文档库 最新最全的文档下载
当前位置:文档库 › 飞机气动布局设计

飞机气动布局设计

飞机的气动布局和机翼几何参数

与机翼的几何参数 往飞行是从模仿鸟类飞行开始的。但是由于鸟类飞行机理的复杂性,至今未能对扑翼机模仿成功。 促使人们遨游天空的,也许是受中国风筝的启发,在航空之父凯利的科学理论指导下,将动力和升力面分开考虑,而发明了固定翼飞机。 二十世纪人类史最伟大的科学成就。是人类最快捷、舒适、高效、安全的交通运输工具,在国家安全、社会和国民经济的发展中占有极其重要的地位。史之乱蒙冤沦为囚犯,被流放到白帝城后,朝廷大赦天下,他立刻返舟东下,重出三峡,欣喜的心情无法言表: 帝彩云间,千里江陵一日还。两岸猿声啼不住,轻舟已过万重山。 白乘飞机,不知如何写佳作。是否同意写成如下: 帝彩云间,千里江陵一时还。两耳风声鸣不住,轻机已过万重山。 飞翔,必须做到: 的气动外形 的结构 的动力 定的速度 的操纵机构 系统 同,飞机在空中能够飞行是依靠与空气的相对运动,而产生作用在飞机上的力和力矩来实现的。如对于水平等速直线飞行而言,从飞机受力条件,有 L V¥(升力与重力平衡) D//V¥(推力与阻力平衡) (俯仰力矩保持守恒)

必须具备的条件: 飞机在空中飞行是靠作用于飞机上的空气动力)。此外,喷气发动机的氧气也是取源于空气。一定的飞行速度(飞机和空气之间要有一定的相对运动,产生空气动力)。 的气动外形、受力大小和飞行姿态。 保持和改变飞行状态的能力。 布局 型的飞机、不同的速度、不同的飞行任务,飞机的气动布局是不同的。 机的气动布局? 飞机主要部件的尺寸、形状、数量、及其相互位置。 件有:推进系统、机翼、机身、尾翼(平尾、立尾)、起落架等。 连接的相互位置分为:

有无上反角分为: 分为: 的相对纵向位置分为: 花八门、多种多样,有平直的,有三角的,有后掠的,也有前掠的等等。然而,不论采用什么样的形状,设计者都必须使飞机具有良好的气动外形,并且使良好的气动外形,是指升力大、阻力小、稳定操纵性好。

飞机的气动布局与机翼的几何参数

飞机的气动布局与机翼的几何参数 人类向往飞行就是从模仿鸟类飞行开始的。但就是由于鸟类飞行机理的复杂性,至今未能对扑翼机模仿成功。 而真正促使人们遨游天空的,也许就是受中国风筝的启发,在航空之父凯利的科学理论指导下,将动力与升力面分开考虑,而发明了固定翼飞机。 飞机就是二十世纪人类史最伟大的科学成就。就是人类最快捷、舒适、高效、安全的交通运输工具,在国家安全、社会与国民经济的发展中占有极其重要的地位。 当年李白受安史之乱蒙冤沦为囚犯,被流放到白帝城后,朝廷大赦天下,她立刻返舟东下,重出三峡,欣喜的心情无法言表: 朝辞白帝彩云间,千里江陵一日还。两岸猿声啼不住,轻舟已过万重山。 如果李白乘飞机,不知如何写佳作。就是否同意写成如下: 朝辞白帝彩云间,千里江陵一时还。两耳风声鸣不住,轻机已过万重山。 人类要想自由飞翔,必须做到: 1、必须有良好的气动外形 2、必须有轻巧的结构 3、必须有相当的动力 4、必须达到一定的速度 5、必须有机敏的操纵机构 6、必须有导航系统 与鸟的飞行不同,飞机在空中能够飞行就是依靠与空气的相对运动,而产生作用在飞机上的力与力矩来实现的。如对于水平等速直线飞行而言,从飞机受力条件,有 L=G L V¥ (升力与重力平衡) F=D D//V¥ (推力与阻力平衡) M=0 (俯仰力矩保持守恒)

飞机产生升力必须具备的条件: (1)有空气(飞机在空中飞行就是靠作用于飞机上的空气动力)。此外,喷气发动机的氧气也就是取源于空气。 (2)必须存在一定的飞行速度(飞机与空气之间要有一定的相对运动,产生空气动力)。 (3)要有适当的气动外形、受力大小与飞行姿态。 (4)必须存在保持与改变飞行状态的能力。 1、飞机的气动布局 不同类型的飞机、不同的速度、不同的飞行任务,飞机的气动布局就是不同的。 何为飞机的气动布局? 广义而言:指飞机主要部件的尺寸、形状、数量、及其相互位置。 飞机的主要部件有:推进系统、机翼、机身、尾翼(平尾、立尾)、起落架等。 按机翼与机身连接的相互位置分为: 按机翼弦平面有无上反角分为:

