时,无异常变化后充水到3/4处,再观察24小时,无异常变化后将塔体充满水,再观察24小时。 2.3 充水过程中观察塔体是否存在渗漏、异常变形现象,如有异常 现象出现,应立即停止注水,检查并排除异常现象后恢复试水工

作。 3、基础沉降观测 在筒体下部取4个观测点,塔体充水到1/2高度时,进行一次观测,并与充水前的数据进行比对,计算出实际的不均匀沉降量,当未超过允许的不均匀沉降量时,在充水至3/4高度时,进行一次测量,若仍未超过允许的不均匀沉降量时,可继续充水至最高液位,48小时后,进行观测,当沉降无明显变化时,即为合格。当沉降有明显变化时,则保持最高液位,每天观测,直至沉降稳定为止。 4、技术要求 4.1 塔注水到最高液位并保持24小时后渗漏、无异常变形为合格。 4.2 如有渗漏时应将塔内水放至适当高度,将渗漏处返修补焊,再 重新进行盛水试验,直到不渗漏为止。 4.3 如在充水过程中发现基础发生不允许的沉降,应停止充水,待 处理后方可继续进行试验。 4.4 充水时应有人在现场值班,发异常情况应停止充水,并报告技 术负责人。 5、安全保证措施 5.1 充水时的操作人员在高空进行开阀门时,应系好安全带、防滑 保证措施。

厌氧塔设计计算书

1.厌氧塔的设计计算 1.1反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为)//(0.53 d m kgCOD N v = 进出水COD 浓度)/(20000L mg C = ,E=0.70 V= 3 084000 .570 .0203000m N E QC v =??= ,取为84003 m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1) 反应器有效高为m h 0.17=则 横截面积:)(4950 .1784002 m h V S =有效 == 单池面积:)(1653 4952 m n S S i == = 2) 单池从布水均匀性和经济性考虑,高、直径比在1.2:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765 .714.3)2 ( *14.32 2 2' m h D S i =?== 设计反应器总高m H 18=,其中超高1.0m 单池总容积:)(3000)0.10.18(6.176'3 ' m H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ 反应器总池面积:)(8.52936.1762 ' m n S S i =?=?= 反应器总容积:)(900033000'3 m n V V i =?=?=

(3) 水力停留时间(HRT )及水力负荷(r V )v N h Q V t HRT 72243000 9000=?== )]./([24.03 6.1762430002 3h m m S Q V r =??= = 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.02 3 h m m V r -=故符合要求。 1.7.2 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.02 3 ' h m m q <沉淀室底部进水口表面负荷一般小于2.0)./(2 3 h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16' m b l == 每个单元宽度:)(57.27 187 ' m l b == = 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58.1142 323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= )(98.055 tan 4.1tan . 31m h b === α )(04.198.020.32 12m b b b =?-=-= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之 一),m ; 3h —下三角形集气罩的垂直高度,m ;

