文档库 最新最全的文档下载
当前位置:文档库 › 土质高边坡稳定性监测分析

土质高边坡稳定性监测分析

土质高边坡稳定性监测分析
土质高边坡稳定性监测分析

土质高边坡稳定性监测分析

摘要:通过对边坡工程的监测,可以扑捉到边坡稳定性的异常信息,以便及时发现问题。监测坡体变形的位移是最直观、最直接的、最主要的物理量,分析统计变形监测数据的相关性、统一性,结合地形地貌与工程地质条件,加以综合分析,用于合理评价边坡的稳定程度及变形特征,为边坡的动态设计提供科学依据,以便提出具有针对性的防护治理措施,对边坡工程建设和社会效益具有重要意义,为类似工程提供借鉴。

关键词:堆积体变形监测稳定性

土质高边坡稳定性研究一直是工程界和地质工作者关注的重大课题之一,尽管坡体经过稳定性计算和支护,但边坡的稳定性状况仍难以确定,在开挖过程中或开挖后的失稳事故也常有发生,因此,对边坡进行稳定性监测是确保工程建设顺利进行及安全运行的重要措施。土质边坡的变形发展,主要受地形地貌特征、地层结构及软弱带控制,又受到人类工程活动的影响。开展边坡工程监测,收集相关监测数据,扑捉监测数据异样信息的相关性及统一性,结合工程地质特性,综合分析评价边坡的稳定性程度以及变形特征,为边坡工程的动态设计提供信息参考,指导边坡工程的合理治理与防护。本文以某水电站坝址下游泥洛村堆积体监测工程为实例,对其稳定性监测进行了详细分析。

1.工程概况与工程地质条件

该堆积体位于河谷左岸,边坡下部有1#、2#导流洞出口,对岸有泄洪放空洞、尾水洞出口,边坡的稳定性非常重要,其变形可能危及到电站的安全运行,因此对该边坡工程进行了内外观安全监测,全面掌握边坡变形情况,以便及时发现问题,采取措施进行处理。

堆积体周缘具明显的冰斗地貌,冰斗向大渡河倾斜、敞开。堆积体下游边界有一深切冲沟,深度达50-100m,沟内基岩出露。其分布高程1710m~2760m,堆积体斜坡坡度总体为下陡上缓,高程2000m以下38°~40°,斜坡较完整,高程2000m以上斜坡总体坡度20°~25°,台阶状明显,部分坡段地形坡度可达40~45°;前缘分布高程1710m,顺河向宽度480m~530m,后缘宽度400m,堆积层厚度较大,一般50m~80m,体积约为5800万m3,成因为冰水堆积。

现场调查及勘探揭示,堆积体厚度一般54.51m~81.2m,最大约147m,堆积体物质为早更新世冰川堆积的含块碎砾石土(flQ3),块碎砾石成份为白云岩、灰岩、绢云母片岩,大小悬殊,土体结构密实,仅表层1m~2m内结构稍松,钻进中返水返浆。堆积体含水不丰,透水性微弱,大气降雨的入渗难度较大,暴雨季节在浅表部可能存在少量上层滞水,其余部位总体较为干燥。

