文档库 最新最全的文档下载
当前位置:文档库 › (完整word版)大学物理下公式总结(西交大吴百诗)

(完整word版)大学物理下公式总结(西交大吴百诗)

(完整word版)大学物理下公式总结(西交大吴百诗)
(完整word版)大学物理下公式总结(西交大吴百诗)

10.1

10.2 电场强度:点电荷 02

0041r r q q E πε== 电荷离散分布∑=)(

41

2

0r r q E i i πε

10.3

10.4

电势能:在数值上等于把该电荷从该点移动到电势能零参考点时,静电力作的功。??=

="

0"0"0"a

a a dl

E q A W

10.5

电势差:

??=-=b

a b a ab dl

E u u U

点电荷的电势:

等势面——在电场中电势相等的点所连成的曲面。

电势与电场强度的微分关系:任意一场点P 处电场强度的大小等于沿过该点等势面法线方向上电势的变化率,负号表示

10.7 导体的静电平衡:导体内部的电场强度处处为零,导体表面处的电场强度的方向,都与导体表面垂直,大小与该处

孤立导体的电容:u

q C =

电容器的电容:

2

1u u q C -=

典型电容器的电容:平行板电容器

d S u u q C 021ε=-=

球形电容器1

2210214R R R R u u q

C -=

-=πε 圆柱形电容器)

ln(21

2021R R L u u q

C πε=

-=

10.8

10.9 介质中的电场r

E E ε0=

10.11

11.1

11.2毕奥-

11.3 磁通量dS B dS B d m

θcos =?=Φ ?

?=ΦS

m S d B

11.4安培环路定理:在稳恒电流的磁场中,磁感应强度沿任何闭合环路L 的线积分,等于μ0乘以穿过L 的所有电流强

11.5磁场对载流导线的作用力:B l Id F L

??=

IS p m = 磁力的功:

?Φ?=I A

11.6 带电粒子在磁场中的运动:洛伦兹力B v q F ?=

圆周运动:R

mv qvB 2

=

磁介质分类:顺磁质1>r μ,抗磁质1>r μ

顺磁质的磁性主要来源于分子磁矩的转向;抗磁质的磁性来源于抗磁效应;铁磁质产生的原因是具有磁畴,铁磁质有磁滞现象。磁滞现象表明铁磁质的磁化过程是不可逆过程。

12电动势:将单位正电荷从负极经过电源内部搬到正极,非静电力所作的功。q

A k =ε,

闭合回路L 在非静电力的一段电路ab

楞次定律:闭合回路中,感应电流的方向总是使它自身所产生的磁量反抗引起感应电流的磁通量的变化。楞次定律是能量守恒定律在电磁感应中的体现。

动生电动势:导体在磁场中运动,其内部与洛伦北力相对应的非静电性场强v ×B 沿导体的线积分为动生电动势

感生电动势:变化的磁场会感应出有旋电场Ev ,Ev 沿任一闭合路径的线积分等于该路径上的感生电动势,等于这一闭

互感:由于回路一中电流发生变化,而在另一回路中产生电动势的现象。dt

dI M -=ε,I

M m Φ=

自感磁能:22

1LI W m = 磁能密度μ

μ2

2122121B H BH w m ===,磁场能量:?

=V

m BHdV W 2

1

全电流安培环路定理:D

L

I I d +=??

麦克斯韦方程组:(1)电场高斯定理

???

? ??==??∑V S i dV q S d D ρ)(内 (2)法拉第电磁感应定律d t B

d S L ???-=???? (3)磁场的高斯定理:0=??

S

S d B

(4)全电流的安培环路定律:D

L

I I l d H +=??

13电磁波是交变电磁场在空间的传播。光是电磁波,光是电场强度E 和磁场强度H 的矢量波,

)(c o s ),(0u x

t w E t x E -=)(c o s

),(0u x t w H t x H -= 在空间任一点,E 和H

波速εμ

1=

u

电磁场的能量密度)(222

1H E w w w m e με+=+= 坡印亭矢量(能流密度))

(cos 200u x t w -?=?= 光强(一个周期T 内平均能流密度)20

2121

1

E H

E EHdt T

I T

t t

με=

==?+

光波的叠加:非相干21'I I I +=,相干??++=cos 2'2121I I I I I (条件: 同频率、相差恒定、光矢量振动方向平行) 获得相干光的方法:分波阵面法(杨氏干涉),分振幅法(薄膜干涉)

杨氏双缝干涉:与缝平行、等宽、等间距、明暗相间、对称分布的干涉条纹。明纹(干涉加强)2

2λδk ±=暗纹(干涉

相消)2)12(λδ+±=k ,相邻明(暗)条纹间距d

D x λ=?

光程:在相同时间内,光在介质中传播的路程r 可折合为光在真空中传播的相应路程nr(n 为介质的折射率)。在不同介质中,同一频率单色光的波长是不同的。i i

i r n x ∑=

光程差:1122r n r n -=δ

相位差:)(21

1220

r n r n -=?λπ? 薄膜等厚干涉2

cos 22

λγδ+=d n

明纹条件:...3,2,1,2

2=?

=k k λ

δ

暗纹条件:...2,1,0,2

)12(=?+=k k λδ

劈尖干涉:相邻明(暗)条纹之间距a 应满足2

sin λθ=a

牛顿环:明、暗纹半径分别为...3,2,1,2

)12(=?-=k R k r λ明

,...2,10,,k R k r ==λ暗

牛顿环快速检测透镜曲率:不出现牛顿环=达到标准值要求;牛顿环条纹越密、误差越大,条纹不圆说明被测件曲

率半径不均匀,此时用手均匀轻压样板,条纹向边缘扩展说明零级条纹在中心,则被测件曲率半径小于标准件;若条纹向中心收缩,说明零级条纹在边缘,则被测件曲率大于标准值。

迈克耳逊干涉仪:若M1平移Δd 时,干涉条纹移过N 条,则有2

λN d =?(可测量长度量或波长)

惠更斯—菲涅耳原理:从同一波前上的各点发出的次波是相干波,经过传播在空间某点相遇时的叠加是相干叠加。

?-

=S

dS r

r

wt Fk P E )

2cos()

()(λ

πθ

单缝的夫琅和费衍射:两条边缘光线间的光程差:?δsin a = 暗纹条件:...3,2,1,2

2sin =±=k k a λ?

明纹条件:...3,2,1,2

)12(sin =+±=k k a λ?