UASB的设计计算书

两相厌氧工艺的研究进展 摘要:传统的厌氧消化工艺中,产酸菌和产甲烷菌在单相反应器内完成厌氧消化的全过程,由于二菌种的特性有较大的差异,对环境条件的要求不同,无法使二者都处于最佳的生理状态,影响了反应器的效率。1971年Ghosh和Poland提出了两相厌氧生物处理工艺[1],它的本质特征是实现了生物相的分离,即通过调控产酸相和产甲烷相反应器的运行控制参数,使产酸相和产甲烷相成为两个独立的处理单元,各自形成产酸发酵微生物和产甲烷发酵微生物的最佳生态条件,实现完整的厌氧发酵过程,从而大幅度提高废水处理能力和反应器的运行稳定性。 (1) 两相厌氧消化工艺将产酸菌和产甲烷菌分别置于两个反应器内,并为它们提供了最佳的生长和代谢条件,使它们能够发挥各自最大的活性,较单相厌氧消化工艺的处理能力和效率大大提高。Yeoh对两相厌氧消化工艺和单相厌氧消化工艺进行了对比实验研究。结果表明:两相厌氧消化系统的产甲烷率为0.168m3CH4/(KgCOD Cr?d)明显高于单相厌氧消化系统的产甲烷率0.055m3CH4/(KgCOD cr?d)。 (2) 反应器的分工明确,产酸反应器对污水进行预处理,不仅为产甲烷反应器提供 了更适宜的基质,还能够解除或降低水中的有毒物质如硫酸根、重金属离子的毒性,改变难降解有机物的结构,减少对产甲烷菌的毒害作用和影响,增强了系统运行的稳定性。 (3) 产酸相的有机负荷率高,缓冲能力较强,因而冲击负荷造成的酸积累不会对产 酸相有明显的影响,也不会对后续的产甲烷相造成危害,提高了系统的抗冲击能 力。 (4) 产酸菌的世代时间远远短于产甲烷菌,产酸菌的产酸速度高于产甲烷菌降解酸的速率[4,5],产酸反应器的体积总是小于产甲烷反应器的体积。 (5) 两相厌氧工艺适于处理高浓度有机污水、悬浮物浓度很高的污水、含有毒物质及难降解物质的工业废水和污泥。 2两相厌氧工艺的研究现状 2. 1反应器类型 从国内外的两相厌氧系统研究所采用的工艺形式看,主要有两种:第一种是两相均采用同一类型的反应器,如UASB反应器,UBF反应器,ASBR反应器,其中UASB 反应器较常用。第二种是称作Anodek的工艺,其特点是产酸相为接触式反应器 (即完全式反应器后设沉淀池,同时进行污泥回流),产甲烷相则采用其它类型的反应器⑹。 王子波、封克、张键采用两相UASB反应器处理含高浓度硫酸盐黑液,酸化相为8.87L的普通升流式反应器,甲烷相为28.75L的UASB反应器,系统温度 (35 ±)C。当酸化相进水COD 为(6.771 ?11.057)g/ L ,SO42-为(5.648?8.669) g/

厌氧塔设计计算书

1.厌氧塔的设计计算 反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为)//(0.53 d m kgCOD N v = 进出水COD 浓度)/(20000L mg C = ,E= V= 3084000 .570 .0203000m N E QC v =??= ,取为84003m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1) 反应器有效高为m h 0.17=则 横截面积:)(4950 .178400 2m h V S =有效= = 单池面积:)(1653 4952m n S S i === 2) 单池从布水均匀性和经济性考虑,高、直径比在:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765.714.3)2 ( *14.3222 ' m h D S i =?== 设计反应器总高m H 18=,其中超高m 单池总容积:)(3000)0.10.18(6.176'3 'm H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ 反应器总池面积:)(8.52936.1762'm n S S i =?=?= 反应器总容积:)(900033000'3 m n V V i =?=?=

(3) 水力停留时间(HRT )及水力负荷(r V )v N h Q V t HRT 72243000 9000=?== )]./([24.03 6.176********h m m S Q V r =??== 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.02 3 h m m V r -=故符合要求。 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.02 3 ' h m m q <沉淀室底部进水口表面负荷一般小于)./(2 3 h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16'm b l == 每个单元宽度:)(57.27 187'm l b === 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58.1142323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= )(98.055 tan 4.1tan . 31m h b === α )(04.198.020.32 12m b b b =?-=-= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之 一),m ; 3h —下三角形集气罩的垂直高度,m ;

厌氧塔计算手册

1.厌氧塔的设计计算 反应器结构尺寸设计计算 (1)反应器的有效容积 设计容积负荷为)//(0.53d m kgCOD N v = 进出水COD 浓度)/(20000L mg C =,E= V= 3084000 .570 .0203000m N E QC v =??=,取为84003m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3m E ——去除率 N V ——容积负荷 (2)反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1)反应器有效高为m h 0.17=则 横截面积:)(4950 .178400 2m h V S =有效= = 单池面积:)(1653 4952m n S S i === 2)单池从布水均匀性和经济性考虑,高、直径比在:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765.714.3)2 (*14.3222'm h D S i =?== 设计反应器总高m H 18=,其中超高m 单池总容积:)(3000)0.10.18(6.176'3'm H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ

反应器总池面积:)(8.52936.1762'm n S S i =?=?= 反应器总容积:)(900033000'3m n V V i =?=?= (3)水力停留时间(HRT )及水力负荷(r V )v N 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.023h m m V r -=故符合要求。 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.023'h m m q <沉淀室底部进水口表面负荷一般小于)./(23h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16'm b l == 每个单元宽度:)(57.27 18 7'm l b === 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58 .1142323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流 缝之一),m ; 3h —下三角形集气罩的垂直高度,m ; 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13=

IC厌氧塔

产品描述: 一简介 IC反应器中文名内循环厌氧反应器,由两个UASB反应器上下叠加串联构成,高度可达16-25m,高径比一般为4-8,由5个基本部分组成:混合区、颗粒污泥膨胀床区、精处理区、内循环系统和出水区。其内循环系统是IC工艺的核心结构,由一级三相分离器、沼气提升管、气液分离器和泥水下降管等结构组 成。 二工作原理 经过调节pH和温度的生产废水首先进入反应器底部的混合区,并与来自泥水下降管的内循环泥水混合液充分混合后进入颗粒污泥膨胀床区进行COD生化降解,此处的COD容积负荷很高,大部分进水COD 在此处被降解,产生大量沼气。沼气由一级三相分离器收集。由于沼气气泡形成过程中对液体做的膨胀功产生了气提的作用,使得沼气、污泥和水的混合物沿沼气提升管上升至反应器顶部的气液分离器,沼气在该处与泥水分离并被导出处理系统。泥水混合物则沿泥水下降管进入反应器底部的混合区,并于进水充分混合后进入污泥膨胀床区,形成所谓内循环。根据不同的进水COD负荷和反应器的不同构造,内循环流量可达进水流量的倍。经膨胀床处理后的废水除一部分参与内循环外,其余污水通过一级三相分离器后,进入精处理区的颗粒污泥床区进行剩余COD降解与产沼气过程,提高和保证了出水水质。由于大部分COD已经被降解,所以精处理区的COD负荷较低,产气量也较小。该处产生的沼气由二级三相分离器收集,通过集气管进入气液分离器并被导出处理系统。经过精处理区处理后的废水经二级三相分离器作用后,上清液 经出水区排走,颗粒污泥则返回精处理区污泥床。 三选型、选材及尺寸(IC实验室选型) 1、有机玻璃IC厌氧反应器有效容积为25L,底边周长15cm,高120cm。其优点为外观结构干净漂亮;内部三相分离器、布水器、上下流管道等结构清晰可见;外附保温层保障了系统在合适的温度下自动运行; 该产品适用于学校、实验室小试模拟教学使用。 2、钢结构IC厌氧反应器为Q235碳钢焊制主体,内衬双层玻璃钢防腐层,内部管道喷双层环氧漆防腐,保障设备正常运行过程中不被腐蚀。该设备有效容积200L,底面直径40cm,高200cm,净重150kg。其优点为更接近于工程实际,抗压强度高,温度适应范围广,适用于科研单位、工地现场中试模拟运行。 四订货须知 1、用户应注明设备的材质及防腐要求。 2、用户应提供详细的水质化验单以便于我公司计算反 应器各部件的尺寸。 3、若用户有详细的加工图纸,可按用户要求进行生产。 4、可根据用户提出的具体要求进行设计制造。 天津国韵生物科技的限公司绍兴女儿儿酒有限公司山西 长冶金泽生化有限公司等 厌氧塔是本公司承接,效果很好~! 联系电话:

厌氧塔计算手册范本

1.厌氧塔的设计计算 1.1反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为)//(0.53d m kgCOD N v = 进出水COD 浓度)/(20000L mg C = ,E=0.70 V=3084000 .570.0203000m N E QC v =??= ,取为84003m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1) 反应器有效高为m h 0.17=则 横截面积:)(4950 .1784002m h V S =有效 == 单池面积:)(1653 4952m n S S i === 2) 单池从布水均匀性和经济性考虑,高、直径比在1.2:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765.714.3)2 (*14.3222' m h D S i =?== 设计反应器总高m H 18=,其中超高1.0m 单池总容积:)(3000)0.10.18(6.176'3'm H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ 反应器总池面积:)(8.52936.1762'm n S S i =?=?= 反应器总容积:)(900033000'3m n V V i =?=?=