谈谈鸭翼布局战斗机的气动特点

摘要 飞机姿态控制包含俯仰(pitch)、滚转(roll)与偏航(yaw)方向,其中俯仰方向安定性和操控性是对飞行安全最重要的飞控参数。如果以俯仰控制面安装位置对飞机分类,则可分为鸭翼(canard,法文鸭子的意思,来源于法国报纸对莱特兄弟飞机的描述)、水平尾翼(horizontal tail)、无尾翼(tailless)以及同时安装鸭翼和水平尾翼的三翼面(three surface)布局。鸭翼布局虽然具有较佳升力特性,但如果未能妥善处理好鸭翼涡流与主翼、机身及垂直尾翼流场间的交互作用,将对飞行稳定与姿态控制产生不良影响。但这个缺点在近距耦合概念诞生,并结合线传飞控系统后已经得到改善,诞生了几种成功的鸭翼战斗机。本文从气动力学的观点出发,在不考虑飞控系统与推力矢量控制运用的成熟性、结构负荷极限、战场场景想定与战术运用等外在因素的情况下,对鸭翼布局的气动特点进行初探。 鸭翼-三角翼布局水平尾翼布局 无尾三角翼布局三翼面布局 前言 人类第一架载人动力飞机“飞行者”号采用的就是鸭翼布局,该布局与水平尾翼布局相比,具较佳的升力特性,所以在飞机早期发展史上也能偶尔见到鸭翼布局战斗机。但因为鸭翼布局复杂的气动特性,特别是缺乏足够的纵向恢复力矩,所以虽然最早运用在飞机上,却没有被后续战斗机普遍运用,水平尾翼布局反而成为“传统布局”。随着线传飞控系统的诞生,因鸭翼与主翼间复杂气流交互作用导致的操控问题得以解决,推力矢量控制进一步解决俯仰方向控制。欧洲和中国的新一代战斗机,因侧重瞬间转弯能力以及短场起降需求,多采鸭翼布局设计,而美俄则继续坚持传统布局战斗机。显见两种布局各具优点,使设计人员于在不同设计考虑下,在两种迥异的气动外形下,依据战场环境与作战需求设计出各自的性能优异的战斗机。 中国的歼-20是目前唯一的鸭翼布局隐身战斗机 随着中距空空导弹的日益普及,视距外交战(beyond visual range, BVR)已成为未来空战的必然模式,战斗机操控性似乎不如武器性能重要。中程空空导弹发展成熟,性能可靠,战斗机可在视距外交战多目标,如果战斗机具有超音速速度优势还能增加我方导弹射程,导弹发射后还需发挥超音速机动性以规避敌方可能射击的中程空空导弹,尽快脱离敌导弹射程。但在很多情况下还是需要进行目视格斗,如受到敌我识别器(IFF)功能限制必须目视识别、目标成功躲避导弹后、隐身战斗机间的空战、雷达制导导弹遭遇先进电子战装备干扰等。全向(all aspect)攻击近距导弹与头盔瞄准具的结合,使空战特点由“占位”转为“指向”,特别是在近距空空导弹结合红外成像(IR Image)引导头和推力矢量控制后,不可逃逸区大大扩大,先敌射击就能掌握致胜先机,使战斗机瞬时转弯速率的重要性大于持续转弯率。根据赫柏斯特(W. B. Herbst)的研究:战斗机除需具备亚音速格斗性能外,还需具有一定的超音速巡航与转弯能力,所以未来战斗机设计除应该有良好的视距外交战能力外,机动性与敏捷性都是不可忽视的指标。 机动性是指在一定时间内,战斗机改变飞行速度、飞行高度和方向的能力;敏捷性则是指迅速、精确地改变机动飞行状态的能力,即机动性对时间的微分。依约翰?博伊德(John Boyd)提出的能量机动论(energy maneuverability),战斗机机动性取决于推重比(推力/重量)与翼载(重量/翼面积),前者受发动机性能与机身重量(含结构、燃油存量与武器挂载)影响,比值大就加速快,后者是飞机可产生多少升力进行转弯,比值小就转弯快,高推重比与低翼载可提高战斗机的机动性,转弯机动性好就能提高战斗机的击杀率与生存性。常见用于评估战斗机转弯能力的参数有: 最大持续转弯速率(maximum sustained turn rate),用于获得交战初期优势,定义为单位重量剩余功率(specific excess power, SEP)=0与结构限制线的交点。

先进气动布局设计技术

中文名称:先进气动布局技术 英文名称:Advanced aerodynamic configuration technology 相关技术:总体设计;机翼设计;综合设计 分类:飞机总体设计;气动布局;空气动力学; 定义与概念:为实现先进的气动性能和战术技术指标要求,对飞机气动设计中主要参数进行的综合性选择和规范。 气动布局的研究对象是主要气动参数(如升力、阻力、力矩系数和其它气动导数)以及主要气动参数与飞机外形参数的关系。研究的内容包括:飞机各主要部件的外形和相对配置,各种外形和配置下飞机的气动特性;此外,由于很多气动技术对飞机部件外形和配置的选择有很大影响,所以较重大的气动技术是气动布局研究的重要内容和基础。 气动布局的研究范围很广,大到飞机总体布局的类型和参数,小到机翼剖面外形、前后缘襟翼这类气动技术,都对飞机气动布局的选择和确定以及最终的飞机性能有根大影响。国外概况:冷战时期,前苏联的先进气动布局技术与美国并驾齐驱,如Su-27依靠优良的气动布局设计,使其气动性能超过了美国的第三代战斗机。但冷战后,俄罗斯由于经济上的原因,新技术的发展十分缓慢,第四代战斗机迟迟出不来,明显已落后于美国。而美国气动力技术的发展却未见减缓,仍然保持着冷战时的高速发展态势,不但第四代战斗机F-22和JSF 都已研制出来,而且已开始着手发展下一代战斗机的气动力和先进气动布局技术。因此,目前美国在气动布局技术方面处于领先地位。西欧则稍稍落后于美俄,保持着较高水平,又以其体现多用途的战斗机气动布局而独具特色,如EF-2000和法国的"阵风"。 美国空军认为,虽然近年来在提高战斗机机动能力的先进气动布局方面作了一些工作,隐身气动设计和隐身能力也得到很大提高,但他们确实忽视了先进气动布局的研究和发展。在轰炸机方面,B-2的飞翼布局是40年代和50年代提出的概念的现代翻版。随着现代计算流体力学的进展和流动控制技术的提高,先进气动布局研究有可能获得新生。今后先进气动布局研究主要沿着如下两个方向: 第一,对过去提出的方案进行系统化研究。对亚音速飞机,这些方案包括带支撑机翼、翼身融合体、环翼、多机身飞机等。对超音速飞机,通过有利干扰降低阻力的布局已经提出但尚未进行系统的研究。这些方案过去都曾提出但没能研究下去,原因包括:设计工具和数据库不合适,稳定性和控制问题(现在可以成功地与现代结构和控制技术一起考虑),缺乏总体发展和实际验证。 第二,全新的布局概念研究,尤其是同时利用流动控制技术和现代结构和控制概念的布局研究。这些概念可能包括:带嵌入式层流控制吸气系统的复合材料机翼蒙皮;用于控制旋涡和边界层的机敏蒙皮;将层流控制、推进和结构设计综合在一起的翼型;其它等等。由于计算流体力学提供了探索和预测有利非线性干扰效应的能力,并且有了旋涡、粘流效应和分离的控制技术,全新气动布局概念的潜力是可以发挥的。 未来先进气动布局研究必须沿着多学科的路线进行。新布局的早期方案研究必须考虑推进一体化以及结构和控制方案。设计一体化技术的发展将使新方案的快速分析成为可能。 涉及先进气动布局的研究计划将为飞机性能的提高开创新的可能性,也许能开发出新的应用。不仅如此,这样的研究计划对诸如流动控制、设计方法和多学科综合这样的基础领域的研究来说,还将起到指南的作用,从而使先进气动布局的所有支撑技术能够同时成熟。从这一点来看,先进气动布局将重新发挥其作为气动技术推动力的作用。 美国90年代中期进行了"新世界展望"(New World Vistas)和"2025年的空军"(AF 2025)等对未来军事技术的预测研究,其研究结果最近已经过综合,并开始在美国空军的"航空器科学技术"(Air Vehicles S&T)的范围内进行技术开发。1997年,美国空军启动"未来飞机

飞机气动布局简介.