圆孔衍射:经圆孔衍射后,一个点光源对应一个爱里斑,爱里斑的光强占总光强的84%。

瑞利判据:对于两个等光强的非相干物点,如果一个像斑中心恰好落在另一像斑的边缘(第一暗纹处),则此两像被认

望远镜的分辨率=

衍射光栅:光栅方程...2,1,0,sin )(=±=+k k b a λ? 主极大条纹:满足光栅方程的明条纹。主极大条纹的最大级数λ

)(b a k +<

缺级条件:a

b a k k +='

暗纹条件:kN m m b a N ≠±=+,sin )(λ?

获得偏振光的方法:通过偏振片;光在二界面的反射和折射;双折射。 马吕斯定律:入射偏振光光强为I 0,通过检偏器后,透射光的光强α20cos I I =

布儒斯特定律:自然光以布儒斯特角i B

双折射:一束光入射到各向异性的介质后出现两束折射光线的现象。两折射光线中有一条始终在入射面内,并遵从折射定律,称为寻常光,简称 o 光;另一条光一般不遵从折射定律,称非寻常光,简称 e 光。o

o

v c n =

8-9理想气体状态方程(克拉伯龙方程):气体摩尔数v vRT RT pV M

m

,==

理想气体的内能:vRT i

RT i M m E mol 2

2=?=

热力学第一定律:系统从外界吸收的热量,一部分使其内能增加,另一部分则用以对外界作功。A E E Q +-=)(12 准静态过程中功的计算:pdV pSdl fdl dA ===,?=

2

1

V V pdV A

准静态过程中热量的计算:)()(1

212T T C M m Q T T C M m Q P mol

V mol -=-=或

理想气体的内能:

dT

C T E T E T

T V ?+=0

)()(0

8.6等体过程)()(1212T T vC E E Q V -=-=

等压过程:A E E Q +-=)(12,)(12T T vC Q P -=,)(12T T vR A -=,)(1212T T vC E E V -=- 等温过程:A Q =,12ln V V vRT Q =,2

1ln p p vRT A Q ==

绝热过程:0=Q ,)()(1212T T vC E E A V --=--=,1C pV =γ,21C TV =-γ,31C V p =--γγ 循环过程:顺时针方向=工质对外做功=正循环=热机循环A Q Q =-21

逆时针方向=外对工质做功=逆循环=致冷循环A Q Q +=21 致冷系数:A

Q w 2=,Q2为从致冷对象中吸收的热量

热力学第三定律:不可能用有限的步骤使物体达到绝对零度

热力学第二定律(开尔文表述):不可能只从单一热源吸收收热量,使之完全转换为功而不不引起其他变化。第二类永动机是不可能制成的。实质:自然界的一切自发过程都是单方向进行的不可逆过程。

卡诺定理:(1)在温度分别为T1 与T2 的两个给定热源之间工作的一切可逆热机,其效率相同,都等于理想气体可逆卡诺热机的效率,即1

21211T T Q Q -=-=η。(2) 在相同的高、低温热源之间工作的一切不可逆热机,其效率都不可能大

于可逆热机的效率。

分子运动:一切宏观物体都是由大量分子组成的,分子都在永不停息地作无序热运动,分子之间有相互作用的分子力。 气体分子热运动统计规律:0===z y x

v v v ,分子速度坐标轴投影的统计平均值N

v

N v i

ix

i x ∑?=

,分子速度坐标轴投

影的平方的统计平均值N

v

N v i

ix

i x

∑?=2

2,平均平动动能N

v N v i

i i ∑?=

=2

2

122

1μμε

统计规律所反映的总是与某宏观量相关的微观量的统计平均值。统计规律和涨落现象是分不开的。

理想气体压强:单位时间内与器壁相碰撞的所有分子作用于器壁单位面积上的总冲量的统计平均值。

εμn v n p 3

2231==,22

1v με

=(分子的平均平动动能) 理想气体的温度:kT v 2

3221==με(分子平均平动动能只与温度T 有关,和气体种类无关)

温度的本质是物体内部分子运动剧烈程序的标志。

理想气体在平衡态下分子速率分布函数:kT

v e

v

v f 222

/324)(μμπ-

?? ?=

任一速率间隔v1-v2利用f(v)求统计平均值:平均速率M

RT kT dv v vf v 59.18)(0

===?

πμ

方均根速率:M

RT kT v 73.132==μ

最概然速率:M

RT kT

v p

41

.12==

μ

重力场中粒子按高度的分布:kT

gh

e n n μ-

=0

等温气压公式:kT

gh

e

p nkT p μ-

==0

玻尔兹曼分布律:在势场中的分子总是优先占据势能较低的状态。

是分子的重力势能gh e

n e

n n p kT

kT

gh p μεεμ===-

-

,00

dxdydz e

n ndV dN kT

p

ε-

==0

能量按自由度均分定理:处理于平衡态的理想气体分子无论作何种运动,相应于分子每个自由度的平均动能都应相等,并且都等于kT/2。如果气体分子自由度为i ,则该分子的平均总动能为ikT/2。

理想气体的内能:1mol 理想气体:RT i RT i N E 2

20

==

vmol 理想气体:RT i v RT i M m E 2

2==

气体分子的平均碰撞频率:n v d v d n z 222ππ==

气体分子的平均自由程:p

d kT d n z

v 22221ππλ==

=

15普朗克能量子假设:振子的能量不连续。频率为ν的振子的能量ε只能取h ν(能量子)的整数倍,即ε=nh ν。 爱因斯坦光子假说:一束光就是一束以光速运动的粒子流,这些粒子称为光子;频率为v 的光的每一光子具有的能量为hv ,它不能再分割,而只能整个地被吸收或产生出来。 爱因斯坦光电效应方程:22

1m

mv A h +=ν

光的波粒二象性:光子的能量hv mc E

==2,光子的质量λ

c h c hv m ==2

,光子的动量

v h mc p ==

康普顿效应:x 射线经物质散射后,散射线中有两种波长,其中一种波长比入射线的长,波长的改变量阻塞散射角的增大而增大。nm c

m h c

c 0024.0,2

sin 2020===-=?λθλλλλ

玻尔氢原子理论:(1)原子只能处在一系列具有不连续能量的稳定状态。(2)当原子从一个定态跃迁到另一定态,会发射或吸收一个频率为v kn 光子,h

E E v n k kn

||-=。(3)电子在稳定圆轨道上运动时,其轨道角动量L=mvr 必须等于h/2

π的整数倍π

2h n mvr L ==。

不确定关系:微观粒子的一些成对的物理量不可能同时具有确定的值。

动量-坐标不确定关系π

2,2h h h p x x

=≥??