(3) 水力停留时间(HRT )及水力负荷(r V )v N h Q V t HRT 72243000 9000=?== )]./([24.03 6.176********h m m S Q V r =??== 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.023h m m V r -=故符合要求。 1.7.2 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室表面负荷率)./(7.02 3'h m m q <沉淀室底部进水口表面负荷一般小于2.0)./(2 3h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16' m b l == 每个单元宽度:)(57.27 187'm l b === 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率: )./(0.20.1)./(39.0288 58.1142323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= )(98.055 tan 4.1tan .31m h b ===α )(04.198.020.3212m b b b =?-=-= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之 一),m ;

除臭设备设计计算书讲解-共10页

8、除臭设备设计计算书 8.1、生物除臭塔的容量计算 1#生物除臭系统 参数招标要求计算过程 序 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 2.5×2.0× 3.0m 2019m3/h Q=2019m3/h V=处理能力Q/(滤床接触面积m2)/S=2019/ (2.5×2)/3600=0.1111m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1111=14.4S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa 2#生物除臭系统 参数 序 招标要求计算过程 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 4.0×2.0×3.0m 3000m3/h Q=3000m3/h V=处理能力Q/(滤床接触面积m2)/S=3000/ (4×2)/3600=0.1041m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1041=15.36S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa

3#生物除臭系统 参数招标要求计算过程 序 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 7.5×3.0×3.3m(两台) 20190m3/h Q=20190m3/h V=处理能力Q/2(滤床接触面积m2)/S=10000/ (7.5×3.0)/3600=0.1234m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.7/0.1234=13.77S 炭质填料风阻220Pa/m×填料高度 1.7m=374Pa 设备风阻<600Pa 4#生物除臭系统 参数 序 招标要求计算过程 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 7.5×3.0×3.0m(两台) 18000m3/h Q=18000m3/h V=处理能力Q/2(滤床接触面积m2)/S=18000/ (7.5×3)/3600=0.1111m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1111=14.4S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa 8.2、喷淋散水量(加湿)的计算 生物除臭设备采用生物滤池除臭形式,池体上部设有检修窗,进卸料口,侧面设有观察窗等,其具体计算如下:

ABR、UASB、AO系统设计计算书

ABR 、UASB 、A/O 系统设计计算书 (1)ABR 厌氧池 主要设计参数: 厌氧池设置成2组并联,每组共6口串联。 配套污泥收集池1座,现浇半地下式钢砼结构。收集厌氧排出的剩余污泥,池内设 置污泥泵、泵提升装置及泵自控装置。 构筑物尺寸: 红泥塑料厌氧池:1-4口:L 1×B 1×H 1 = 4.5×6.9×6.5m ; 5-6口:L 1×B 1×H 2 = 4.5×6.9×6.0m , (厌氧池平均水深H 平均=5.8m ); 污泥收集池:L 2×B 2×H 3 = 2.5×1.2×4.2m ,(有效水深H 3有效 = 3.7m ); 水力停留时间(HRT ): d Q H B L Q V HRT 4.5400 8 .59.65.4121211≈???=??== 平均总有效; 厌氧池容积负荷:() d m kgCOD V C Q S cr i V ?=?=?= 3/25.12160 75 .6400总有效 S v <1.5kgCOD cr /(m 3·d) 符合设计要求; 式中:L 1、B 1、H 1、H 2、L 2、B 2、H 3——分别表示构筑物长度、宽度及深度,m ; Q —— 设计污水数量,400m 3/d ; 12 —— 表示12口厌氧池; S v —— 厌氧池容积负荷,kgCOD cr /(m 3·d) ; C i —— 厌氧池进水COD cr ,6.75kg/m 3; V 总有效 —— 厌氧池总有效容积,2160m 3。 构筑物数量:第一级与第二级合建,共1座; 厌氧池单口宽度4.5m ,下流区与上流区宽度比取4:1,考虑施工方便,下流区宽度 取0.9m ,上流区宽度3.6m 。

