文档库 最新最全的文档下载
当前位置:文档库 › 水库兴利调节计算

水库兴利调节计算

水库兴利调节计算
水库兴利调节计算

第十一章水库兴利调节

第一节水库及其特性

一、水库特性曲线

水库是指在河道、山谷等处修建水坝等挡水建筑物形成蓄集水的人工湖泊。水库的作用是拦蓄洪水,调节河川天然径流和集中落差。一般地说,坝筑得越高,水库的容积(简称库容)就越大。但在不同的河流上,即使坝高相同,其库容相差也很大,这主要是因为库区内的地形不同造成的。如库区内地形开阔,则库容较大;如为一峡谷,则库容较小。此外,河流的坡降对库容大小也有影响,坡降小的库容较大,坡降大的库容较小。根据库区河谷形状,水库有河道型和湖泊型两种。

一般把用来反映水库地形特征的曲线称为水库特性曲线。它包括水库水位~面积关系曲线和水库水位~容积关系曲线,简称为水库面积曲线和水库容积曲线,是最主要的水库特性资料。(一)水库面积曲线

水库面积曲线是指水库蓄水位与相应水面面积的关系曲线。水库的水面面积随水位的变化而变化。库区形状与河道坡度不同,水库水位与水面面积的关系也不尽相同。面积曲线反映了水库地形的特性。

绘制水库面积曲线时,一般可根据l/10 000~l/50 00比例尺的库区地形图,用求积仪(或按比例尺数方格)计算不同等高线与坝轴线所围成的水库的面积(高程的间隔可用l,2或5 m),然后以水位为纵座标,以水库面积为横坐标,点绘出水位~面积关系曲线,如图2-1所示。

图2-1水库面积特性曲线绘法示意

(二)水库容积曲线

水库容积曲线也称为水库库容曲线。它是水库面积曲线的积分曲线,即库水位Z与累积容积V的关系曲线。其绘制方法是:首先将水库面积曲线中的水位分层,其次,自河底向上逐层计算各相邻高程之间的容积。

0 i F 1+i F 水面面积库F (106 m 2)

水库容积V (106 m 3)

图 2-2 水库容积特性和面积特性

1-水库面积特性; 2-水库容积特性

假设水库形状为梯形台,则各分层间容积计算公式为:

()2/1Z F F V i i ?+=?+ (2-1) 式中:V ?——相邻高程间库容(m 3);

i F 、1+i F ——相邻两高程的水库水面面积(m 2);

Z ?——高程间距(m )。

或用较精确公式:

3/(11Z F F F F V i i i i ?++=?++) (2-2) 然后自下而上按

∑=?=n i i V

V 1 (2-3)

依次叠加,即可求出各水库水位对应的库容,从而绘出水库库容曲线。

水库总库容V 的大小是水库最主要指标。通常按此值的大小,把水库划分为下列五级: 大Ⅰ型——大于 l0亿 m 3;

大Ⅱ型—— l ~10亿 m 3;

中 型——0.1~l 亿 m 3;

小Ⅰ型——0.01~0.1亿 m 3;

小Ⅱ型——小于0.01亿 m 3。

水库容积的计量单位除了用m 3表示外,在生产中为了能与来水的流量单位直接对应,便于调节计算,水库容积的计量单位常采用 (m 3/s)·Δt 表示。Δt 是单位时段,可取月、旬、日、时。如1月?s m 3表示 l s m 3的流量在一个月(每月天数计为30.4天)的累积总水量,即

l 月?s m 3 =30.4×24×3600=2.63×106 m 3

前面所讨论的水库特性曲线,均建立在假定入库流量为零时,水库水面是水平的基础上绘库 水位Z (m )

制的。这是蓄在水库内的水体为静止(即流速为零)时,所观察到的水静力平衡条件下的自由水面,故称这种库容为静水库容。如有一定入库流量(水流有一定流速)时,则水库水面从坝址起沿程上溯的回水曲线并非水平,越近上游,水面越上翘,直到入库端与天然水面相交为止。因此,相应于坝址上游某一水位的水库库容,实际上要比静库容大,其超出部分如图2-3中斜影线所示。静库容相应的坝前水位水平线以上与洪水的实际水面线之间包含的楔形库容称为动库容。以入库流量为参数的坝前水位与计入动库容的水库容积之间的关系曲线,称为动库容曲线。