飞机气动布局简介 想必很多人对飞机很感兴趣,因为飞机大多是很漂亮的,流线型的机身,舒展的机翼,实现了人类在蓝天翱翔的梦想。其实飞机外型的美观虽然是人类主动的设计创作,而实质却是受制于空气阻力的被动结果,从某种意义上讲,这种符合人类审美标准的流畅线条其实是空气动力原理的杰作。 大千世界千变万化,飞机也是形态各异,大的、小的、胖的、瘦的,四个翅膀的、两个翅膀的甚至还有一个翅膀的,打个比方,飞机的式样就像宠物狗一样,当真是品种丰富,血统复杂。俗话说外行看热闹,内行看门道,既然飞机的外观是空气动力原理决定的,那么这么多种飞机的形状在飞机设计中就有个称谓,叫做空气动力布局。下面我们就逐一介绍一下各种气动布局,当了解到气动布局这个概念后再回过头来看这些飞机,就会发现自己不会再看花眼了,其实全世界的飞机品种再多,也无非就以下这几种气动布局而已。 各种空气动力布局的主要差别就在于机翼位置上的差别,首先介绍一个最常见的布局——常规布局。这种布局的特点是有主机翼和水平尾翼,大的主机翼在前,小机翼也就是水平尾翼在后,有一个或者两个垂直尾翼。世界上绝大多数飞机属于这种气动布局,特别是客运、货运大型飞机,几乎全是这种布局,例如波音系列、欧洲的空中客车系列,我国的运七、运八、ARJ21,美国的C130等。我国的军用飞机中除了歼10猛龙战斗机以外,都是常规气动布局。 常规布局最大的优点是技术成熟,这是航空发展史上最早广泛使用的布局,理论研究已经非常完善,生产技术也成熟而又稳定,同其他气动布局相比各项性能比较均衡,所以目前无论是民用飞机还是军用飞机绝大多数使用这种气动布局。 常规气动布局机型——我国的ARJ21祥凤支线客机

飞机的常见气动布局

飞机的常见气动布局 亲爱的同学们 大家好: 今天,我想和大家讲一讲,飞机的常见气动布局。大家知道的都有哪些呢? 目前我们所知的可行的飞机的空气动力布局方式有:常规、鸭式、三翼面、变后掠、无尾、飞翼、前掠翼。这些布局方式各有特色各有长短,我将为大家逐个讲解。 首先是常规,常规布局也就是主翼在前,水平尾翼在后,有一个或两个垂尾的气动布局方式。使用这种气动布局设计的具有代表性的战斗机有,美国——洛克希德马丁公司:F22猛禽。俄罗斯——苏霍伊设计局:苏27侧卫。但其实,我们常见的客货机几乎全是这种设计的。常规布局的优点是技术成熟,理论研究已经非常完善,生产技术也成熟而又稳定,同其他气动布局相比各项性能比较均衡。只是由于均衡所以也没有特别出色的地方。 然后是鸭式。因为当初这种气动布局的飞机飞起来像鸭子,故此得名。说到鸭式布局,我们就不得不说世界上第一架飞机——莱特兄弟的飞行者一号。它所使用的布局其实就是鸭式布局。鸭式布局也是主翼在后面,前面加个小机翼叫做鸭翼。简单地来看,鸭式布局就是将常规布局中的水平位移移到了主翼前方,但鸭翼与平尾并不是一个概念。虽然鸭

翼也承担着控制俯仰的责任,但除此之外,鸭翼还会产生涡流。这些涡流吹过主翼会带来强大的增升效果,也就是说,鸭翼能提供额外的升力。如此,鸭式布局的飞机的短距起降性能更强,因为它们在低速度状况下也能获得较高的升力。鸭式布局的飞机在高速飞行中有着更高的稳定性,机动性也要比常规布局飞机更加出色。有时鸭式布局飞机还会在机身的后下方增加两片叫做腹鳍的翼面,以增加大迎角情态下的飞行稳定性,这是因为在大迎角情态下,常规布局的飞机的垂尾还会接触到由主翼和平尾的间隙间吹过的气流,而鸭式布局的飞机的主翼往往会阻断流往垂尾的气流,如此垂尾便不能很好地控制飞机的水平方向稳定,而在机身下方增加的腹鳍则能解决这个问题。这也是鸭式布局飞机的一个不同之处。鸭式布局设计的代表战机有:中国成飞歼20,欧洲双风:阵风、台风。而鸭式布局正是我国擅长,欧洲钟情的飞机气动布局方式。这里补充一个鸭翼与平尾的不同之处:鸭翼与主翼的耦合一般是不允许二者处于同一平面的:鸭翼的位置要高于主翼。如此鸭翼才会体现它的特性。而常规布局的飞机的平尾和主翼是可以,或者说一般都是处在同一平面的。可这样一来,我们知道,使用鸭式布局的我国歼20属于第四代隐身战机。而鸭翼的这种耦合方式会对飞机的外形隐身带来很大的负面影响。所以我们的歼20身上鸭翼与主翼的耦合方式变为了鸭翼上反和主翼下反。这样做确实压抑了鸭

现代飞机常见气动外形特点及发展

摘要 我们看到任何一架飞机,首先注意到的就是气动布局。飞机外形构造和大部件的布局与飞机的动态特性及所受到的空气动力密切相关。关系到飞机的飞行特征及性能。故将飞机外部总体形态布局与位置安排称作气动布局。简单地说,气动布局就是指飞机的各翼面,如主翼、尾翼等是如何放置的,气动布局主要决定飞机的机动性,至于发动机、座舱以及武器等放在哪里的问题,则笼统地称为飞机的总体布局。 飞机的设计任务不同,机动性要求也不一样,这必然导致气动布局形态各异。现代作战飞机的气动外形有很多种,平直机翼布局、后掠翼布局、变后掠翼布局、无尾翼布局、鸭式布局、三翼面布局、前掠翼布局等。而以巡航姿态为主的运输机等大型飞机,其气动布局就相对比较单一,主要以常规布局为主 关键词:翼型;尾翼;气动外形;空气动力