厌氧塔的防雷设计

厌氧塔的防雷设计 1.1接闪器的设计 厌氧塔简称IC 塔,是污水处理中的一个成品工艺设备,整体设备安装在厌氧反应器(IC 塔内),窜出屋面,IC 塔塔是一个全钢材制的距地标高为28.3m ,外直径为16m ,厚度为10mm 的圆形罐体,顶部还有4个圆形的小罐体,距地标高为31.25m ,直径为2.8m (见图1)。 鉴于厌氧塔的高度,在实际运用中,也相当于一个巨大的引雷器,需要设置避雷针保护一定半径的建筑物,而在IC 塔上的小罐体也需要防雷装置的保护,为了使其免受直击雷得破坏,根据《建筑物防雷规范》(GB55057-94 2000年版),进行了避雷针的设计和计算,设计方案见图。2 IC 塔的直径D=16m ,IC 塔的相对地面高度为28.3m ,圆形小罐体相对地面高度为32.15m ,直径为2.8m 。根据上述数据,用滚球法计算避雷针的高度: h 0=2)2/3(2D hr +h-hr (1) 式中: h0──保护范围的最低高度(圆形小罐体高度为3.85m )

D3──对角两避雷针水平距离(按规范规定,避雷针与被保护物间最小距离为3m,本设计为16m) h──避雷针的高度 hr──滚球半径(取60m) 将上述数据代入公式(1)中,经计算h=4.39m,因此设计避雷针的高度为5m。根据图集,由厂家根据设计结果制作自制的避雷针并进行现场安装。自制避雷针制作安装制作图可参见《建筑物防雷设施安装》99D501-1 避雷针底部与厌氧塔进行钢壁进行热镀锌可靠焊接,使其成为一体。 1.2下引线的设计 利用厌氧塔塔壁从上至下为均匀罐体的特点,因此把它作为下引线,由于塔壁厚度为10mm,根据规范规定,符合防雷设计要求。 1.3接地系统的设计 接地系统是避雷系统中重要的环节之一,不管是直击雷、感应雷和其他形式的雷电,最终都是把雷电引入大地,使之与大地的异种电荷中和。因此没有合理良好的接地装置,避雷是不可靠的。 利用厌氧塔基础中预埋地脚螺栓作为垂直接地级,基础中上下两层钢筋与地脚螺栓焊接在一起可形成地网,在厌氧塔基础上引出4个预留接地铁,每一个预留接地体采用2根40╳4镀锌扁钢与共同接地体可靠焊接,使其处于同一电位。 该工程采用总厂区共同接地的形式,各个单体接地系统均引出2根40╳4镀锌扁钢,与厌氧塔操作间地网可靠焊接,使总体处于同一等电位。 由于电力、电线线路不能直接接到地线上,在总进线处设置电涌保护器(SPD)实现了电气设备、电子设备、的等电位连接。 此外,各个单体均采用等电位联结措施。等电位是用连接导线或过电压保护器将在需要防雷空间内部的防雷装置、建筑物的金属构架、金属装置、外来的导体物、工艺设备电器和

厌氧池设计计算书

厌氧池设计计算书 1.设计参数 设计流量:10m3/d 每小时0.5m3 设计容积负荷为Nv=2.0kgCOD/(m3.d),COD去除率为60%。则厌氧池有效容积为:V1=10×(1500-600)×0.001/2=4.5m3 2.厌氧池的形状及尺寸 据资料,经济的厌氧池高度一般为4~6m,并且大多数情况下这也是系统优化的运行范围。厌氧池的池形有矩形、方形和圆形。圆形厌氧池具有结构稳定的特点,但是建造圆形厌氧池的三相分离器要比矩形和方形的厌氧池复杂得多。因此本次设计先用矩形厌氧池,从布水均匀性和经济考虑,矩形厌氧池长宽比在2:1左右较为合适。 设计厌氧池有效高度为h=5m,则横截面积S=4.5/5=1.125m2 设计厌氧池长约为宽的2倍,则可取L=1.4m,B=0.70m; 一般应用时厌氧池装液量为70%~90%,本工程中设计反应器总高度为H=6.5m,其中超高0.5m。 厌氧池的总容积V=0.7×1.4×6=5.88m3,有效容积为4.5m3,则体积有效系数为76.5%,符合有机负荷要求。 水力停留时间(HRT)和水力负荷率V2 T=(4.5/10) ×24=10.8h, V2=(10÷24)÷1.125=0.37m3/(m2.h) 对于颗粒污泥,水力负荷V2=0.1~0.9 m3/(m2.h),符合要求。 3、进水分配系统的设计