能量-时间不确定关系2

h t E ≥??

定态薛定谔方程:描述粒子在稳定力场中的运动0)()(2)(222222

2=ψ-+ψ???

? ????+??+??r V E h

m r z y

x

一维无限深势阱中的粒子:束缚在无限深势阱中的粒子的定态波函数具有驻波的形式,且波长λ

n

满足条件

...3,2,1,2

==n n

a n

λ.可以认为势阱内波函数是由传播方向相反的两列相干波叠加而成。

粒子能量:122

2

28E n ma

h n E n

==

17电子共有化:内层电子能量 E 低,穿过势垒概率小,共有化程度低;外层电子能量 E 高,穿过势垒概率大,共有化程度高。

能带:由N 个原子靠近而形成的晶体,原来的每个能级都将分裂成N 个新能级。晶体点阵间距越小,能带越宽,△E 越大。外层电子共有化显著,能带(△E )宽。 N 原子晶体:l 支壳层最多容纳电子数 2(2l +1)N

绝缘体:价带被填满,禁带较宽(ΔE=3~6eV ),电子很难跃迁到空带上去。 半导体:价带被填满,禁带宽度比约缘体要小得多(ΔE=0.1~1.5eV )。

杂质半导体:在纯净的半导体中掺入微量其他元素的原子,半导体的导电性能显著改变。n 型半导体(掺5价元素,电子型)p 型半导体(掺3价元素,空穴型)

pn 结:一块半导体基片的两边分别为p 型半导体和n 型半导体。正向导电,反向绝缘。

光与粒子系统的相互作用一般说来有3种基本过程,即自发辐射、受激辐射和受激吸收。激光是基于受激辐射放大原理产生的一种相干辐射。

自发辐射:处于高能级的粒子,在没有外界影响的情况下,有一定概率自发地向低能级路迁,并发出一个光子。 受激辐射:处于高能级E 2的粒子,在频率为v=( E 2- E 1)/h 、光强为I 的入射光照射激励下,跃迁到低能级E 1上去,同时发射一个与入射光子完全相同的光子。

受激吸收:处于低能级E 1的粒子,在频率为v=( E 2- E 1)/h 、光强为I 的入射光照射下,吸收一个光子而跃迁到高能级E 2。

粒子数反转和光放大:若介质在外界能源激励下,可能使高能级上的粒子数大于低能级上的粒子数,这种状态称为粒子数反转态,光在其中传播时得以放大。Gz e I I

0=

激光器的基本构成:激光工作物质、激励能源和谐振腔。谐振腔可延长增益介质,提高光能密度,还能控制输出光的传播方向,选择激光输出波长。

激光的纵模:最简单的选纵模方法是缩短激光管的腔长,以增大纵模间隔,使Δv 范围内只有一个纵模能形成振荡。谐振频率nL

c k

v k

2=

大学物理下册知识点总结(期末)

大学物理下册 学院: 姓名: 班级: 第一部分:气体动理论与热力学基础 一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→=; m PV RT M ' =;P nkT = 8.31J R k mol =;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k = 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 中心位置:3(平动自由度)直线方位:2(转动自由度)共5个 3.气体分子的自由度 单原子分子 (如氦、氖分子)3 i=;刚性双原子分子5 i=;刚性多原子分子6 i= 4.能均分原理:在温度为T的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 1 2 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为: 2 k i kT ε=

大学物理电磁学公式总结

静电场小结 一、库仑定律 二、电场强度 三、场强迭加原理 点电荷场强 点电荷系场强 连续带电体场强 四、静电场高斯定理 五、几种典型电荷分布的电场强度 均匀带电球面 均匀带电球体 均匀带电长直圆柱面 均匀带电长直圆柱 体 无限大均匀带电平面 六、静电场的环流定理 七、电势 八、电势迭加原理 点电荷电势 点电荷系电势 连续带电体电势 九、几种典型电场的电势 均匀带电球面 均匀带电直线 十、导体静电平衡条件 (1) 导体内电场强度为零 ;导体表面附近场强与表面垂直 。 (2) 导体是一个等势体,表面是一个等势面。推论一电荷只分布于导体表面 推论二导体表面附近场强与表面电荷密度关系 十一、静电屏蔽 导体空腔能屏蔽空腔内、外电荷的相互影

响。即空腔外(包括外表面)的电荷在空腔内的场强为零,空腔内(包括内表面)的电荷在空腔外的场强为零。 十二、电容器的电容 平行板电容器 圆柱形电容器 球形电容器 孤立导体球 十三、电容器的联接 并联电容器 串联电容器 十四、电场的能量 电容器的能量 电场的能量密度 电场的能量 稳恒电流磁场小结 一、磁场 运动电荷的磁场 毕奥——萨伐尔定律 二、磁场高斯定理 三、安培环路定理 四、几种典型磁场 有限长载流直导线的磁场 无限长载流直导线的磁场 圆电流轴线上的磁场 圆电流中心的磁场 长直载流螺线管内的磁场 载流密绕螺绕环内的磁场 五、载流平面线圈的磁矩 m和S沿电流的右手螺旋方向六、洛伦兹力 七、安培力公式 八、载流平面线圈在均匀磁场中受到的合磁力 载流平面线圈在均匀磁场中受到的磁力矩 电磁感应小结 一、电动势 非静电性场强

电源电动势 一段电路的电动势 闭合电路的电动势 当 时,电动势沿电路(或回路)l 的正方向, 时沿反方向。 二、电磁感应的实验定律 1、楞次定律:闭合回路中感生电流的方向是使它产生的磁通量反抗引起电磁感应的磁通量变化。楞次定律是能量守恒定律在电磁感应中的表现。 2、法拉第电磁感应定律:当闭合回路l中的磁通量变化时,在回路中的 感应电动势为 若时,电动势 沿回路l 的正方向,时,沿反方向。对线图,为全磁通。 3、感应电流 感应电量 三、电动势的理论解释 1、动生电动势在磁场中运动的导线l以洛伦兹力为非电静力而成为一电源,导线上的 动生电动势 若,电动 势沿导线l 的正方向,若,沿反方向。动生电动势的大小为导线单位时间扫过的磁通量,动生电动势的方向可由正载流子受洛伦兹力的方向决定。直导线在均匀磁场的 垂面以磁场为轴转动。平面线 圈绕磁场的垂轴转动。 2、感生电动势变化磁场要在周围空间激发一个非静电性的有旋电场E,使在磁场中的导线l成为一电源,导线上的感生电动 势 有旋电场的环流 有旋电场绕磁场的变化率左旋。圆柱域匀磁场激发的有旋电 场 射光互相垂直,