目录 引言 (1) 一、现代飞机常见气动外形 (2) (一)作战飞机气动外形 (2) (二)非作战飞机气动外形 (7) 二、国内飞机常见气动外形 (7) (一)作战飞机气动外形 (7) (二)非作战飞机气动外形 (9) 三、飞机气动外形发展 (11) (一)作战飞机气动外形的发展 (11) (二)非作战飞机气动外形的发展 (11) 四、我国大飞机气动布局设计的发展建议 (15) 致谢 (17) 参考文献 (18)

引言 自从莱特兄弟发明第一架飞机以来,航空科技一直伴随着科技革命的推进迅速发展,由于该行业属于技术密集型,因此也使得航空科技一直云集着该时代最先进的科技成果,和众多的行业精英。因此航空技术往往代表着一个时代的科技水平,也促进和引领着科技进步。而一个时代的航空科技水平则主要体现在该时期的航空器上,飞机作为数量最多、最为常见的航空器,当然代表着一个时代航空科技的水平。而一个时代飞机的技术水准,则直观的体现在飞机的气动外形上。从飞机的气动外形我们就可以看出:这个时代航空科技的总体水平,这个时代的设计理念,甚至这个时代的军事政治战略格局等等。因此,研究飞机的气动外形及其发展,对于我们学习航空科技进而了解世界科技、历史、军事、政治等方面知识有着深远的意义。

飞机的气动布局与机翼的几何参数资料讲解

飞机的气动布局与机翼的几何参数

飞机的气动布局与机翼的几何参数 人类向往飞行是从模仿鸟类飞行开始的。但是由于鸟类飞行机理的复杂性,至今未能对扑翼机模仿成功。 而真正促使人们遨游天空的,也许是受中国风筝的启发,在航空之父凯利的科学理论指导下,将动力和升力面分开考虑,而发明了固定翼飞机。 飞机是二十世纪人类史最伟大的科学成就。是人类最快捷、舒适、高效、安全的交通运输工具,在国家安全、社会和国民经济的发展中占有极其重要的地位。 当年李白受安史之乱蒙冤沦为囚犯,被流放到白帝城后,朝廷大赦天下,他立刻返舟东下,重出三峡,欣喜的心情无法言表: 朝辞白帝彩云间,千里江陵一日还。两岸猿声啼不住,轻舟已过万重山。 如果李白乘飞机,不知如何写佳作。是否同意写成如下: 朝辞白帝彩云间,千里江陵一时还。两耳风声鸣不住,轻机已过万重山。 人类要想自由飞翔,必须做到: 1、必须有良好的气动外形 2、必须有轻巧的结构 3、必须有相当的动力 4、必须达到一定的速度 5、必须有机敏的操纵机构 6、必须有导航系统 与鸟的飞行不同,飞机在空中能够飞行是依靠与空气的相对运动,而产生作用在飞机上的力和力矩来实现的。如对于水平等速直线飞行而言,从飞机受力条件,有 L=G L V ¥(升力与重力平衡) F=D D//V ¥(推力与阻力平衡) M=0 (俯仰力矩保持守恒) 飞机产生升力必须具备的条件: (1)有空气(飞机在空中飞行是靠作用于飞机上的空气动力)。此外,喷气发动机的氧气也是取源于空气。 (2)必须存在一定的飞行速度(飞机和空气之间要有一定的相对运动,产生空气动力)。 (3)要有适当的气动外形、受力大小和飞行姿态。

北航大飞机班-大型客机气动设计

大飞机班 大型客机气动设计 结课论文 2013/12/27

1,大型客机概述 1.1大型客机概念 大型客机项目是一个国家工业、科技水平和综合实力的集中体现,对增强中国的综合国力、科技实力和国际竞争力,使中国早日实现现代化具有极为重要的意义。大飞机一般是指起飞总重超过100吨的运输类飞机,包括军用大型运输机和民用大型运输机,也包括一次航程达到3000公里的军用或乘坐达到100座以上的民用客机。从地域上讲,我国把150座以上的客机称为大客机,而国际航运体系习惯上把300座位以上的客机称作“大型客机”,这主要由各国的航空工业技术水平决定的。具体载客量要看机型和舱内布局。最大的客机A380如果全经济布局的话可以载800多个人。 1.2大型客机研制 较军机而言,民机有许多不同之处。主要来讲,民机研制流程可以从时间角度划分为前期论证、型号研发、产品支援及客户服务三大阶段:1)前期论证阶段:这一阶段的主要工作任务是形成产品设想和立项,一个标志性里程碑是:长周期及通用技术准备工作正式启动。 2)型号研发之可行性论证阶段:这一阶段的主要工作任务是定义满足市场需求的产品方位和层次。初步设计和详细设计阶段:这一阶段的主要工作任务是定义满足市场需求的具体产品。产品研制阶段:这一阶段的主要工作任务是形成满足市场需求的合法的产品和服务。 3)产品支援及客户服务阶段。 1.3国产大飞机研制意义 中国虽然在民用飞机制造方面拥有一定经验,但与发达国家相比还存在较大差距,难以满足我国经济社会发展和快速增长的民用航空市场的需求。未来20年,是中国民用航空工业发展的重要战略机遇期。中国实施大型客机项目具有以下六大重要意义: 1)大型客机项目是一个国家工业、科技水平和综合实力的集中体现,对增强中国的综合国力、科技实力和国际竞争力,使中国早日实现现代化具有极为重要的意义。 2)航空工业产业链长、辐射面宽、连带效应强,在国民经济发展和科学技术进步中发挥着重要作用。大型客机是现代制造业的一颗明珠,是现代高新科技