一般情况下,按静库容进行径流调节计算,精度已能满足要求。但在需详细研究水库回水淹没和浸没问题或梯级水库衔接情况时应考虑回水影响。对于多沙河流,泥沙淤积对库容有较大影响,应按相应设计水平年和最终稳定情况下的淤积量和淤积形态修正库容曲线。

二、水库的特征水位及其相应库容

表示水库工程规模及运用要求的各种库水位,称为水库特征水位。它们是根据河流的水文条件、坝址的地形地质条件和各用水部门的需水要求,通过调节计算,并从政治、技术、经济等因素进行全面综合分析论证来确定的。这些特征水位和库容各有其特定的任务和作用,体现着水库运用和正常工作的各种特定要求。它们也是规划设计阶段,确定主要水工建筑物尺寸(如坝高和溢洪道大小),估算工程投资、效益的基本依据。这些特征水位和相应的库容,通常有下列几种,分别标在图2-3中。

(一)死水位和死库容

Z。死水位以下的水库容积水库在正常运用情况下,允许消落的最低水位,称为死水位

V。水库正常运行时蓄水位一般不能低于死水位。除非特殊干旱年份,为保证紧要称为死库容

用水,或其他特殊情况,如战备、地震等要求,经慎重研究,才允许临时泄放或动用死库容中的部分存水。

确定死水位应考虑的主要因素是:

(1)保证水库有足够的能发挥正常效用的使用年限(俗称水库寿命),特别应考虑部分库容供泥沙淤积。

(2)保证水电站所需要的最低水头和自流灌溉必要的引水高程。

(3)库区航运和渔业的要求。

(二)正常蓄水位和兴利库容

在正常运用条件下,水库为了满足设计的兴利要求,在开始供水时应蓄到的水位,称为正Z,又称正常高水位。正常蓄水位到死水位之间的库容,是水库可用于兴利径流调常蓄水位

节的库容,称为兴利库容,又称调节库容或有效库容。正常蓄水位与死水位之间的深度,称为消落深度或工作深度。

溢洪道无闸门时,正常蓄水位就是溢洪道堰顶的高程;当溢洪道有操作闸门时,多数情况下正常蓄水位也就是闸门关闭时的门顶高程。

正常蓄水位是水库最重要的特征水位之一,它是一个重要的设计数据。因为它直接关系到一些主要水工建筑物的尺寸、投资、淹没、综合利用效益及其他工作指标;大坝的结构设计、强度和稳定性计算,也主要以它为依据。因此,大中型水库正常蓄水位的选择是一个重要问题,往往牵涉到技术、经济、政治、社会、环境等方面的影响,需要全面考虑,综合分析确定。

图2-3 水库特征水位及其相应库容示意图

(三)防洪限制水位和结合库容

水库在汛期为兴利蓄水允许达到的上限水位称为防洪限制水位,又称为汛期限制水位,或简称为汛限水位。它是在设计条件下,水库防洪的起调水位。该水位以上的库容可作为滞蓄洪水的容积。当出现洪水时,才允许水库水位超过该水位。一旦洪水消退,应尽快使水库水位回落到防洪限制水位。兴建水库后,为了汛期安全泄洪和减少泄洪设备,常要求有一部分库容作为拦蓄洪水和削减洪峰之用。防洪限制水位或是低于正常蓄水位,或是与正常蓄水位齐平。若防洪限制水位低于正常蓄水位,则将这两个水位之间的水库容积称为结合库容,也称共用库容或重叠库容。汛期它是防洪库容的一部分,汛后又可用来兴利蓄水,成为兴利库容的组成部分。