本次设计采用一管多点的布水方式,布水点数量与处理废水的流量、进水浓度、容积负荷等因素有关。 为配水均匀,出水孔孔径一般为10~20mm,常采用15mm,孔口向下或与垂线成呈450方向,为了使穿孔管各孔出水均匀,要求出口流速不小于2m /s. 本厌氧池采用连续进料方式,布水孔孔口向下,有利于避免管口堵塞,而且由于厌氧池底部反射散布作用,有利于布水均匀。 为了增强污泥与废水之间的接触,减少底部进水管的堵塞,建议进水点距厌氧池底200~250mm,本次设计布水管离厌氧池底部200mm。4、排泥系统的设计 一般认为,排出剩余污泥的位置在厌氧池的1/2高度处,但大都推荐把排泥设备安装在靠近厌氧池的底部,也有人在三相分离器下0.5m 处理设计排泥管,以排除污泥床上面部分的剩余絮状污泥,而不会把颗粒污泥排走,对于厌氧池排泥系统,必须同时考虑在上、中、下不同位置设排泥设备,应根据生产运行中的具体情况考虑实际的排泥要求,来确定排泥位置。 本次设计在三相分离器下0.5m开始设置三个排泥口。 厌氧池每三个月排泥一次,污泥排入集泥池中。

浅析废水厌氧塔设计规范

万青环保-价格低质量好,致力于环保产业的发展 浅析废水厌氧塔设计规范 【厌氧塔】采用废水厌氧塔生物处理是环境工程与能源工程中的一项重要技术,是有机废水强有力的处理方法之一,过去,它多用于城市污水厂的污泥、有机废料及其部分高浓度有机废水的处理,在建筑物形式上主要采用普通消化池,由于存在水力停留时间长、有机负荷低等缺点,较长时间限制了它在废水处理中的应用,20世纪70年代以来,世界能源短缺日益突出,能生产能源的废水厌氧技术受到重视,研究与实践不断深入,开发了各种新型工艺与设备,大幅度地提高了废水厌氧塔内活性污泥的持有量,使处理时间大大缩短,效率提高。接下来就请废水厌氧塔生产厂家万青环保工作人员为大家做简单介绍吧。 【废水厌氧塔设计规范】 厌氧塔,由两个UASB反应器上下叠加串联构成,高度可达16-25m,高径比一般为4-8,由5个基

万青环保-价格低质量好,致力于环保产业的发展 本部分组成:混合区、颗粒污泥膨胀床区、精处理区、内循环系统和出水区。其内循环系统是IC工艺的核心结构,由三相分离器、沼气提升管、气液分离器和泥水下降管等结构组成。 工作原理 经过调节pH和温度的生产废水首先进入反应器底部的混合区,并与来自泥水下降管的内循环泥水混合液充分混合后进入颗粒 污泥膨胀床区进行COD 生化降解,此处的COD 容积负荷很高,大部分进 水COD在此处被降解, 产生大量沼气。沼气由三 相分离器收集。由于沼气 气泡形成过程中对液体做 的膨胀功产生了气提的作 用,使得沼气、污泥和水 的混合物沿沼气提升管上 升至反应器顶部的气液分 离器,沼气在该处与泥水 分离并被导出处理系统。 泥水混合物则沿泥水下降管进入反应器底部的混合区,并于进水充分混合后进入污泥膨胀床区,形成所谓内循环。根据不同的进水COD负荷和反应器的不同构造,内循环流量可达进水流量的0.5-5倍。经膨胀床处理后的废水除一部分参与内循环外,其余污水通过三相分离器后,进入精处理区的颗粒污泥床区进行剩余COD降解与产沼气过程,提高和保证了出水水质。由于大部分COD已经被降解,