歼10气动布局特点及战斗性能分析

国产歼10双座型战斗教练机

静安定度的后尾式、无尾式和鸭式飞纵向配平方式的示意图文/傅前哨 歼一10战斗机采用了鸭式气动布局,这在我国研制成功的战斗机中还是首次。在世界战斗机的大家庭中,有一些比较先进的战斗机也采用了类似的布局,如瑞典的Saab一37“雷”、JAS 39,法国的“幻影”ⅢNG、“幻影”4000、“阵风”,以色列的“幼狮”C2、“狮”,俄罗斯的米格1.44以及西欧四国合作研制的 EF2000“台风”等等。随着航空技术的深入发展,新型鸭式战斗机方案不断出现,并跻身先进战斗机的行列。那么,鸭式布局战斗机有些什么特点,其气动特性又如何呢? 高低速性能好 采用后尾式和无尾式气动布局的普通高速飞机,由于种种原因,其低速性能往往不佳。而鸭式布局则可以满足战斗机对高、低速。性能的要求。因为这种布局能很好地兼顾高速飞机所需的细长体外形和飞机实现短距起落所需的高配平升力系数。这是因为:一方面,细长鸭式布局在由亚声速过渡到超声速时,其焦点移动而引起的安定度增量比后尾式要小,这对高速机动飞行是有利的。另一方面,在大迎角进场或飞行时,它又能产生比后尾式和无尾式飞机高得多的配平升力。这说明它亦适合低速飞行。 配平升力高

图一是静安定度的后尾式、无尾式和鸭式飞机纵向配平方式的示意图。飞机在空中做定常水平飞行时,其重力与升力,推力和阻力是相等的,全机力矩也是平衡的。为获得配平力歼一10A用的鸭式布局方案虽然在中国早期歼一9概念中曾有过体现,但其中涉及的诸多技术问题是在歼一lO上获得了最终的完美解决刘应华摄矩,无尾式及后尾式飞机需要付出一定的升力代价。在飞行中,机翼的升力Y及全机零升力矩Mzo对飞机重心要产生一个低头力矩。为平衡这个力矩,无尾式飞机要上偏升降襟翼,后尾式飞机要上偏转升降舵,以便产生一个负升力去配平,致使全机升力下降。当然,小迎角飞行时平尾的负荷不大,它付出的升力代价也很小。但是当飞机以大迎角飞行,并采取增升措施时(例如放襟翼)形势就恶化了。因为增升时会带来很大的附加低头力矩。为配平这些附加力矩,平尾后缘必须上偏很大的角度,这将使增升效果显著降抵。倘若机翼采用高度增升的方法。有时连配平都很困难了,只好在平尾上采取高度增加负升力的措施。国外不乏这方面的例子。美国的F一4飞机由于在后缘襟翼上采取了附面层控制技术,使低头力矩增加很多,结果尾翼在配平时已接近失速,只好对平尾进行修改,使前缘上翘,将翼型变为反弯度的。而日本的PS一1水上飞机则是在尾翼下表面吹气以增加负升力。后尾式布局尚且如此,无尾式飞机配平高升力就更困难了。 相比之下,鸭式布局比后尾式及无尾式布局优越之处在于:其抬头俯仰力矩可由飞机重心前的正升力面(鸭翼)提供。这真是一举两得:既提供了配平力矩,又增加了升力。那么为什么以前人们很少采用鸭式布局呢?这是因为常规的鸭式飞机有三大缺点:(1)前翼对主翼存在着强烈的下洗,使主翼升力降低。尽管前翼的升力是正的,弥补了部分升力损失,但配平时的总升力不见得比后尾式高很

飞机气动设计分析报告

飞机气动设计分析 ——由图-22M和B-1B浅析现代超音速轰炸机设计 SYXXXXXXXXX 一、超音速轰炸机简介 众所周知,轰炸机是用于从空中对地面或水上目标进行轰炸的飞机,具有载弹量大,飞行距离远的特点。飞机开始投入战争后不久,便出现了专门用于对地面实施轰炸的轰炸机。一二次世界大战期间,轰炸机得到迅速发展和广泛使用,以美国B-17、B-29为代表的全金属四发重型轰炸机的出现是轰炸机发展到新水平的标志,这时的轰炸机载弹量可达8至9吨,航程在5000公里上下。战后,航空进入喷气时代,轰炸机也不例外,在现代喷气式轰炸机问世以来的50多年里,轰炸机的发展已经经历了三个明显的阶段(如图1所示): 图1 喷气式轰炸机发展的三个阶段 第一阶段是上世纪60、70年代出现的亚音速喷气式轰炸机,以苏联图-16(我国轰六的原型)、英国的三V轰炸机(“胜利”、“火神”、“勇士”)、美国B-47和B-52等为代表。这一时期,飞机设计上的主要特点是以喷气动力取代螺旋桨动力,首先解决的是有无问题,在飞机的外形和结构设计上与之前的螺旋桨动力轰炸机并无较大区别。这类轰炸机由于飞行速度较慢,雷达散射截面积较大,在完整的现代防空体系面前不堪一击,突防能力较弱,但到目前为止仍有很大一部分的亚音速轰炸机在各国空军服役。 第二阶段是上世纪70、80年代出现的超音速轰炸机。超音速轰炸机往往采用了变后掠翼设计,解决了超音速轰炸机研制初期如B-58轰炸机遇到的速度与航程间的矛盾,这一阶段的代表是美国B-1B和苏联图-160、图-22M等。超音速战略轰炸机的出现使得战略轰炸机的突防能力大大增强,打击能力也相应提高。 第三阶段是上世纪末出现的隐身轰炸机,使轰炸机的战场生存能力和威慑力得到更大的提高。目前,隐身战略轰炸机只有美国的B-2一种。