完整word版,2017大学物理下归纳总结,推荐文档

大学物理下归纳总结 黄海波整理制作 2017-12-23于厦门 电学 基本要求: 1.会求解描述静电场的两个重要物理量:电场强度E 和电势V 。 2.掌握描述静电场的重要定理:高斯定理和环路定理(公式内容及物理意义)。 3.掌握导体的静电平衡及应用;介质的极化机理及介质中的高斯定理,电容器。 主要公式: 一、 电场强度 1 计算场强的方法(3种) 1、点电荷场的场强及叠加原理(简单计算要会) 点电荷系场强: i i i r r Q E 3 04 连续带电体场强: Q r dQ r E 3 4 (五步走积分法)(建立坐标系、取电荷元、写E d 、分解、积分) 2、静电场高斯定理:(电通量,高斯定律要重点掌握,书上和电学小测的几道题要会,会考计算题,选择判断,填空也会涉及) 物理意义:表明静电场中,通过任意闭合曲面的电通量(电场强度沿任意闭合曲面的面积分),等于该曲面内包围的电荷代数和除以0 。 对称性带电体场强: 3、利用电场和电势关系:(了解一下,考的概率不大) x E x U 二、电势 电势及定义: 1.电场力做功: 2 1 0l l l d E q U q A

2. 静电场环路定理:静电场的保守性质 物理意义:表明静电场中,电场强度沿任意闭合路径的线积分为0。 3.电势:)0(00 p p a a U l d E U ;电势差: B A AB l d E U 电势的计算:(会结合电场的计算考计算题) 1.点电荷场的电势及叠加原理 点电荷系电势: i i i r Q U 04 (四步走积分法)(建立坐标系、取电荷元、写dV 、积分) 2.已知场强分布求电势:定义法 l v p dr E l d E V 0 三、静电场中的导体及电介质,电容器 1. 弄清导体静电平衡条件及静电平衡下导体的性质(一定要掌握) 2. 了解电介质极化机理,及描述极化的物理量—电极化强度P v , 会用介质中的高斯定理, 求对称或分区均匀问题中的,,D E P v v v 及界面处的束缚电荷面密度 。(了解) 3. 会按电容的定义式计算电容。(掌握)

川师大学物理期末必考课后习题总结

13–6 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中[ C ] A.传播的路程相等,走过的光程相等 B.传播的路程相等,走过的光程不相等 C.传播的路程不相等,走过的光程相等 D.传播的路程不相等,走过的光程不相等 13–11 在杨氏干涉实验中,双缝间距为0.6mm双缝到屏的距离为1.5m,实验测得条纹间距为1.5mm求光波波长。 解:已知:d=0.6mm,D=1.5m,1.5mmx 14-1 波长为600nm的单色平行光,垂直入射到缝宽为a=0.60mm的单缝上,缝后有一焦距f’=60cm的透镜,在透镜焦平面上观察衍射图案。则,中央明纹的宽度为1.2mm, 两个第三级暗纹之间的距离为3.6m m . 14-7 在单缝弗朗和费衍射实验中,波成为λ的单色光垂直入射在宽度为a=4λ的单缝上,对应于衍射角为30度的方向,单缝处波正面可分成的半波带数目[ B ] A.2个 B.4个 C.6个 D.8个 11–1 如图11-1所示,几种载流导线在平面内分布,电流均为I,求它们在O点处的磁感应强度B。 (1)高为h的等边三角形载流回路在三角形的中心O处的磁感应强度大小为,方向垂直于纸面向外。 (2)一根无限长的直导线中间弯成圆心角为120°,半径为R的圆弧形,圆心O点的磁感应强度大小为 ,方向垂直纸面向里。 11–2 载流导线形状如图所示(图中直线部分导线延伸到无穷远),求点O的磁感强度B。 11–5 如图11-5所示,真空中有两圆形电流I1 和 I2 以及三个环路L1 L2 L3,则安培环路定理的表达式为

12–11 关于由变化的磁场所产生的感生电场(涡旋电场),下列说法正确的是[ B ]。 A.感生电场的电场线起于正电荷,终止于负电荷 B.感生电场的电场线是一组闭合曲线 C.感生电场为保守场 D.感生电场的场强Ek沿闭合回路的线积分为零 9 2 真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+P1和P2与两带电线 共面,其位置如图9-3所示,取向右为坐标x正向,则1 PE= , 2PE= 。 9 5 如9-7图,在点电荷q的电场中,选取以q为中心、R为半径的球面上一点A处为电势零点,则离 点电荷q为r的B处的电势为 97 关于高斯定理的理解有下面几种说法,其中正确的是[ D ]。 A.如高斯面上E处处为零,则该面内必无电荷 B.如高斯面内无电荷,则高斯面上E处处为零 C.如高斯面上E处处不为零,则高斯面内必有电荷 D.如高斯面内有净电荷,则通过高斯面的电通量必不为零 E.高斯定理对变化电场不适用 9–18 (1)设匀强电场的电场强度E与半径为R的半球面的轴线平行,如图9-23(a)所示,试计算通过此半球面的电场强度通量。 (2)/6,如图9-23(b)所示,试计算通过此半球面的电场强度通量

大学物理物理知识点总结

y 第一章质点运动学主要内容 一 . 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动

大学物理物理知识点总结!!!!!!

y 第一章质点运动学主要容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动程 ()r r t =r r 运动程的分量形式() ()x x t y y t =???=?? 位移 是描述质点的位置变化的物理量 △t 时间由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和向的物理量) 平均速度 x y r x y i j i j t t t u u u D D ==+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度向是曲线切线向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动