堆积体下覆基岩岩性为志留系上统(S3)绢云石英白云片岩、薄层~中厚层泥质结晶白云岩夹变质灰岩,为较软岩~硬质岩,在泥洛沟及堆积体后缘、前缘

边坡稳定性分析方法

边坡稳定性分析方法 目前,边坡稳定性的研究方法有很多,一般将其分为定性分析法、定量分析法与数值分析法等,其中,定性分析方法中主要有自然(成因)历史分析法、工程类比法、图解法等;定量分析方法中运用最为广泛的是极限平衡法;数值分析法中包括有限元法、离散元法、边界元法等;另外,随着各种新型理论的引入及对边坡认识的深入,不确定性分析方法也更多的运用到了边坡的稳定性研究当中,其中有代表性的研究方法有可靠性评价法、模糊理论评价法、灰色系统理论评价法、神经网络评价法、突变理论评价法及分形理论评价法等等。 由于不同的边坡工程所处具体情况的不同,使得目前对边坡进行稳定性分析、评价尚无统一的方法。众多方法的出现虽然可以使我们从不同侧面了解边坡的稳定性状况,但是这正也说明由于边坡岩体及其工程条件、环境的复杂性,不可能用简单的一种方法就把边坡的特性分析清楚,同时也没有任何一种方法可以解决所有的边坡稳定性评价问题。总的来说,目前进行边坡稳定性评价分析的方法很多,但是各自都有其一定的局限性,定性分析法:不论是类比法、自然历史分析法还是图解法,都是经验性的分析方法,没有实际的根据,所以人为因素影响较大,结论准确性差。极限平衡法:将滑体视为刚体来分析,边界条件过多的进行了简化,并加了许多假设条件,不能解决超静定问题。有限单元等数值分析法:虽然有限元计算方法具有不可比拟的优点,但所建立模型的可靠性、适用性以及分析当中所采用的各种参数的可靠性对边坡稳定性的最终判断有非常大的直接性影响;还有网格划分的不确定性、随意性大,只要能把上述问题解决好,该方法依然是目前对边坡稳定性进行数值分析中最有力的数值模拟工具。模糊理论法:该法当中不同指标的隶属函数、隶属度以及指标的权重值均难以准确确定,带有一定人为性、经验性的成分,且评价结果只能是定性的判断。神经网络法:网络不易收敛,容易陷入局部最小,计算和训练十分费时。由此可见,尽管目前边坡稳定性分析方法比较多,但由于边坡工程的复杂性,更合理的稳定性评价方法还有待进一步的探索、开发。 力学计算法和工程地质法是边坡稳定性分析和验算方法常用的两种方法。 1.力学计算法 (1)数解法 假定几个不同的滑动面,按力学平衡原理对每个滑动面进行计算,从中找出最危险滑动面,按此最危险滑动面的稳定程度来判断边坡的稳定性。此方法计算较精确,但计算繁琐。(2)图解或表解法 在图解和计算的基础上,经过分析研究,制定图表,供边坡稳定性验算时采用。以简化计算工作。 2.工程地质法 根据稳定的自然山坡或已有的人工边坡进行土类及其状态的分析研究,通过工程地质条件相对比,拟定出与边坡条件相类似的稳定值的参考数据,作为确定边坡值的依据。 一般土质边坡的设计常用力学计算法进行验算,用工程地质法进行校核;岩石或碎石土类边坡则主要采用工程地质法进行设计。 第一节力学计算法 一、力学计算法的基本假定 滑动土楔体是均质各向同性、滑动面通过坡脚、不考虑滑动土体内部的应力分布及各土条(指条分法)之间相互作用力的影响。

土质边坡和岩石边坡的分析异同

土石坝的一些资料 非粘性土料与粘性土料的区别: 土料压实特性,与土料自身的性质,颗粒组成情况、 级配特点、含水量大小以及压实功能等有关。 对于粘性土和非粘性土的…这的根本区别 施工: 二?开挖运输机械设备容量确定 分期施工的土石坝, 应根据坝体分期施工的填筑强度和开挖强度来确定相应的机械设 备容量,可按 qd=K*K1*Vd/T*N 式中qd ――坝体分期填筑强度, mT/h;Vd ――坝体分期填筑方量, m^3 ; K ――施工 不均匀系数,可取1.2~1.3 ;K1 ――考虑沉降,削坡、损失等影响系数,可取1.15- 1.2 ;T ―― 分期时段的有效工作日数, d;按分期时段的总日数,扣除节假日、降雨及气温影响可能的 停工日数,即为有效工作日数; N ――每日的工作小时数,以 20h 计。坝体分期施工的开 挖强度qc (m^3/h )为qc=K2*qd*rd/rn 式中K2 ——开挖及运输中的损失系数,可取 1.05? 1.10; rd ----- 土料的设计干表观密度, 满足上坝填筑强度要求的挖掘机数量 率,m^3/h 。 Na 为Na=qc/Pa 式中Pa 一辆汽车的生产率, 因此应满足nPa>Pc 。 为了充分发挥自卸汽车的运输效能,应根据挖掘机械的斗容选择具有适当斗容量(或 载重量)的汽车。挖掘机装满一车斗数的合理范围应为 3?5斗,通常要求装满一车时间 不超过3.5?4min ,卸车是不超过 2min 。 第三节土料压实 土石料的压实,是土石坝施工质量的关键。维持土石坝自身稳定的土 料内部主力(粘结力和摩擦力)、土料的防渗性能等,都是随土料密实度的增加而提高。 例如,干表观密度为 1.4t/mA3的砂壤土,压实后若提高到 1.7t/mA3,其抗压强度可提高 4t/m A 3;rn ―― 土料的天然干表观密度, t/m A 3。 Nc 为Nc=qc/Pc 式中Pc ——一台挖掘机的生产 满足上坝填筑强度要求的汽车总数量 mA3/h 。配合一台挖掘机所需的汽车数量 n ,其总的生产率应略大于一台挖掘机的生产率,