若汛期洪水有明显的季节性变化规律,经论证,对主汛期和非主汛期可分别采用不同的防洪限制水位。

(四)防洪高水位和防洪库容

水库遇到下游防护对象的设计标准洪水时,坝前达到的最高水位称为防洪高水位防Z 。该水位至防洪限制水位间的水库容积称为防洪库容防V 。

(五)设计洪水位和拦洪库容

当遇到大坝设计标准洪水时,水库坝前达到的最高水位,称为设计洪水位设Z 。它至防洪限制水位间的水库容积称为拦洪库容拦V 或设计调洪库容设V 。

设计洪水位是水库的重要参数之一,它决定了设计洪水情况下的上游洪水淹没范围,它同时又与泄洪建筑物尺寸、类型有关;而泄洪设备类型(包括溢流堰、泄洪孔、泄洪隧洞)则应根据地形、地质条件和坝型、枢纽布置等特点拟定。

(六)校核洪水位和调洪库容

当遇到大坝校核标准洪水时,水库坝前达到的最高水位,称为校核洪水位校Z 。它至防洪限制水位间的水库容积称为调洪库容调V 或校核调洪库容校V 。

校核洪水位以下的全部水库容积就是水库的总库容。设计洪水位或校核洪水位加上一定数量的风浪高值和安全超高值,就得到坝顶高程。

三、水库的水量损失

水库建成蓄水后,因改变河流天然状况及库内外水力条件而引起额外的水量损失,主要包括蒸发损失和渗透损失,在寒冷地区还有可能有结冰损失。

(一)水库的蒸发损失

水库蓄水后,使库区形成广阔水面,原有的陆面蒸发变为水面蒸发。由于流入水库的径流资料是根据建库前坝址附近观测资料整编得出,其中已计入陆面蒸发部分。因此,计算时段Δt (年、月)水库的蒸发损失是指由陆面面积变为水面面积所增加的额外蒸发量 蒸W ?(以m 3计),即

()()

f F E E W --=?库陆水蒸1000 (2-4) 式中:水E ——计算时段Δt 内库区水面蒸发强度,以水层深度(mm )计;

陆E ——计算时段Δt 内库区陆面蒸发强度,以水层深度(mm )计;

库F ——计算时段Δt 内水库平均水面面积(km 2);

f ——建库以前库区原有天然河道水面及湖泊水面面积(km 2);

1000——单位换算系数,1 mm ?km 2=106/103 m 3=103 m 3。

水库水面蒸发可根据水库附近蒸发站或气象站蒸发资料折算成自然水面蒸发,即 器水E E α= (2-5) 式中:器E ——水面蒸发皿实测水面蒸发(mm);

α——水面蒸发皿折算系数,一般为0.65~0.80。

陆面蒸发,尚无较成熟的计算方法,在水库设计中常采用多年平均降雨量0h 和多年平均径流深0y 之差,作为陆面蒸发的估算值。

00y h E -=陆 (2-6) (二)渗漏损失

建库之后,由于水库蓄水,水位抬高,水压力的增大改变了库区周围地下水的流动状态,因而产生了水库的渗漏损失。水库的渗漏损失主要包括下面几个方面:

(l )通过能透水的坝身(如土坝、堆石坝等) 的渗漏,以及闸门、水轮机等的漏水;

(2)通过坝基及绕坝两翼的渗漏;

(3)通过库底、库周流向较低的透水层的渗漏。

一般可按渗漏理论的达西公式估算渗漏的损失量。计算时所需的数据(如渗漏系数、渗径长度等)必须根据库区及坝址的水文地质、地形、水工建筑物的型式等条件来决定,而这些地质条件及渗流运动均较复杂,往往难以用理论计算的方法获得较好的成果。因此,在生产实际中,常根据水文地质情况,定出一些经验性的数据,作为初步估算渗漏损失的依据。

若以一年或一月的渗漏损失相当于水库蓄水容积的一定百分数来估算时,则采用如下数值: (l )水文地质条件优良(指库床为不渗水层,地下水面与库面接近),0~10%/年或0~1%/

月。

(2)透水性条件中等,10%~20%/年或1%~1.5%/月。

(3)水文地质条件较差,20%~40%/年或1.5%~3%/月。

在水库运行的最初几年,渗漏损失往往较大(大于上述经验数据),因为初蓄时,为了湿润土壤及抬高地下水位需要额外损失水量。水库运行多年之后,因为库床泥沙颗粒间的空隙逐渐被水内细泥或粘土淤塞,渗漏系数变小,同时库岸四周地下水位逐渐抬高,渗漏量减少。