北航研究生_气动设计课程大作业 _苏33与F18气动布局比较

苏-33与F-18气动设计对比 苏-33和F-18分别作为俄罗斯和美国的主力舰载机,在气动设计上的差异体现了二者设计目标和飞行性能的不同。 苏-33 苏-33机长21.2米,翼展14.7米,折叠后7.4米,机翼面积67.8米2,空重18.4吨。采用了中单翼、翼身融合体、机翼翼根边条、中弧面可变弯度的前/后缘机动襟翼、整流尾锥、差动平尾和双发双垂尾气动外形,并采用了放宽静稳定度技术。整个机体有前机身、中段机身/机翼和后机身三段组成。 前机身由可向上折反的雷达天线整流罩、前设备仓、可伸缩的空中受油管、座舱、前起落架舱和后部设备舱、前条翼组成。苏-33对机身主要承重部件进行了加强,前起落架支柱直接与机身主要承力梁相连接,前轮起落架改为倒T字梁双轮式,可满足着舰时巨大的纵向过载要求,提高抗冲击过载强度。 苏33上增加了可动的前小翼,能满足舰上的低速起降性能。前小翼的偏转角为+7°~-70°,左右两小翼由同一根轴相连接,只能同向偏转而不能反向差动,与主翼布局在同一个平面上。前小翼与前边条在大的可控迎角下形成可控脱体涡,对主翼的上表面实现有利干扰,增大了升力系数,提高了飞机机动飞行时的纵向俯仰操纵性能和在舰上的起降能力。 苏-33的主翼为常规第三代战斗机通用的中等后掠翼,机翼的前缘后掠角为42°,后缘为15°,1/4弦线为37°,翼型为常规的非超临界翼型,翼根相对厚度为6%,翼梢为4%,外翼前缘装有全翼展机动襟翼,后缘装有副襟翼,在四余度电传飞控下可以自动控制机翼弯度,改变飞行时的升阻比。为了增加飞机在舰上的起降能力,苏-33较苏-27增加了主翼面积,并把苏-27后缘半翼展的整体式副襟翼改为机翼内侧的两块双开缝增升襟翼。在外翼内侧的双开缝增升襟翼之间的位置上安装有机翼折叠铰链,通过液压折叠机构把外翼分为固定翼段和可折叠翼段两部分,通过布置在机翼折叠机构开缝处后段的液压作动筒来控制机翼的打开和折叠,有利于减小在甲板上放置的面积,相应增加了甲板上的战机容量。 苏-33发动机的进气道位于主机翼翼身融合体的前下方平滑区内,在过渡翼身融合体的屏蔽下,即使在大迎角下流场中仍能保持顺畅稳定。进气道下表面设有格栅式开缝辅助进气口,可以为保证在大迎角条件下发动机正面流场的气流不发生大的畸变而设计的。 苏-33的尾翼由一对双垂尾和水平尾翼组成。垂尾由垂直安定面和方向舵组成,且垂直地布置在两台发动机的外侧,垂尾的前缘后掠角为40°,垂直向下延伸成腹鳍,提供足够的侧向稳定性,保证在侧风条件下能顺利起降。水平尾翼为全动式平尾,布置在垂尾后缘和发动机舱之间,既可同向偏转以满足俯仰操纵要求,又可反向差动偏转以提高横向操作性能。苏-27系列飞机之所以能完成“眼镜蛇”机动动作,除反映出其放宽静不安定和高大垂尾侧向稳定设计外,平尾优异的俯仰操纵权限和实时反应能力,特别是瞬时作用力矩功不可没。 F/A-18E/F “超级大黄蜂”F/A-18E/F采用气泡式座舱、半硬壳式结构、前边条翼、中等后掠角中单翼、中等展弦比中弧面、可变弯度的前/后缘机动襟翼、差动平尾和双发双垂尾气动外形和放宽静稳定度技术。整个机体由前机身、中央翼和后机身三段组成。机长18.3米,折叠后9.3米,机翼面积46.5米2,空重13.4吨。 F/A-18E/F前机身由可向旁边折反的雷达天线整流罩、前设备舱、机炮舱、

歼-10气动布局特点及战斗性能分析

歼-10气动布局特点及战斗性能分析 歼-10战斗机采用了鸭式气动布局,这在我国研制成功的战斗机中还是首次。在世界战斗机的大家庭中,有一些比较先进的战斗机也采用了类似的布局,如瑞典的Saab-37“雷”、JAS-39,法国的“幻影”ⅢNG、“幻影”4000、“阵风”,以色列的“幼狮”C2、“狮”,俄罗斯的米格1.44以及西欧四国合作研制的EF2000“台风”等等。随着航空技术的深入发展,新型鸭式战斗机方案不断出现,并跻身先进战斗机的行列。那么,鸭式布局战斗机有些什么特点,其气动特性又如何呢? 高低速性能好 采用后尾式和无尾式气动布局的普通高速飞机,由于种种原因,其低速性能往往不佳。而鸭式布局则可以满足战斗机对高、低速。性能的要求。因为这种布局能很好地兼顾高速飞机所需的细长体外形和飞机实现短距起落所需的高配平升力系数。这是因为:一方面,细长鸭式布局在由亚声速过渡到超声速时,其焦点移动而引起的安定度增量比后尾式要小,这对高速机动飞行是有利的。另一方面,在大迎角进场或飞行时,它又能产生比后尾式和无尾式飞机高得多的配平升力。这说明它亦适合低速飞行。 配平升力高 图一是静安定度的后尾式、无尾式和鸭式飞机纵向配平方式的示意图。飞机在空中做定常水平飞行时,其重力与升力,推力和阻力是相等的,全机力矩也是平衡的。为获得配平力歼-10A用的鸭式布局方案虽然在中国早期歼-9概念中曾有过体现,但其中涉及的诸多技术问题是在歼-10上获得了最终的完美解决刘应华摄矩,无尾式及后尾式飞机需要付出一定的升力代价。在飞行中,机翼的升力Y及全机零升力矩Mzo对飞机重心要产生一个低头力矩。为平衡这个力矩,无尾式飞机要上偏升降襟翼,后尾式飞机要上偏转升降舵,以便产生一个负升力去配平,致使全机升力下降。当然,小迎角飞行时平尾的负荷不大,它付出的升力代价也很小。但是当飞机以大迎角飞行,并采取增升措施时(例如放襟翼)形势就恶化了。因为增升时会带来很大的附加低头力矩。为配平这些附加力矩,平尾后缘必须上偏很大的角度,这将使增升效果显著降抵。倘若机翼采用高度增升的方法。有时连配平都很困难了,只好在平尾上采取高度增加负升力的措施。国外不乏这方面的例子。美国的F-4飞机由于在后缘襟翼上采取了附面层控制技术,使低头力矩增加很多,结果尾翼在配平时已接近失速,只好对平尾进行修改,使前缘上翘,将翼型变为反弯度的。而日本的PS-1水上飞机则是在尾翼下表面吹气以增加负升力。后尾式布局尚且如此, 无尾式飞机配平高升力就更困难了。 相比之下,鸭式布局比后尾式及无尾式布局优越之处在于:其抬头俯仰力矩可由飞机重心前的正升力面(鸭翼)提供。这真是一举两得:既提供了配平力矩,又增加了升力。那么为什么以前人们很少采用鸭式布局呢?这是因为常规的鸭式飞机有三大缺点:(1)前翼对主翼存在着强烈的下洗,使主翼升力降低。尽管前翼的升力是正的,弥补了部分升力损失,但配平时的总升力不见得比后尾式高很多。(2)鸭式布局配平问题不好解决。一般情况下。鸭翼的负荷要比尾翼大,往往为尾翼的3~4倍。因为把鸭翼放到前面,全机焦点随之前移,重心也需向前调整。这样鸭翼

未来大型客机气动布局设计.