土质边坡动力稳定性试验研究

第44卷 第2期 煤田地质与勘探 Vol. 44 No.2 2016年4月 COAL GEOLOGY & EXPLORA TION Apr . 2016 收稿日期: 2014-09-11 基金项目: 国家自然科学基金项目(41302246) Foundation item :National Natural Science Foundation of China(41302246) 作者简介: 朱赛楠(1984—),男,宁夏银川人,博士,从事边坡稳定性研究. E-mail :zsn105@https://www.wendangku.net/doc/b45179178.html, 引用格式: 朱赛楠,曹广祝,李滨.土质边坡动力稳定性试验研究[J]. 煤田地质与勘探,2016,44(2):66–72. ZHU Sainan, CAO Guangzhu, LI Bin. Dynamic stability model test of soil slope[J]. Coal Geology & Exploration, 2016, 44(2): 66–72. 文章编号: 1001-1986(2016)02-0066-07 土质边坡动力稳定性试验研究 朱赛楠1,曹广祝2,李 滨3 (1. 长安大学地测学院,陕西 西安 710064;2. 昆明理工大学国土资源工程学院,云南 昆明 650093;3.中国地质科学院地质力学研究所,北京 100081) 摘要: 以云贵高原某典型土质边坡为原型,采用了4种加速度震动波输入模式,设计完成了比例 为1:6的小型振动台模型试验,结合FLAC 3D 数值模拟对边坡动力响应特性和边坡变形破坏规律进 行分析。结果表明:当输入加速度低于某个临界值时,整个坡体的加速度响应基本保持一致,各 部位放大效应增加不明显,当输入加速度逐渐增加,高于临界值时,坡体的卓越频率得到充分激 励,各部位加速度响应大幅增加,此时边坡最易发生变形破坏,且加速度响应沿着坡高方向有显 著的放大效应;剪应变增量时程曲线反映出在边坡震动破坏过程中,滑体后缘以张拉为主,中部 及下部以剪切为主,而且剪出口剪应变增量的变化尤为关键,其增幅速度直接导致该部位抗剪强 度降低速度增快;边坡震动变形破坏模式为崩塌–剪切滑移破坏,变形破坏过程可分为4个阶段。 关 键 词:土质边坡;振动台试验;加速度动力响应;剪应变增量;剪切滑移 中图分类号:P642.22 文献标识码:A DOI: 10.3969/j.issn.1001-1986.2016.02.013 Dynamic stability model test of soil slope ZHU Sainan 1, CAO Guangzhu 2, LI Bin 3 (1. School of Geology Engineering and Geomatics , Chang ′an University , Xi ′an 710064, China ; 2. College of Territorial Resources , Kunming University of Science and Technology, Kunming 650093, China ; 3. Institute of Geomechanics , Chinese Academy of Geological Science , Beijing 100081, China ) Abstract: This paper, based on a typical soil slopes prototype in Yunnan-Guizhou plateau, designed and completed test on a small vibrostand at scale of 1:6 by using four kinds of acceleration vibration wave input mode. The slope dynamic response characteristics, the deformation and failure law of slope were analyzed by FLAC 3D . The results show that when the input acceleration is below certain threshold, the acceleration response of the whole slope is basic consistent in the same way, and amplification effect at each place does not increase obviously, when the input acceleration increases gradually ans is higher than the critical value, the predominant frequency of slope is fully stimulated and the acceleration response of each place increases, the slope is the most prone to deformation and damage. And the acceleration response has significant amplification effect along the direction of the slope height. The shear strain increment time course curve reflects the fact that in the process of the vibration failure, the trailing edge of the landslide mass is mainly effected by tensioning, the middle and the bottom of the slope are mainly ef- fected by shear, and the variation of shear strain increment at the shear outlet particularly critical, its growth speed directly results in rapid decrease of shear strength. The slope deformation process is divided into four stages, and the failure mode is collapse-shear sliding. Key words: soil slope; vicrostand test; acceleration response; shear strain increment; shear sliding 地震是诱发边坡滑动和坍塌的重要因素之一。 近年来,国内外就边坡地震动力稳定性进行了多方 面的研究[1-3]。随着振动台模型的推广改进,应用振 动台模型试验模拟边坡的动力响应特性和斜坡变形破坏规律成为研究边坡失稳机理的重要手段[4-7]。徐光兴[8]设计了土坡大型振动台模型试验,考虑了不同地震波的类型、幅值和频率作用下土质边坡的动力响应规律,以及地震动参数对动力响应的影响。