大学物理上知识点整理

大学物理上知识点整理 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第2章质点动力学 一、质点: 是物体的理想模型。它只有质量而没有大小。平动物体可作为质点运动来处理,或物体的形状 大小对物体运动状态的影响可忽略不计是也可近似为质点。 二、力: 是物体间的相互作用。分为接触作用与场作用。在经典力学中,场作用主要为万有引力(重力),接触作用主要为弹性力与摩擦力。 1、弹性力:(为形变量) 2、摩擦力:摩擦力的方向永远与相对运动方向(或趋势)相反。 ?固体间的静摩擦力:(最大值) ?固体间的滑动摩擦力: 3、流体阻力:或?。 4、万有引力: ?特例:在地球引力场中,在地球表面附近:。 ?式中R为地球半径,M为地球质量。 ?在地球上方(较大),。 ?在地球内部(),。

三、惯性参考系中的力学规律?牛顿三定律 牛顿第一定律:时,。牛顿第一定律阐明了惯性与力的概念,定义了惯性系。 牛顿第二定律: 普遍形式:; 经典形式:(为恒量) 牛顿第三定律:。 牛顿运动定律是物体低速运动()时所遵循的动力学基本规律,是经典力学的基础。 四、非惯性参考系中的力学规律 1、惯性力: 惯性力没有施力物体,因此它也不存在反作用力。但惯性力同样能改变物体相对于参考系的运动状态,这体现了惯性力就是参考系的加速度效应。2、引入惯性力后,非惯性系中力学规律: 五、求解动力学问题的主要步骤 恒力作用下的连接体约束运动:选取研究对象,分析运动趋势,画出隔离体示力图,列出分量式的运动方程。变力作用下的单质点运动:分析力函数,选取坐标系,列运动方程,用积分法求解。 第3章机械能和功 一、功

大学物理下册知识点总结材料(期末)

大学物理下册 学院: : 班级: 第一部分:气体动理论与热力学基础一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→=; m PV RT M ' =;P nkT = 8.31J R k mol =;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k = 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 第一部分:气体动理论与热力学基础 第二部分:静电场 第三部分:稳恒磁场 第四部分:电磁感应 第五部分:常见简单公式总结与量子物理基础

中心位置:3(平动自由度) 直线方位:2(转动自由度) 共5个 3. 气体分子的自由度 单原子分子 (如氦、氖分子)3i =;刚性双原子分子5i =;刚性多原子分子6i = 4. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 12 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为:2 k i kT ε= 五. 理想气体的能(所有分子热运动动能之和) 1.1mol 理想气体2 i E RT = 5. 一定量理想气体()2i m E RT M νν' == 九、气体分子速率分布律(函数) 速率分布曲线峰值对应的速率 v p 称为最可几速率,表征速率分布在 v p ~ v p + d v 中的分子数,比其它速率的都多,它可由对速率分布函数求极值而得。即 十、三个统计速率: a. 平均速率 M RT M RT m kT dv v vf N vdN v 60.188)(0 === == ??∞ ∞ ππ b. 方均根速率 M RT M k T v dv v f v N dN v v 73.13)(20 2 2 2 == ? = = ??∞ C. 最概然速率:与分布函数f(v)的极大值相对应的速率称为最概然速率,其物理意义为:在平衡态条件下,理想气体分子速率分布在p v 附近的单位速率区间的分子数占气体总分子数的百分比最大。 M RT M RT m kT v p 41.1220=== 三种速率的比较: 各种速率的统计平均值: 理想气体的麦克斯韦速率分布函数 十一、分子的平均碰撞次数及平均自由程: 一个分子单位时间里受到平均碰撞次数叫平均碰撞次数表示为 Z ,一个分子连续两次碰撞之间经历的平均自由路程叫平均自由程。表示为 λ 平均碰撞次数 Z 的导出: 热力学基础主要容 一、能 分子热运动的动能(平动、转动、振动)和分子间相互作用势能的总和。能是状态的单值函数。 对于理想气体,忽略分子间的作用 ,则 平衡态下气体能: 二、热量 系统与外界(有温差时)传递热运动能量的一种量度。热量是过程量。 )(12T T mc Q -=)(12T T Mc M m -=) (12T T C M m K -= 摩尔热容量:( Ck =Mc ) 1mol 物质温度升高1K 所吸收(或放出)的热量。 Ck 与过程有关。 系统在某一过程吸收(放出)的热量为: )(12T T C M m Q K k -= 系统吸热或放热会使系统的能发生变化。若传热过程“无限缓慢”,或保持系统与外界无穷小温差,可看成准静态传热过程。 准静态过程中功的计算: 元功: 41 .1:60.1:73.1::2=p v v v Z v = λn v d Z 2 2π=p d kT 22πλ= n d Z v 221πλ= = kT mv e v kT m v f 22232 )2(4)(-=ππ?∞ ?=0 )(dv v f v v ? ∞ ?= 22)(dv v f v v ∑∑+i pi i ki E E E =内) (T E E E k =理 =RT i M m E 2 =PdV PSdl l d F dA ==?=

(完整word版)大学物理公式总结,推荐文档

一、质点力学基础: (一)基本概念: 1、参照系,质点 2、矢径:k z j y i x r ???++=ρ 3、位移:()()()k z z j y y i x x k z j y i x r r r ??????12121 212-+-+-=++=-=????ρ ρρ 4、速度:k dt dz j dt dy i dt dx k j i dt r d t r z y x t ??????lim ++=++=== →υυυ??υ? ρ ρρ 5、加速度:k dt d j dt d i dt d k a j a i a dt r d dt d t a z y x z y x t ??????lim υυυυ?υ??++=++====→220ρ ρρρ 6、路程,速率 7、轨迹方程:0=),,(z y x f 8、运动方程:)(t r r ρ ρ=, 或 )(t x x =, )(t y y =, )(t z z = 9、圆周运动的加速度:t n a a a ρρρ+=; 牛顿定律:a m dt p d F ρ ρρ==; 法向加速度:R a n 2 υ= ; 切向加速度:dt d a t υ= 10、角速度:dt d θ ω= 11、加速度:22dt d dt d θωα== 二、质点力学中的守恒定律: (一)基本概念: 1、功:?? =?= b a b a dl F l d F A θcos ρρ 2、机械能:p k E E E += 3、动能: 22 1 υm E k = 4、势能:重力势能:mgh E p =; 弹性势能:221kx E p = ; 万有引力势能:r Mm G E p -= 5、动量: υρρ m p =; 6、冲量 :??=t dt F I 0 ρ 7、角动量:p r L ρρρ?=; 8、力矩:F r M ρρρ?= (二)基本定律和基本公式: 1、动能定理:2 0202 121υυm m E E A k k -= -=外力 (对质点) ∑∑-=-=+i i i k i k k k E E E E A A 00内力外力 (对质点系)