未来大型客机气动布局设计 我国C919大型客机项目于2009年通过了工业和信息化部组织的专家评审,顺利进入总体设计阶段,主要部件和系统的供应商已基本确定,并采取合资、联合研发与研制、设计要求是飞机设计的依据,现代客机设计要求主要包括飞机性能、安全性、可靠性和维护性、机载系统性能等内容,还要满足民航当局的适航管理条例要求。转包生产等形式与供应商合作,以期实现飞机零部件生产的本土化以及降低飞机的直接使用成本。本文将以未来大型客机为背景,重点探讨气动布局设计问题,提出我国今后民用客机布局设计技术发展的建议。 未来大型客机设计要求 设计要求是飞机设计的依据,现代客机设计要求主要包括飞机性能、安全性、可靠性和维护性、机载系统性能等内容,还要满足民航当局的适航管理条例要求。比如,空客公司A380主要采用增加座位的技术途径达到客公里成本降低10%以上的设计目标;波音公司787综合使用复合材料、高效发动机、健康监测、先进制造工艺等技术,满足了降低20%燃油消耗的设计要求,同时改善了飞机的舒适性和可维护性;我国C919的设计目标是在性能指标与现役同级别先进客机相当的前提下,直接使用成本同比降低10%。 安全性、经济性、环保型和舒适性仍然是下一代大型客机发展的主要设计要求,也是客机的评价准则体系。波音公司将重点从气动、推进、材料和系统技术入手,力图从提高推进系统可靠度、材料、电击保护、结构和系统健康监测等方面增强飞机安全性,从减少耗油率和维护费用、减轻材料和结构重量、降低制造成本等方面提高飞机的经济性,从降低推进系统噪声、减少排放物污染、能源优化等方面加强环境保护;从降噪和人性化客舱设计等方面提高乘坐的舒适性。空客公司也提出了下一代民机发展的战略目标,明确了更安全、更经济、更环保和更舒适的设计思想。 针对未来航空环境,美国航空航天局(NASA)于2008年10月请求工业界部门和学术单位对满足2030年代能源效率、环境和运营目标要求的未来商用飞机的先进概念进行研究,即N+3代客机计划,也就是在20~25年之后投入使用、比现役客机先进三代的飞机。N+3代客机的初步设计目标如下: (1)飞行噪声比现在使用的联邦航空管理局噪声标准低71dB,当前的标准在机场边界内容纳了部分有害噪声; (2)氮氧化物排放比现在标准减少75%以上,现在使用的国际民航组织航空环境保护第六阶段标准旨在改善机场周边的空气质量; (3)燃料消耗降低超过70%,以此降低航空旅行的温室气体排放和旅行成本; (4)具备在大都会地区优化使用多个机场跑道起降的能力,以减轻空中交通拥堵和延误,

飞机气动设计分析报告

. 飞机气动设计分析 ——由图-22M和B-1B浅析现代超音速轰炸机设计 SYXXXXXXXXX 一、超音速轰炸机简介 众所周知,轰炸机是用于从空中对地面或水上目标进行轰炸的飞机,具有载弹量大,飞行距离远的特点。飞机开始投入战争后不久,便出现了专门用于对地面实施轰炸的轰炸机。一二次世界大战期间,轰炸机得到迅速发展和广泛使用,以美 国B-17、B-29为代表的全金属四发重型轰炸机的出现是轰炸机发展到新水平的标志,这时的轰炸机载弹量可达8至9吨,航程在5000公里上下。战后,航空进入喷气时代,轰炸机也不例外,在现代喷气式轰炸机问世以来的50多年里,轰炸机的发展已经经历了三个明显的阶段(如图1所示): 图1 喷气式轰炸机发展的三个阶段 第一阶段是上世纪60、70年代出现的亚音速喷气式轰炸机,以苏联图-16(我国轰六的原型)、英国的三V轰炸机(“胜利”、“火神”、“勇士”)、美国B-47和

B-52等为代表。这一时期,飞机设计上的主要特点是以喷气动力取代螺旋桨动 力,首先解决的是有无问题,在飞机的外形和结构设计上与之前的螺旋桨动力轰炸机并无较大区别。这类轰炸机由于飞行速度较慢,雷达散射截面积较大,在完整的现代防空体系面前不堪一击,突防能力较弱,但到目前为止仍有很大一部分的亚音速轰炸机在各国空军服役。 . 页脚.. . 第二阶段是上世纪70、80年代出现的超音速轰炸机。超音速轰炸机往往采用了变后掠翼设计,解决了超音速轰炸机研制初期如B-58轰炸机遇到的速度与航程间的矛盾,这一阶段的代表是美国B-1B和苏联图-160、图-22M等。超音速战 略轰炸机的出现使得战略轰炸机的突防能力大大增强,打击能力也相应提高。第三阶段是上世纪末出现的隐身轰炸机,使轰炸机的战场生存能力和威慑力得到 更大的提高。目前,隐身战略轰炸机只有美国的B-2一种。 可见,超音速轰炸机的出现是为了弥补亚音速轰炸机飞行速度较慢且无隐身能力的缺点,从而实现超音速突防,快速抵达攻击范围或目标上空实施打击。对于典型的战术轰炸任务,超音速轰炸机往往首先在正常飞行高度以亚音速巡航,到达 突防区域时以略高于1的马赫数(1.1-1.5)进行低空或超低空飞行,利用地形或如B-1B本身所具有的一定的隐身能力规避雷达跟踪,依靠高速和防空系统反应 时间突防,飞抵目标上空时减速至亚音速投弹。因此,超音速轰炸机需要兼具较好的亚音速巡航能力以及超音速飞行性能,同时还应具有一定的低速机动能力。 这使得超音速轰炸机出现初期遇到了瓶颈,美国的B-58轰炸机(图2所示)具 有超音速飞行的能力但由于其气动设计并未兼顾巡航性能,航程大大折扣,往往需要在机身下挂载副油箱解决问题,使其有效载荷减少,最终只能作为单枚核弹的载机而不能执行常规轰炸任务。在可变后掠翼出现之后,航程和速度之间的矛盾就有了很好的解决方法,轰炸机可以在亚音速巡航时用较小的后掠角,较大的展弦比获得较大的升阻比增大航程,在超音速突防时用较大的后掠角减小波阻。不约而同地,几乎所有的超音速轰炸机都采用了可变后掠翼的气动布局。. 页脚.. .