边坡稳定性分析模式及流程

一、土岩混合边坡分析 土岩混合边坡稳定性分析一般有四种: 1、上部土层及风化层内部的破坏(圆弧或折线,受土体强度控制,软件自动搜索最危险滑面); 2、沿土岩交界面滑动破坏(土与风化层面或土、风化层与基岩面,受交界面强度控制,软件指定交界面进行计算稳定性,采用圆滑滑动(均质土体时)和折线滑动(覆盖层与基岩面时)两种计算); 3、下部岩体结构面破坏(受结构面控制,平面或楔形体破坏,倾倒破坏也可能。先用赤平投影定性分析(龙海涛和理正结合使用),根据定性情况,若不稳定,则用理正进行定量稳定性计算(平面滑动和楔形体滑动))。 4、上部土体圆弧滑动,下部岩体沿结构面滑动破坏(分析了1和3后,二者都不稳定时,则对边坡整体进行计算,采用1的最危险滑动面与3的平面滑动面组合成上部圆弧,下部直线(层面、某节理裂隙或结构面组合的交线)的整体滑动面,采用传递系数法进行稳定性计算),则1.2.3.4得到四种稳定系数,根据稳定系数进行综合评价。 5、极软岩边坡可能受岩土体强度控制,也可能受结构面控制,故也应对边坡整体进行稳定性计算,采用圆弧滑动(简化毕肖普法)和折线滑动(传递系数隐式解法)分别进行计算。 6、若1.2稳定,3不稳定,则会发生下部岩体沿结构面滑动破坏,从而带动上部土体一起滑动破坏。故下部岩体稳定性很重要。 综合內摩擦角是对平面滑动的,若提粘聚力很小,甚至为零,只有內摩擦角,则破坏模式为平面滑动,如砂砾石层,岩层等。若判断破坏模式为圆弧滑动,则必须提粘聚力与內摩擦角,如破碎岩层、强风化层与上部土层可能发生圆弧滑动破坏。故,提不提粘聚力,可否换算成综合內摩擦角,取决于判断其破坏模式是圆弧还是平面滑动。 下部为极软岩的土岩混合边坡除按岩质边坡分析外,还需计算五种滑动面稳定系数,如下:(下部为硬质的边坡,可不计算整体圆弧滑动,整体折现滑动视基岩内部裂隙及破碎带

常用的边坡稳定性分析方法

常用的边坡稳定性分析方法

第一节概述 (1) 一、无粘性土坡稳定分析 (1) 二、粘性土坡的稳定分析 (1) 三、边坡稳定分析的总应力法和有效应力法 (1) 四、土坡稳定分析讨论 (1) 第二节基本概念与基本原理 (1) 一、基本概念 (1) 二、基本规律与基本原理 (2) (一)土坡失稳原因分析 (2) (二)无粘性土坡稳定性分析 (3) (三)粘性土坡稳定性分析 (3) (四)边坡稳定分析的总应力法和有效应力法 (7) (五)土坡稳定分析的几个问题讨论 (8) 三、基本方法 (9) (一)确定最危险滑动面圆心的方法 (9) (二)复合滑动面土坡稳定分析方法 (9)