(三)结冰损失

结冰损失是指严寒地区冬季水库水面形成冰盖,随着供水期水库水位的消落,一部分库周的冰层将暂时滞留于库周边岸,而引起水库蓄水量的临时损失。这项损失一般不大,可根据结冰期库水位变动范围的面积及冰层厚度估算。

四、库区淹没、浸没和水库淤积

(一)库区淹没、浸没

在河流上建造水库将带来库区的淹没和库区附近土地的浸没,使库区原有耕地及建筑物被废弃,居民、工厂和交通线路被迫迁移改建,造成一定的损失。在规划设计水库时,要十分重视水库淹没问题。我国地少人多,筑坝建库所引起的淹没问题往往比较突出,对淹没问题的考虑和处理就更需周密慎重。

淹没通常分为经常性淹没和临时性淹没两类。经常性淹没区域,一般指正常蓄水位以下的库区,由于经常被淹,且持续时间长,因此,在此范围内的居民、城镇、工矿企业、通信及输电线路、交通设施等大多需搬迁、改线,土地也很少能被利用;临时性淹没区域,一般指正常蓄水位以上至校核洪水位之间的区域,被淹没机会较小,受淹时间也短暂,可根据具体情况确定哪些迁移,哪些进行防护,区内的土地资源大多可以合理利用。所有迁移对象或防护措施都将按规定标准给予补偿。此补偿费用和水库淹没范围内的各种资源的损失统称为水库淹没损失,计入水库总投资内。

水库淹没范围的确定,应根据淹没对象的重要性,按不同频率的入库洪水求得不同的库水位,并由回水计算结果从库区地形图上查得相应的淹没范围。淹没范围内淹没对象的种类和数量,应通过细致的实地调查取得。在多沙河流上,水库淹没范围还应计及水库尾部因泥沙淤积水位壅高及回水曲线向上游延伸等的影响。

浸没是指库水位抬高后引起库区周围地区地下水位上升所带来的危害,如可能使农田发生次生盐碱化,不利于农作物生长;可能形成局部的沼泽地,使环境卫生条件恶化;还可能使土壤失去稳定,引起建筑物地基的不均匀沉陷,以致发生裂缝或倒塌。水库周围的浸没范围一般可采用正常蓄水位或一年内持续两个月以上的运行水位为测算依据。

淹没和浸没损失不仅是经济问题,而且是具有一定社会和政治影响的问题。是规划工作中的一个重要课题。

(二)水库的淤积

在天然河流上筑坝建库后,随着库区水位的抬高,水面加宽,水深增大,过水断面扩大,水力坡降变缓,水流速度减小。原河道水力特性的这种变化,降低了水流挟沙能力,也改变了原河道的泥沙运动规律,导致大量泥沙在库区逐渐沉淀淤积。这一情况说明,水库的建造,带来河流泥沙的淤积。我国华北的黄河和海河水系,水流含沙量大,如黄河三门峡水库,多年平均含沙量达37.8 kg/m3,因此自1960年至1970年间,水库共淤积泥沙55.5亿t,使库水位335 m 以下的库容损失43%。又如海河流域永定河上的官厅水库,多年平均含沙量高达44.2 kg/m3,水库运用6年后,泥沙淤积导致库容损失达15.2%。即使含沙量较小的长江水系,干支流上修建的水库也有泥沙淤积问题。

泥沙淤积对水库运用和上下游河流产生的不良影响是多方面的。淤积使水库调节库容减少,

降低水库调节水量的能力和综合利用的效益。坝前淤积,使电站进水口水流含沙浓度增大,泥沙粒径变粗,引起对过水建筑物和水轮机的磨损,影响建筑物和设备的安全和寿命。库尾淤积体向库区推进的同时,也向上游延伸,即所谓“翘尾巴”,因而抬高库尾水位,扩大库区的淹没和浸没损失。水库下游则由于泄放清水,水流夹沙能力增大,引起对下游河床的冲刷,水位降低,甚至河槽变形。

影响水库淤积的因素很多,主要有水库的入库水流的含沙量多少及其年内分配、库区地形、地质特性以及水库的运用方式等。从已建水库的大量观测资料分析,我国水库泥沙淤积的纵向形态可分为三种基本类型:

(1)三角洲淤积形态。库内泥沙淤积体的纵剖面呈三角形形状的称为三角形淤积。当河流含沙量大时,库区开阔,库容较大,库水位变幅小,泥沙易于在库尾淤积形成三角洲,并且随着水库淤积的发展,三角洲逐渐向坝前靠近,所以这类淤积有相当部分的泥沙淤积是在有效库容内,如官厅水库和刘家峡水库就属于这种类型。

(2)锥形淤积。常见于多沙河流上的中小型水库。由于库区较短,库容小,水深不大,底坡较陡,库内行近流速比较大,泥沙淤积首先靠近大坝,以后淤积逐渐向上游发展,呈锥形淤积。

(3)带状淤积形态。当水库来沙少,库区狭长,水位变幅较大时,淤积从库尾到坝前分布较均匀,呈带状纵剖面,淤积前后河底平均比降变化不大,对有效库容影响较小。如丰满水库就属于这种类型。

以上三种水库淤积形态中,带状淤积影响较小;三角洲淤积侵占水库有效库容影响最大;锥体淤积对于坝前淤积高程、进水口工作条件以及粗粒泥沙对过水建筑物和水轮机的磨损影响较为严重。

因此,在多沙河流上修建水库,调节径流,必须考虑泥沙的影响,甚至将其作为一个专门问题在规划设计中加以研究解决。一般河流上修建水库,在规划设计阶段也应认真分析水、沙资料,力求正确地估算沙量,以便确定淤积库容、淤积年限,并尽可能采取对策减轻淤积带来的不利影响。

水库淤积年限或淤积库容的计算,严格的说应根据水库泥沙运动规律及淤积过程进行。但目前由于水库泥沙资料不全,计算方法欠完善,故难以得出精确的计算结果。一般情况下多采用较简单的方法来核算,例如采用下面介绍的简算法和沙莫夫法等。

简算法假定水库泥沙淤积呈水平增长。把水库开始运行到泥沙全部淤满死库容死V ,并开始影响有效库容时为止的这段时间,称为水库的使用年限,或称淤积年限n T 。设水库年淤积量为wm ρ。其中w 为年径流总量(m 3 );ρ为年平均含沙量(kg/m 3);m 为入库泥沙留在水库中的相对值,视库容相对大小或水库调节程度而定。由此,水库年淤积体积为:

()γ

ρp wm V -=1年淤 (2-7) 式中: p ——淤积的空隙度;

γ——泥沙的比重(kg/m 3);

当水库的死库容己定时,可求得水库的使用年限n T 为

年淤死V V T n /= (2-8) 或当水库的使用年限n T 已定时,可求得水库所需的淤积库容总淤V 为

年度水库兴利调度总结

日照水库 2013年度兴利调度运用工作总结 日照水库管理局 2014年1月6日

2013年兴利调度运用工作总结 一、降雨及来水情况 2013年是个平水年,总降雨量892毫米,是2012年降雨量(720毫米)的123.89%,与多年平均降雨量(875.97毫米)相比增加了1.83%;全年水库来水量为14532万立方米(含全年蒸发量1720.6万立方米),比去年来水量(10682.9万立方米)来水增多36.03%,比多年平均来水量(14800万立方米)减少了1.81%。其中汛期流域总平均降雨480毫米,是去年同期降雨量(538mm)的89.2%,汛期来水10078.7万立方米(含蒸发量),占全年来水量(14532万立方米)的69.36%。 降雨和来水主要集中在5、7、9三月,超过50毫米的降雨有4次,其中5月份一次、7月份二次、9月份一次。最大日降雨量142.3毫米,发生在5月26日。5月26日,流域平均降雨量115毫米,水库驻地降雨量142.3毫米,最大入库流量150立方米/秒,产生洪水总量1630立方米;7月4日,流域平均降雨量56毫米,水库驻地降雨量53.5毫米,最大入库流量81.4立方米/秒,产生洪水总量1009立方米;7月29日,流域平均降雨量52毫米,驻地降雨量46毫米,最大入库流量208立方米/秒,产生洪水总量1538