大学物理公式总结归纳

欢迎阅读 一、质点力学基础: (一)基本概念: 1、参照系,质点 2、矢径:k z j y i x r ???++= 3、位移:()()()k z z j y y i x x k z j y i x r r r ??????12121212-+-+-=++=-=???? 4、速度:k dt dz j dt dy i dt dx k j i dt r d t r z y x t ??????lim ++=++===→υυυ??υ? 5、加速度:k dt d j dt d i dt d k a j a i a dt r d dt d t a z y x z y x t ??????lim υυυυ?υ??++=++====→220 6、路程,速率 7、轨迹方程:0=),,(z y x f 8、运动方程:)(t r r =, 或 )(t x x =, )(t y y =, )(t z z = 9、圆周运动的加速度:t n a a a +=; 牛顿定律:a m dt p d F ==; 法向加速度:R a n 2 υ= ; 切向加速度:dt d a t υ= 10、角速度:dt d θ ω= 11、加速度:22dt d dt d θωα== 二、质点力学中的守恒定律: (一)基本概念: 1、功:??=?=b a b a dl F l d F A θcos 2、机械能:p k E E E += 3、动能:22 1 υm E k = 4、势能:重力势能:mgh E p =; 弹性势能:221kx E p =; 万有引力势能:r Mm G E p -= 5、动量: υ m p =; 6、冲量 :??=t dt F I 0 7、角动量:p r L ?=; 8、力矩:F r M ?= (二)基本定律和基本公式: 1、动能定理:2 0202 121υυm m E E A k k -= -=外力 (对质点) ∑∑-=-=+i i i k i k k k E E E E A A 00内力外力 (对质点系) 2、功能原理表达式:)()(000p k p k E E E E E E A A +-+=-=+非保守内力外力

大学物理下期末知识点重点总结(考试专用)