常用的边坡稳定性分析方法 土坡就是具有倾斜坡面的土体。土坡有天然土坡,也有人工土坡。天然土坡是由于地质作用自然形成的土坡,如山坡、江河的岸坡等;人工土坡是经过人工挖、填的土工建筑物,如基坑、渠道、土坝、路堤等的边坡。本章主要学习目前常用的边坡稳定分析方法,学习要点也是与土的抗剪强度有关的问题。 第一节概述 学习土坡的类型及常见的滑坡现象。 一、无粘性土坡稳定分析 学习两种情况下(全干或全淹没情况、有渗透情况)无粘性土坡稳定分析方法。要求掌握无粘性土坡稳定安全系数的定义及推导过程,坡面有顺坡渗流作用下与全干或全淹没情况相比无粘性土土坡的稳定安全系数有何联系。 二、粘性土坡的稳定分析 学习其整体圆弧法、瑞典条分法、毕肖甫法、普遍条分法、有限元法等方法在粘性土稳定分析中的应用。要求掌握圆弧法进行土坡稳定分析及几种特殊条件下土坡稳定分析计算。 三、边坡稳定分析的总应力法和有效应力法 学习稳定渗流期、施工期、地震期边坡稳定分析方法。 四、土坡稳定分析讨论 学习讨论三个问题:土坡稳定分析中计算方法问题、强度指标的选用问题和容许安全系数问题。 第二节基本概念与基本原理 一、基本概念 1.天然土坡(naturalsoilslope):由长期自然地质营力作用形成的土坡,称为天然土坡。 2.人工土坡(artificialsoilslope):人工挖方或填方形成的土坡,称为人工土

理正岩土边坡稳定性分析帮助

第一章功能概述 边坡失稳破坏是岩土工程中常遇到的工程问题之一。造成的危害及治理费用均非常可观。因此,客观的、正确的评估边坡稳定状况,是摆在工程技术人员面前的一道难题。为满足工程技术人员的需要,编制了“理正边坡稳定分析”软件。 该软件具有下列功能: ⑴本软件具有通用标准、《堤防工程设计规范GB50286-98》、《碾压式土石坝设计规范SDJ218-84》、《碾压式土石坝设计规范SL274-2001》、《浙江省海塘工程技术规定》五种标准,以满足不同行业的要求; ⑵本软件提供三种地层分布模式(等厚地层、倾斜地层、复杂地层),可满足各种地层条件的要求; ⑶本软件可计算边坡的稳定安全系数及剩余下滑力; ⑷本软件提供多种方式计算边坡的稳定安全系数; ⑸本软件提供的自动搜索最小稳定安全系数的方法,是理正技术人员研制、开发、应用到软件中,并取得良好的效果。一般情况下,都可以得到最优解。但是对于较复杂的地质条件,建议先指定区域搜索、分不同精度进行分析,逐步逼近最优解,这样才能既快又准; ⑹对于圆弧滑动稳定计算,本软件提供三种方法:瑞典条分法、简化Bishop法、及Janbu 法;对于折线滑动稳定计算,本软件提供三种方法:简化Bishop法、简化Janbu法、摩根斯顿-普赖斯法。用户可以根据不同的要求采用不同的方法。 ⑺本软件针对水利行业做了大量工作,除水利的堤防、碾压土石坝规范外,还有海堤规范;可按不同工况——施工期、稳定渗流期、水位降落期计算堤坝的稳定性(包括总应力法及有效应力法); ⑻软件可考虑地震作用、外加荷载及锚杆、锚索、土工布等对稳定的影响;详细考虑水的作用,包括堤坝内部、外部水的作用;尤其方便的是可以将渗流软件分析的流场数据直接应用到稳定分析,使计算结果更逼近真实状况; ⑼具有图文并茂的交互界面、计算书;具有对计算过程的信息查询及计算过程图形显示功能,可视化程度高;并有及时的提示指导,帮助用户使用软件; 本软件适用于水利、公路、铁路等行业岩土在工程建设中遇到的边坡(主要是土质边坡、岩石边坡可参考)稳定分析。