万立方米; 9月23日,流域平均降雨量73毫米,驻地降雨量77毫米,最大入库流量68立方米/秒,产生洪水总量375万立方米。 2013年全年不含蒸发量时来水量为12811.4万立方米(蒸发量为1720.6万立方米),其中1~5月份来水量为3057.36万立方米,汛期来水量为9208.6万立方米。10~12月份来水量为545.44万立方米。全年没有弃水。 二、兴利情况 1、库水位及库容变化情况 今年年初库水位37.48米,相应库容为8019万立方米,汛前库水位持续较低,直到5月26日,达到全年最低水位35.36米,相应库容5141万立方米;汛初库水位36.77米(6月1日),相应库容6952万立方米;到5月26日之后,库水位开始上涨;6月下旬至7月上旬,水位略有下降;7月中旬至8月中旬,水位开始上涨;8月下旬水位又开始下降,汛末库水位39.47米(10月1日),相应库容11685万立方米,比汛初增加库容4733万立方米;年末库水位38.62米,相应库容为9997万立方米,较年初库容增加1978万立方米。 全年最低库水位35.36米(5月26日),相应库容5141

水库兴利调节计算

第十一章 水库兴利调节 第一节 水库及其特性 一、水库特性曲线 水库就是指在河道、山谷等处修建水坝等挡水建筑物形成蓄集水得人工湖泊。水库得作用 就是拦蓄洪水,调节河川天然径流与集中落差。一般地说,坝筑得越高,水库得容积(简称库容)就越 大。但在不同得河流上,即使坝高相同,其库容相差也很大,这主要就是因为库区内得地形不同 造成得。如库区内地形开阔,则库容较大;如为一峡谷,则库容较小。此外,河流得坡降对库容大小 也有影响,坡降小得库容较大,坡降大得库容较小。根据库区河谷形状,水库有河道型与湖泊型两 种。 一般把用来反映水库地形特征得曲线称为水库特性曲线。它包括水库水位~面积关系曲线与 水库水位~容积关系曲线,简称为水库面积曲线与水库容积曲线,就是最主要得水库特性资料。 (一)水库面积曲线 水库面积曲线就是指水库蓄水位与相应水面面积得关系曲线。水库得水面面积随水位得 变化而变化。库区形状与河道坡度不同,水库水位与水面面积得关系也不尽相同。面积曲线反映 了水库地形得特性。 绘制水库面积曲线时,一般可根据 l/10 000~ l/50 00比例尺得库区地形图,用求积仪(或 按比例尺数方格)计算不同等高线与坝轴线所围成得水库得面积(高程得间隔可用 l,2或5 m), 然后以水位为纵座标,以水库面积为横坐标,点绘出水位~面积关系曲线,如图2-1所示。 图2-1 水库面积特性曲线绘法示意 (二)水库容积曲线 水库容积曲线也称为水库库容曲线。它就是水库面积曲线得积分曲线,即库水位与累积容积 得关系曲线。其绘制方法就是:首先将水库面积曲线中得水位分层,其次,自河底向上逐层计算各 相邻高程之间得容积。 Z (m )

第三章调洪计算

第三章调洪计算 3.1调洪计算目的 水库调洪计算的目的是在已拟定泄洪建筑物及已确定防洪限制水位(或其他的起调水位)的条件下,用给出的入库洪水过程、泄洪建筑物的泄洪能力曲线及库容曲线等基本资料,按规定的防洪调度规则,推求水库的泄流过程、水库水位过程及相应的最高调洪水位和最大下泄流量。 3.2调洪演算的原理 水库调洪计算的基本公式是水量平衡方程式: t t t t t t V V t q q t Q Q -=?+-?++++112112 1)()( (3-1) 式中t ?—计算时段长度,s ; 1,+t t Q Q —t 时段初、末的入库流量,m 3/s ; 1,+t t q q —t 时段初、末的出库流量,m 3/s ; 1,+t t V V —t 时段初、末水库蓄水量,m 3。 水库泄流方程 : q =f (V ) (3-2) 用已知(设计或预报)的入库洪水过程线Q ~t ,由起调水位开始,逐时段连续求解(3-1)和(3-2)组成的方程组,从而求得水库出流过程q ~t ,这就是调洪演算的基本原理。