1.相对论 1、力学相对性原理和伽利略坐标变换。(1)牛顿力学的一切规律在伽利略变换下其形式保持不变,亦即力学规律对于一切惯性参考系都是等价的。(2)伽利略坐标换算。 2、狭义相对论的基本原理与时空的相对性。(1)在所有的惯性系中物理定律的表达形式都相同。(2)在所有的惯性系中真空中的光速都具有相同的量值。(3)同时性与所选择的参考系有关。(4)时间膨胀。在某一惯性参考系中同一地点先后发生的两个事件的时间间隔。(5)长度收缩。在不同的惯性系中测量出的同一物体的长度差。 3、当速度足够快时,使用洛伦兹坐标变换和相对论速度变换。但是当运动速度远小于光速时,均使用伽利略变换。 4、光的多普勒效应。 当光源相对于观察者运动时,观察者接受到的频率不等于光源实际发出的频率。 5、狭义相对论揭示出电现象和磁现象并不是互相独立的,即表现为统一的电磁场。 2.气体动理论 一.理想气体状态方程: 112212 PV PV PV C =→=; m PV R T M ' = ; P nkT = 8.31J R k mol = ;231.3810J k k -=?; 2316.02210A N mol -=?;A R N k = 二. 理想气体压强公式 2 3kt p n ε= 分子平均平动动能 1 2kt m ε= 三. 理想气体温度公式 1322kt m kT ε== 四.能均分原理 自由度:确定一个物体在空间位置所需要的独立坐标数目。 气体分子的自由度 单原子分子 (如氦、氖分子)3i =;刚性双原子分子5i =;刚性多原子分子6i = 3. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等, 其值为1kT 4.一个分子的平均动能为:k i kT ε= 五. 理想气体的内能(所有分子热运动动能 之和) 1.1m ol 理想气体i E R T = 一定量理想气体 ()2i m E R T M ν ν' == 3.热力学 一.准静态过程(平衡过程) 系统从一个平衡态到另一个平衡态,中间经历的每一状态都可以近似看成平衡态过程。 二.热力学第一定律 Q E W =?+;dQ dE dW =+ 1.气体2 1 V V W Pdv = ? 2.,,Q E W ?符号规定 3. 2121()V m V m m m dE C dT E E C T T M M ''= -=- 或 V m i C R = 三.热力学第一定律在理想气体的等值过程和绝热过程中的应用 1. 等体过程 210()V m W Q E C T T ν=?? ? =?=-?? 2. 等压过程 212121()()()p m W p V V R T T Q E W C T T νν=-=-?? ? =?+=-?? C 2 ,1 2C p m p m V m V m i C C R R γ+=+=> 热容比= 3.等温过程 212211 0T T E E m V m p Q W R T ln R T ln M V M p -=? ? ''? ===?? 绝热过程 210()V m Q W E C T T ν=?? ? =-?=--?? 绝热方程1P V C γ =, -1 2V T C γ= , 13P T C γγ--= 。 四.循环过程 特点:系统经历一个循环后,0E ?= 系 统 经 历 一 个 循 环 后 Q W =(代数和)(代数和) 正循环(顺时针)-----热机 逆循环(逆时针)-----致冷机 热机效率: 122111 1Q Q Q W Q Q Q η-= ==- 式中:1Q ------在一个循环中,系统从高温热源吸收的热量和; 2Q ------在一个循环中,系统向低温热源放 出的热量和; 12W Q Q =-------在一个循环中,系统对外 做的功(代数和)。 卡诺热机效率: 2 1 1c T η=- 式中: 1T ------高温热源温度;2T ------低温热源温度; 4. 制冷机的制冷系数: 22 12 Q = Q -Q = 定义:Q e W 卡诺制冷机的制冷系数:22 1212 Q T e Q Q T T == -- 五. 热力学第二定律 开尔文表述:从单一热源吸取热量使它完全变为有用功的循环过程是不存在的(热机效 率为100%是不可能的)。 克劳修斯表述:热量不能自动地从低温物体传到高温物体。 两种表述是等价的. 4.机械振动 一. 简谐运动 振动:描述物质运动状态的物理量在某一数值附近作周期性变化。 机械振动:物体在某一位置附近作周期性的往复运动。 简谐运动动力学特征:F kx =- 简谐运动运动学特征:2 a x ω=- 简谐运动方程: cos()x A t w j =+ 简谐 振动物体 的速度 : () sin dx v A t w w j ==-+ 加速度() 2 2cos d x a A t w w j ==-+ 速度的最大值m v A w =, 加速度的最大值2m a A w = 二. 振幅A : A 取决于振动系统的能量。 角(圆)频率 w :22T p w pn ==,取决于振动 系统的性质 对于弹簧振子 w 、对于单摆 ω相位——t w j +,它决定了振动系统的运动 状态(,x v ) 0t =的相位—初相 arc v tg x j w -= 四.简谐振动的能量 以弹簧振子为例: 222221111 k p E E E mv kx m A kA ω=+= +== 五.同方向同频率的谐振动的合成 设 ()111cos x A t ω?=+ ()222cos x A t ω?=+ 12cos()x x x A t ω?=+=+ 合成振动振幅与两分振动振幅关系为: A A 1 122 1122cos cos tg A A ???=+ 合振动的振幅与两个分振动的振幅以及它们之间的相位差有关。 () 20 12k k ?π?==±± 12A A A + )12 ??± 12A A A - 一21可以取任意值 1212 A A A A A -<<+ 5.机械波 一.波动的基本概念 1.机械波:机械振动在弹性介质中的传播。 2. 波线——沿波传播方向的有向线段。 波面——振动相位相同的点所构成的曲面 3.波的周期T :与质点的振动周期相同。 波长λ:振动的相位在一个周期内传播的距离。 波速u:振动相位传播的速度。波速与介质的性质有关 二. 简谐波 沿ox 轴正方向传播的平面简谐波的波动方 程 质点的振动速度 ] )(sin[?ωω+--=??=u x t A t y v 质点的振动加速度 2cos[()]v x a A t t u ωω??= =--+? 这是沿ox 轴负方向传播的平面简谐波的波 动 方 程 。 c o s [ ()]c o s [2()] x t x y A t A u T ω?π ? = -+=-+ cos 2()t x y A T π?λ?? =++???? 三.波的干涉 两列波 频率相同,振动方向相同,相位相同或相位差恒定,相遇区域内出现有的地方振动始终加强,有的地方振动始终减弱叫做波的干涉现象。 两列相干波加强和减弱的条件: (1) ()π π ???k r r 221 212±=---=?) ,2,1,0(???=k 时, 2 1A A A += (振幅最大,即振动加强) ()()π λ π???1221212+±=---=?k r r ) ,2,1,0(???=k 时, 2 1A A A -= (振幅最小,即振动减弱) (2)若12??=(波源初相相同)时,取 21r r δ=-称为波程差。 212r r k δλ =-=±) ,2,1,0(???=k 时, 2 1A A A +=(振动加强) () 1212λ δ+±=-=k r r ) ,2,1,0(???=k 时, 2 1A A A -=(振动减弱); 其他情况合振幅的数值在最大值12 A A +和最小值 12A A -之间。 6.光学 杨氏双缝干涉(分波阵面法干涉) 1、 x d d d r ===-=θθδtan sin r 12波程差 2、明纹位置: λ k D x d ± =),2,1,0k ( = 3、暗纹位置: 2 ) 12(λd D k x +±=),2,1,0( =k 4、相邻明(暗)纹间距 λd D x = ? 4、若用白光照射,则除了中央明纹(k=0级)是白色之外,其余明纹为彩色。 二、分振幅法干涉 1、薄膜干涉(若两束反射光中有一束发生半波损失,则光程差δ在原来的基础上再加上 2 λ ;若两束光都有半波损失或都没有,则无 需加上λ )以下结果发生在入射光垂直入射时 ?? ???=+==+ -=)(),2,1,0(12) (),2,1(2 sin 222122暗纹)(明纹 k k k k i n n d λλλ δ 2、劈尖干涉(出现的是平行直条纹) 1)明、暗条纹的条件: ?? ? ??=+==+=) (),2,1,0(2)12() (),2,1(2 2暗纹明纹 k k k k nd λλλδ 2)相邻明纹对应劈尖膜的厚度差为n 2e 1λ=-=??+k k k d d d )(图中为 3)相邻明(暗)纹间距为θλθ λn n L 2sin 2≈ = 3、牛顿环(同心环形条纹,明暗环条件同劈尖干涉) 1)明环和暗环的半径: ) () ,2,1,0()(),2,1(2)12(暗环明环 == =-=k n kR r k n R k r λ λ ③相邻明环、暗环所对应的膜厚度差为 n 21λ= -=?+k k k d d d 。 三、迈克尔逊干涉仪 1)可移动反射镜移动距离d 与通过某一参考点条纹数目N 的关系为 2 λ N d = 2)在某一光路中插入一折射率n,厚d 的透明介质薄片时,移动条纹数N 与n 、d 的关系为 21n λN d =-)( 五、夫琅禾费衍射 1、明纹条件:????? =+±==),2,1(2)12(sin 0 k k a λ??(中央明纹) 2、暗纹条件: ),2,1(sin =±=k k a λ? 3、中央明纹宽度(为1±级暗纹间距离): a 2sin 2tan 20f f f l λ??≈ == 其它暗纹宽度: 2 sin sin tan tan 111o k k k k k k l a f f f f f x x l == -=-=-=+++????? 4、半波带数: 明纹(又叫极大)为(2k+1);暗纹(又叫极小)为(2k )。 六、衍射光栅 1、光栅常数d=a(透光宽度)+b (不透光宽度)=单位长度内刻痕(夹缝)数的倒数 2、光栅方程 ) ,2,1,0(sin ) =±=+k k b a λ?( 明纹(满足光栅方程的明纹称为主极大明纹) k=0、1、2、3 称为0级、1级、2级、 3级 明纹 3、缺级 条 件 ??? ????±±±==+±±±==+±±±==++=????±=±=+主极大消失 、、如果、、如果、、如果( 1284449633364222k sin sin )k k a b a k k a b a k k a b a k b a k a k b a λ?λ?七、光的偏振 1、马吕斯定律α2 cos I =I ( α为入射偏振 光的振动方向与偏振片的偏振化方向间的夹角) 2、布儒斯特定律1 20an n n i t = , 0i 称为布儒斯特 角或起偏角。 当入射角为布儒斯特角时,反射光为垂直于入射面的线偏振光,并且该线偏振光与折射光线垂直。 7.量子力学 光电效应 光电效应方程W m h m += 2 1 νγ(式中γ表示光子 的频率,W 表示逸出功) 02 U 1e m m =ν(0U 表示遏止电压) h γ=W ( 0γ表示入射光最低频率/红限频率) 说明了光具有粒子性。 光的波粒二象性 能量: γεh = 动量:22c h m mc γ ε= = 光子动量: λγh c h mc p == = 二、康普顿效应 1、散射公式 2sin 22sin 22200θλθλλλc c m h == -=? 2、说明了光具有粒子性。 四、实物粒子的波粒二象性 1、德布罗意波 h = λ 测不准关系 2 ≥ ???x P x (一定的数值) 2、波函数 1)归一化波函数 x n a x n π ψsin 2)(= ( a x <<0) 概率密度为2 )(x n ψ? =a n dx x 0 2 1 )(ψ 粒子能 量 ) 321(2 2 、、== n h n E n 2)标准化条件 单值性,有限性,连续性