气动布局

飞机的气动布局 飞机外形构造和大部件的布局与飞机的动态特性及所受到的空气动力密切相关。关系到飞机的飞 行特征及性能。故将飞机外部总体形态布局与位置安排称作气动布局。其中,最常采用的机翼在前,尾翼在后的气动布局又叫作常规气动布局。 气动布局形式是气动布局设计中首先需要考虑的问题。目前飞机设计中主要采用的包括以下几种:正常布局;鸭式布局;变后掠布局;三翼面布局;无平尾布局;无垂尾布局;飞翼布局。 正常布局是迄今为止被使用最多的一种布局形式,目前仍然被应用于各类飞机之上。 鸭式布局在早期未能得到足够的重视,但随着超音速时代的来临,鸭式布局的优点逐渐 为人们所认识。目前广泛应用于战斗机之上的近距鸭式布局利用鸭翼与机翼的前缘分离 涡之间相互有利干扰使涡系更加稳定,推迟了涡的破裂,为大迎角飞行提供了足够的涡 升力,显著的提高了战斗机的机动性。此外,采用ACT和静不稳定的鸭式布局的优点则更 为突出。 变后掠布局较好的兼顾了飞机分别在高速和低速状态下对气动外形的要求,在六七十年代曾得到广泛应用,但由于变后掠结构所带来的结构复杂性、结构重量的激增,再加上 其它一些更为简单有效的协调飞机高低速之间矛盾的措施的使用,在新发展的飞机中实 际上已经很少有采用这种布局形式的例子了。 三翼面布局形式可以说最早出现在六十年代初,米高扬设计局由米格-21改型而得的Е- 6Т3和Е-8试验机。三翼面的采用使得飞机机动性得到提高,而且宜于实现直接力控制 达到对飞行轨迹的精确控制,同时使飞机在载荷分配上也更趋合理。 无平尾、无垂尾和飞翼布局也可以统称为无尾布局。对于无平尾布局,其基本优点为: 超音速阻力小和飞机中两较轻,但其起降性能及其它一些性能不佳,总之以常规观点而 言,无尾布局不能算是一种理想的选择。然而,随着隐身成为现代军用飞机的主要要求 之一以及新一代战斗机对超音速巡航能力的要求,使得无尾——特别是无垂尾形式的战 斗机方案越来越受到更多的重视。 对于一架战斗机而言,实现无尾布局将带来诸多优点。首先是飞机重量显著减少;其次,因为取消尾部使全机质量更趋合理地沿机翼翼展分布,从而可以减小机翼弯曲载荷, 使结构重量进一步减轻;另外,尾翼的取消可以明显减小飞机的气动阻力,同常规布局 相比,其型阻可减小60%以上;不言而喻,取消尾翼之后将使飞机的目标特征尺寸大为减 小,隐身性能得到极大提高;最后尾翼的取消同时减少了操纵面、作动器和液压系统, 从而也改善了维修性和具有了更低的全寿命周期成本。 在有垂尾的常规飞机上,垂尾的作用是提供偏航/滚转稳定性,尤其是偏航稳定性,此外垂尾的方向舵还参与飞机的偏航控制。取消垂尾之后,飞机将变为航向静不稳定,同时 丧失偏航控制能力。采用放宽静稳技术之后,无垂尾飞机可以是航向静不稳的,但不能 是不可控的。针对这一问题可以采用推力矢量技术加以解决。推力矢量技术作为新一代 战斗机高机动性的主要动力目前已经得到了较为完善的发展,大量实验都证明,在无垂 尾的情况下,推力矢量具有足够有效的操纵功能。

飞机的气动布局与机翼的几何参数

飞机的气动布局与机翼 的几何参数 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

飞机的气动布局与机翼的几何参数 ??? 人类向往飞行是从模仿鸟类飞行开始的。但是由于鸟类飞行机理的复杂性,至今未能对扑翼机模仿成功。 ??? 而真正促使人们遨游天空的,也许是受中国风筝的启发,在航空之父凯利的科学理论指导下,将动力和升力面分开考虑,而发明了固定翼飞机。 ??? 飞机是二十世纪人类史最伟大的科学成就。是人类最快捷、舒适、高效、安全的交通运输工具,在国家安全、社会和国民经济的发展中占有极其重要的地位。 当年李白受安史之乱蒙冤沦为囚犯,被流放到白帝城后,朝廷大赦天下,他立刻返舟东下,重出三峡,欣喜的心情无法言表: ?? ?朝辞白帝彩云间,千里江陵一日还。两岸猿声啼不住,轻舟已过万重山。 ??? 如果李白乘飞机,不知如何写佳作。是否同意写成如下: ??? 朝辞白帝彩云间,千里江陵一时还。两耳风声鸣不住,轻机已过万重山。 人类要想自由飞翔,必须做到: 1、必须有良好的气动外形 2、必须有轻巧的结构 3、必须有相当的动力 4、必须达到一定的速度 5、必须有机敏的操纵机构 6、必须有导航系统 与鸟的飞行不同,飞机在空中能够飞行是依靠与空气的相对运动,而产生作用在飞机上的力和力矩来实现的。如对于水平等速直线飞行而言,从飞机受力条件,有 ? L=G??? L?V ?? (升力与重力平衡) ¥ ? (推力与阻力平衡) ? F=D??? D//V ¥ ? M=0????????????? (俯仰力矩保持守恒)

飞机产生升力必须具备的条件: (1)有空气(飞机在空中飞行是靠作用于飞机上的空气动力)。此外,喷气发动机的氧气也是取源于空气。 (2)必须存在一定的飞行速度(飞机和空气之间要有一定的相对运动,产生空气动力)。 (3)要有适当的气动外形、受力大小和飞行姿态。 (4)必须存在保持和改变飞行状态的能力。 1、飞机的气动布局 ??? 不同类型的飞机、不同的速度、不同的飞行任务,飞机的气动布局是不同的。 ??? 何为飞机的气动布局 广义而言:指飞机主要部件的尺寸、形状、数量、及其相互位置。 飞机的主要部件有:推进系统、机翼、机身、尾翼(平尾、立尾)、起落架等。 按机翼和机身连接的相互位置分为:

相关文档
相关文档 最新文档