计算书—生化池

设 计参数 1. 设计最大流量 Q max=1,5000m 3/d=625 m 3/h=0.174 m 3/s 2. 进出水水质要求 3. 设计参数计算 ①. BOD 5污泥负荷 N=0.13kgBOD 5/(kgMLSS ·d) ②. 回流污泥浓度 X R =9 000mg/L ③. 污泥回流比 R=50% ④. 混合液悬浮固体浓度(污泥浓度) ⑤. 设MLVSS/MLSS=0.75 ⑥. 挥发性活性污泥浓度 ⑦. NH3-N 去除率 ⑧. 内回流倍数 0.2667 .01667.01=-=-= e e R 内,即200% 4. A2/O 曝气池计算 ①. 总有效容积

②. 反应水力总停留时间 ③. 各段水力停留时间和容积 厌氧:缺氧:好氧=1:1:4 厌氧池停留时间h t 025.115.661=厌?=,池容33.427256461 m V =厌?=; 缺氧池停留时间h t 025.115.661=缺?=,池容33.427256461 m V =缺?=; 好氧池停留时间h t 1.415.664=好?=,池容33.1709256464 m V =好?=。 ④. 反应池有效深度 H=3m 取超高为1.0m ,则反应池总高m H 0.40.10.3==+ ⑤. 反应池有效面积 ⑥. 生化池廊道设置 设厌氧池1廊道,缺氧池1廊道,好氧池4廊道,共6条廊道。廊道宽4.5m 。则每条廊道长度为 m bn S L 7.316 5.4855 =?== ,取32m ⑦. 尺寸校核 1.75.432==b L ,5.13 5.4==D b 查《污水生物处理新技术》,长比宽在5~10间,宽比高在1~2间 可见长、宽、深皆符合要求 5. 反应池进、出水系统计算 ① 进水管 进水通过DN500的管道送入厌氧—缺氧—好氧池首端的进水渠道。 反应池进水管设计流量s m Q /17.086400 15000 31== 管道流速s m v /9.0'= 管道过水断面面积2119.090.0/17.0/m v Q A === 管径m A d 49.019 .044=π π?= = 取进水管管径DN500mm

厌氧塔计算手册

1.厌氧塔的设计计算 1。1反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为)//(0.53 d m kgCOD N v = 进出水COD 浓度)/(20000L mg C = ,E=0.70 V= 3084000 .570 .0203000m N E QC v =??= ,取为84003m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3 m E-—去除率 N V -—容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1) 反应器有效高为m h 0.17=则 横截面积:)(4950 .178400 2m h V S =有效= = 单池面积:)(1653 4952m n S S i === 2) 单池从布水均匀性和经济性考虑,高、直径比在1.2:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765.714.3)2 ( *14.3222 ' m h D S i =?== 设计反应器总高m H 18=,其中超高1.0m 单池总容积:)(3000)0.10.18(6.176'3 'm H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ 反应器总池面积:)(8.52936.1762'm n S S i =?=?= 反应器总容积:)(900033000'3 m n V V i =?=?=

(3) 水力停留时间(HRT )及水力负荷(r V )v N h Q V t HRT 72243000 9000=?== )]./([24.03 6.176********h m m S Q V r =??== 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.02 3 h m m V r -=故符合要求。 1。7。2 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.02 3 ' h m m q <沉淀室底部进水口表面负荷一般小于2.0)./(2 3 h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16' m b l == 每个单元宽度:)(57.27 187'm l b === 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58.1142323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= )(98.055 tan 4.1tan . 31m h b === α )(04.198.020.3212m b b b =?-=-= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之 一),m ; 3h —下三角形集气罩的垂直高度,m ;

相关文档