大学物理公式总结归纳

大学物理公式总结归纳文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

第一章 质点运动学和牛顿运动定律 平均速度 v =t △△r 1.2 瞬时速度 v=lim △t →△t △r =dt dr 速度v=dt ds = =→→lim lim △t 0 △t △t △r 平均加速度a = △t △v 瞬时加速度(加速度)a=lim △t →△t △v =dt dv 瞬时加速度a=dt dv =22dt r d 匀速直线运动质点坐标x=x 0+vt 变速运动速度 v=v 0+at 变速运动质点坐标x=x 0+v 0t+2 1at 2 速度随坐标变化公式:v 2-v 02=2a(x-x 0) 自由落体运动 竖直上抛运动 抛体运动速度分量???-==gt a v v a v v y x sin cos 00 抛体运动距离分量?? ? ??-?=?=20021sin cos gt t a v y t a v x 射程 X=g a v 2sin 2 射高Y=g a v 22sin 20 飞行时间y=xtga —g gx 2 轨迹方程y=xtga —a v gx 2202 cos 2 向心加速度 a=R v 2 圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n 加速度数值 a=2 2n t a a + 法向加速度和匀速圆周运动的向心加速 度相同a n =R v 2 切向加速度只改变速度的大小a t = dt dv ωΦR dt d R dt ds v === 角速度 dt φ ωd = 角加速度 22dt dt d d φ ωα== 角加速度a 与线加速度a n 、a t 间的关系 a n =22 2)(ωωR R R R v == a t = αωR dt d R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。 牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F

大学物理公式总结归纳全

第一章 质点运动学和牛顿运动 定律 平均速度 v = t △△r 1.2 瞬时速度 v=lim △t →△t △r =dt dr 速度v=dt ds = =→→lim lim △t 0 △t △t △r 平均加速度a = △t △v 瞬时加速度(加速度)a=lim 0△t →△t △v =dt dv 瞬时加速度a=dt dv =2 2dt r d 匀速直线运动质点坐标x=x 0+vt 变速运动速度 v=v 0+at 变速运动质点坐标x=x 0+v 0t+2 1 at 2 速度随坐标变化公式:v 2-v 02=2a(x-x 0) 自由落体运动 竖直上抛运动 抛体运动速度分量???-==gt a v v a v v y x sin cos 00 抛体运动距离分量 ?? ? ?? -?=?=2 0021sin cos gt t a v y t a v x 射程 X= g a v 2sin 20 射高Y=g a v 22sin 20 飞行时间y=xtga — g gx 2 轨迹方程y=xtga —a v gx 2 202 cos 2 向心加速度 a= R v 2 圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n 加速度数值 a=2 2n t a a + 法向加速度和匀速圆周运动的向心 加速度相同a n = R v 2 切向加速度只改变速度的大小a t = dt dv ωΦR dt d R dt ds v === 角速度 dt φ ωd = 角加速度 22dt dt d d φ ωα== 角加速度a 与线加速度a n 、a t 间的关系 a n =22 2)(ωωR R R R v == a t = αω R dt d R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受 到作用力而被迫改变这种状态。

大学物理公式总结电子教案

大学物理公式总结

静电场重要公式 一、库仑定律 二、电场强度 三、场强迭加原理 点电荷场强点电荷系场强 连续带电体场强 四、静电场高斯定理 五、几种典型电荷分布的电场强度 均匀带电球面均匀带电球体 均匀带电长直圆柱面均匀带电长直圆柱体无限大均匀带电平面

六、静电场的环流定理 七、电势 八、电势迭加原理 点电荷电势点电荷系电势 连续带电体电势 九、几种典型电场的电势 均匀带电球面均匀带电直线 十、导体静电平衡条件 (1) 导体内电场强度为零;导体表面附近场强与表面垂直。 (2) 导体是一个等势体,表面是一个等势面。 推论一电荷只分布于导体表面 推论二导体表面附近场强与表面电荷密度关系 十一、静电屏蔽 导体空腔能屏蔽空腔内、外电荷的相互影响。即空腔外(包括外表面)的电荷在空腔内的场强为零,空腔内(包括内表面)的电荷在空腔外的场强为零。

十二、电容器的电容 平行板电容器圆柱形电容器 球形电容器孤立导体球 十三、电容器的联接 并联电容器串联电容器 十四、电场的能量 电容器的能量电场的能量密度电场的能量 稳恒电流磁场重要公式一、磁场 运动电荷的磁场毕奥——萨伐尔定律 二、磁场高斯定理 三、安培环路定理 四、几种典型磁场 有限长载流直导线的磁场 无限长载流直导线的磁场 圆电流轴线上的磁场

圆电流中心的磁场 长直载流螺线管内的磁场 载流密绕螺绕环内的磁场 五、载流平面线圈的磁矩IBM m 和S 沿电流的右手螺旋方向 六、洛伦兹力 七、安培力公式 八、载流平面线圈在均匀磁场中受到的合磁力 载流平面线圈在均匀磁场中受到的磁力矩 静电场公式汇总 1库仑定律:真空中两个静止的点电荷之间相互作用的静电力F 的大小与它们的带电 量q 1、q 2的乘积成正比,与它们之间的距离r 的二次方成反比,作用力的方向沿着两个点电荷的连线。2 2 1041 r q q F πε= 基元电荷:e=1.602C 1910-? ;0ε真空电容率=8.851210-? ; 41πε=8.99910? 2 r r q q F ?41 2 2 10πε= 库仑定律的适量形式 3场强 0 q F E = 4 r r Q q F E 3004πε== r 为位矢 5 电场强度叠加原理(矢量和) 6电偶极子(大小相等电荷相反)场强E 3041 r P πε- = 电偶极距P=ql

相关文档