土质高边坡稳定性监测分析

土质高边坡稳定性监测分析 摘要:通过对边坡工程的监测,可以扑捉到边坡稳定性的异常信息,以便及时发现问题。监测坡体变形的位移是最直观、最直接的、最主要的物理量,分析统计变形监测数据的相关性、统一性,结合地形地貌与工程地质条件,加以综合分析,用于合理评价边坡的稳定程度及变形特征,为边坡的动态设计提供科学依据,以便提出具有针对性的防护治理措施,对边坡工程建设和社会效益具有重要意义,为类似工程提供借鉴。 关键词:堆积体变形监测稳定性 土质高边坡稳定性研究一直是工程界和地质工作者关注的重大课题之一,尽管坡体经过稳定性计算和支护,但边坡的稳定性状况仍难以确定,在开挖过程中或开挖后的失稳事故也常有发生,因此,对边坡进行稳定性监测是确保工程建设顺利进行及安全运行的重要措施。土质边坡的变形发展,主要受地形地貌特征、地层结构及软弱带控制,又受到人类工程活动的影响。开展边坡工程监测,收集相关监测数据,扑捉监测数据异样信息的相关性及统一性,结合工程地质特性,综合分析评价边坡的稳定性程度以及变形特征,为边坡工程的动态设计提供信息参考,指导边坡工程的合理治理与防护。本文以某水电站坝址下游泥洛村堆积体监测工程为实例,对其稳定性监测进行了详细分析。 1.工程概况与工程地质条件 该堆积体位于河谷左岸,边坡下部有1#、2#导流洞出口,对岸有泄洪放空洞、尾水洞出口,边坡的稳定性非常重要,其变形可能危及到电站的安全运行,因此对该边坡工程进行了内外观安全监测,全面掌握边坡变形情况,以便及时发现问题,采取措施进行处理。 堆积体周缘具明显的冰斗地貌,冰斗向大渡河倾斜、敞开。堆积体下游边界有一深切冲沟,深度达50-100m,沟内基岩出露。其分布高程1710m~2760m,堆积体斜坡坡度总体为下陡上缓,高程2000m以下38°~40°,斜坡较完整,高程2000m以上斜坡总体坡度20°~25°,台阶状明显,部分坡段地形坡度可达40~45°;前缘分布高程1710m,顺河向宽度480m~530m,后缘宽度400m,堆积层厚度较大,一般50m~80m,体积约为5800万m3,成因为冰水堆积。 现场调查及勘探揭示,堆积体厚度一般54.51m~81.2m,最大约147m,堆积体物质为早更新世冰川堆积的含块碎砾石土(flQ3),块碎砾石成份为白云岩、灰岩、绢云母片岩,大小悬殊,土体结构密实,仅表层1m~2m内结构稍松,钻进中返水返浆。堆积体含水不丰,透水性微弱,大气降雨的入渗难度较大,暴雨季节在浅表部可能存在少量上层滞水,其余部位总体较为干燥。 堆积体下覆基岩岩性为志留系上统(S3)绢云石英白云片岩、薄层~中厚层泥质结晶白云岩夹变质灰岩,为较软岩~硬质岩,在泥洛沟及堆积体后缘、前缘

边坡稳定性分析方法

边坡稳定性分析方法的现状与展望 --- 大学班级:学号: 摘要:介绍了国内边坡稳定性分析方法的研究现状与发展动态,将边坡稳定性分析方法分为定性分析方法和定量分析方法。分析总结了极限平衡理论、数值分析方法等确定性分析方法的发展情况。详细分析了边坡稳定性分析方法的最新进展和边坡稳定性分析中的新方法、新理论及各种方法的优缺点。指出随着计算机技术的兴起和软件的应用,多种方法的综合运用成为边坡稳定性分析的发展方向。针对边坡稳定性问题自身的特点及其研究现状提出了今后边坡稳定问题研究的发展趋势。 关键词:边坡稳定性;定性分析;定量分析;发展趋势 Present situation and prospect of slope stability analysis method Abstract:Traditional methods of slope stability analysis were summarized and divided it into qualititave methods and quantitative methods. Analysis summarizes the limit equilibrium theory and numerical analysis method, such as the development of situation. Slope stability analysis method are analyzed in detail the latest progress and new methods and new theory in slope stability analysis and the advantages and disadvantages of various methods. Points out that with the development of computer technology and software applications, a variety of methods of the integrated use of become the development direction of slope stability analysis. According to the characteristics of the slope stability problem itself and its current research situation in the future was put forward the development trend of slope stability studies. Key words:Slope stability; Qualitative analysis; Quantitative analysis; Development tendency 0 引言 边坡工程是一个开放系统,它既有有限变形问题又有无限变形问题,有瞬时变形问题又有长时变形问题。边坡是一种自然地质体,按组成物质可以分为土质边坡和岩质边坡,在边坡角变化、地下水、地震力、水位变化等外因作用下,边坡将沿其裂隙等一些不稳定结构面产生滑移,当土体内部某一面上的滑动力超过土体抗滑动的能力,将导致边坡的失稳。边坡稳定性分析是岩土工程的一个重要研究内容,并已经形成一个应用研究课题,稳定性问题涉及矿山工程、道桥工程、水利工程、建筑工程等诸多工程领域,近年来受到越来越多的关注,研究方法层出不穷,其中主要以刚体极限平衡分析法和数值分析方法为主,而这些方法在设计参数的选取上都是按定值进行考虑的。然而,由于边坡受多种因素综合影响,其稳定性常表现出复杂多样性、不确定性等特征。传统的工程地质学主要着手地质对比的研究,20世纪80年代后,学科之间的相互渗透使许多与现代科学有关的理论和方法,如系统方法、模糊数学、灰色理论、信息论方法、数理化理论及现代概率统计理论等应用到边坡稳定性研究,从而使这种对比研究手段已从定性发展到定量并形成多种各具特色的边坡稳定性预测模型的阶段,边坡稳定性分析方法不断发展与完善。 本文简要分析了目前常用的边坡稳定性分析方法的基本原理、特点、优缺点及其适用范围,探讨了边坡稳定分析的发展趋势,为进一步研究边坡稳定性问题理清了思路。

浅述土质边坡稳定性分析及稳定性验算方法

浅述土质边坡稳定性分析及稳定性验算方法[摘要]结合工程实例分析了土质边坡的稳定性,并利用理正软件计算边坡的 稳定性系数,对边坡的稳定性进行验算,根据分析结果结合工程实际情况,给出边坡的支护建议。 [关键词]边坡稳定性分析稳定性系数稳定性验算理正计算 边坡可分为人工边坡和自然边坡。随着人类社会的发展,人类工程建设的扩大,边坡的稳定性问题逐渐成为各项工程领域里的一项重要的研究内容。边坡稳定性分析的方法主要有:极限平衡理论,如瑞典条分法、毕肖普法等,有限单元法,模糊综合评判方法,以及计算机模拟方法等。其中,由于极限平衡法具有模型简单、计算简捷以及能考虑各种加载形式等特点而得以广泛应用。为此,本文主要结合深圳地铁7号线某停车场的边坡工程,采用极限平衡法综合分析评价土质边坡的稳定性。 1场地工程地质概况 深圳地铁7号线某停车场场地区为丘陵边缘,东北高西南低,地形起伏较大,地面高程约41.0~133.0m。东部地形改造变化较大,已修整为若干级平台,西部边坡较缓,边坡坡度约20度左右。本文以西部边坡为例进行评价。该边坡西部现状主要为自然斜坡形成,中上部以土质为主,下伏为岩质,属岩土质边坡,表面有植被覆盖。岩土层由上到下为素填土、全风化花岗岩、强风化花岗岩,其下为中微风化花岗岩,土层物理参数如下: 2边坡稳定性影响因素分析 边坡稳定性主要取决于边坡中各类岩土的性质(密度、湿化性、抗剪强度),地下水活动情况、软弱夹层及软弱结构面的分布情况和基岩岩体中的软弱结构面,软弱夹层,裂隙发育程度及风化特征等。经全面分析边坡区的地貌、地层岩性等特征,并借鉴前人研究的边坡经验,对影响边坡稳定不利因素主要归结为以下几点: (1)岩土体主要由工程地质性质较差的人工填土和全、强风化的岩体组成,结构松散,是控制边坡稳定性的主要因素;(2)边坡上部平台上无完善的排水系统,降雨时,雨水的渗入也将使得松散土体进一步软化,对边坡稳定不利;(3)边坡在人工削坡后,由于上部的人工填土和粘性土在地表水下渗后产生变形蠕动,进而使下部强风化基岩沿着强风化裂隙产生变形、破坏,其基岩强风化下限与中风化顶界面因受上部土层挤压、推挤作用而发生剪切变形面。 从上述原因分析,边坡存在较多处对稳定不利因素。因此,自然边坡目前虽然比较稳定,但在施工时,由于边坡体植被破坏及人工削坡等不利条件,如不整治防护,在大量雨水下渗或其他不利条件下,将可能产生边坡滑塌等破坏活动。

第二节 边坡稳定性分析方法

第二节边坡稳定性分析方法 力学验算法和工程地质法是路基边坡稳定性分析和验算方法常用的两种方法。 1.力学验算法 (1)数解法假定几个不同的滑动面,按力学平衡原理对每个滑动面进行验算,从中找出最危险滑动面,按此最危险滑动面的稳定程度来判断边坡的稳定性。此方法计算较精确,但计算繁琐。(2)图解或表解法在图解和计算的基础上,经过分析研究,制定图表,供边坡稳定性验算时采用。以简化计算工作。 2.工程地质法 根据稳定的自然山坡或已有的人工边坡进行土类及其状态的分析研究,通过工程地质条件相对比,拟定出与路基边坡条件相类似的稳定值的参考数据,作为确定路基边坡值的依据。 一般土质边坡的设计常用力学验算法进行验算,用工程地质法进行校核;岩石或碎石土类边坡则主要采用工程地质法进行设计。 3.力学验算法的基本假定 滑动土楔体是均质各向同性、滑动面通过坡脚、不考虑滑动土体内部的应力分布及各土条(指条分法)之间相互作用力的影响。 一、直线滑动面法 松散的砂类土路基边坡,渗水性强,粘性差,边坡稳定主要靠其内摩擦力。失稳土体的滑动面近似直线状态,故直线滑动面法适用于砂类土: 如图2-2-4所示,验算时,先通过坡脚或变坡点假设一直线滑动面,将路提斜上方分割出下滑土楔体ABD,沿假设的滑动面AD滑动,其稳定系数K按下式计算(按边坡纵向单位长度计):

验算的边坡是否稳定,取决于最小稳定系数Kmin的值。当Kmin=1.0时,边坡处于极限平 衡状态。由于计算的假定,计算参数(r,Ψ,c)的取值都与实际情况存在一定的差异,为了保证边坡有足够的稳定性,通常以最小稳定系数Kmin≥1.25来判别边坡的稳定性。但Kmin过大,则设计偏于保守,在工程上不经济。 当路堤填料为纯净的粗砂、中砂、砾石、碎石时,其粘聚力很小,可忽略不计,则式(2-2-3)变为: 式(2-2-3)也适用于均质砂类土路堑边坡的稳定性验算。 二、圆弧滑动面法 用粘性土填筑的路堤,边坡滑坍时的破裂面形状为一曲面,为简化计算,通常近似地假设为一圆弧状滑动面。分析边坡稳定性时,按其各种不同的假设,有多种方法,但工程上普遍采用条分法(又称瑞典法)及具简化计算的表解法和图解法。 1.条分法 条分法是圆弧滑动面稳定性计算方法中一种具有代表性的方法。该法力的概念明确,使 用范围较广,基本原理是静力平衡,计算时取边坡的单位长度。分条的目的,在于使计算结果较为精确。稳定系数最小值Kmin,通过多道圆弧试算而得,计算工作量较大,分条不宜过多。条分法要求作图准确,尽量减少量取尺寸的误差。 (1)计算公式及其步骤 1)如图2-2-5所示,通过坡脚任意选定一个可能的圆弧滑动面AB,其半径为R。将滑动土体分成若干个垂直土条,其宽度一般为2~4m,通常分8~10个土条,分条时,可结合横断面特征,如分在边坡或地面变化点处,以便简化计算。 式中:ai为第i条土体弧段中心点的半径线与通过圆心的垂线之间的夹角。 3)以圆心o点为转动圆心,半径R为力臂,计算滑动面上各力对O点的滑动力矩,但应 注意在OY轴右侧的Ti为正,是促使土楔体滑动的力;而在OY轴左侧的Ti’方向相反,其值为负,是抵抗土楔体滑动的力,其产生的力矩应在滑动力矩中扣除。因此,滑动力矩为M滑=

相关文档
相关文档 最新文档