这里采用单辅助线半图解法,联解(2-1)和(2-2)两个方程,将(3-1)改写为: (V t/△t+q t/2 )+Q-q t= (V t+1/△t)+(q t+1/2 ) (3-3)式中Q—计算时段平均入流量,Q=(Q t + Q t+1)/2;其他同(3-1) 也就是说,可以事先绘制q~(V/△t)+(q/2 )的关系曲线,即调洪演算工作曲线,因式3-3)的左端各项为已知数,故式(3-3)右端项也可求出,然后根据(V t+1/△t)+(q t+1/2 )的值,通过工作曲线q~(V/△t)+(q/2 )可查出q t+1的值。因第一时段的V2、q2就是第二时段的V1、q1,于是可重复以上步骤连续进行计算,直到求出结果。 3.3调洪计算结果整理 3.3.1调洪演算基本资料 水库特征水位:正常蓄水位1856m,汛期限制水位1854m,死水位1852m 积石峡入库洪水过程线见下表: 表2-1积石峡入库洪水过程线

论述水库兴利调节的确定方法

论述水库兴利调节的确定方法 天然情况下的河川径流,有着年内和年际的变化,且地区间的分布也不均衡,因此无法满足国民经济各用水部门对水资源利用的要求。需要通过水利工程的控制和调节,来重新分配河川径流的时空分布,以解决来用水在时间与数量上不相适应的矛盾。这种利用专门的水工建筑物(如大坝、水库和渠道等),来重新分配河川径流,以适应需水过程的措施称为径流调节。其中,为减免洪水灾害,在汛期拦蓄洪水、削减洪峰的调节称为防洪调节;为了满足于用水部门需水要求的调节称为兴利调节。 标签:水库调节;分类;重要性 1 水库兴利调节的意义与分类 拦河坝将天然径流蓄存,便形成水库。修建水库是进行径流调节的主要措施。所谓水库的兴利调节,就是当来水大于用水时,水库将多余的水蓄存起来,等到来水小于用水时,再放水补充,以满足兴利部门的用水要求。水库的蓄泄,随来水与用水的变化而变化。由库空到蓄满,再放空,循环一次所经历的时间,称为调节周期。按调节周期的长短,可分为日调节、周调节、年调节和多年调节。 2 水库兴利调节所需的基本资料 水库的兴利调节,是通过水库的蓄泄操作使来水过程适应需水过程的要求。因此,调节计算所需的基本资料包括有河川径流过程、兴利部门的用水过程和水库的特性资料。河川径流过程,即来水资料,是兴利调节的基本依据。由于水文现象的随机性和多变性,通常只能由以往的径流资料来预估水库运行期间的水文情势和来水特性。即通过前面所述的水文分析计算方法,来得到水库设计运行中的设计来水过程。兴利部门的用水要求,即用水资料,是兴利调节的又一依据。为了确定用水过程,需要了解与掌握用水部门的用水情况,以及当前和远景的发展计划。在用水调查的基础上,做出用水预测,得出水库设计与运行中的设计用水过程。水库的特性资料,主要是水库的面积、容积特性、蒸发和渗漏损失,以及淤积、淹没和浸没资料等。这些资通常是根据库区的地形资料,以及淹没和浸没损失的社会调查材料来分析确定的。上述资料,直接影响着水库兴利调节计算的精度,应力求可靠和准确。并需要根据设计阶段和运行阶段的变化情况,及时做出修正和补充。水库兴利调节的计算过程,实质上是水库蓄泄水量的计算过程。 3 设计保证率的选择 修建水库进行径流调节,以满足国民经济各部门的需水要求时,需要确定水库的规模。规模的大小,与保证正常用水的程度有关,由于河川径流的多变性,如果对出现机会很少的特枯水年份也要保证兴利部门的正常用水,则工程的规模就需要很大,相应投资也很多。这显然是不经济的。为了避免因工程规模过大而带来过大的耗费,一般不要求在工程的全部运行期间都能绝对地保证正常用水,

英那河水库兴利调度总结与建议

英那河水库2009年兴利调度总结与建议 一、2009年回顾 2009年年初截止到9月末,英那河水库上游平均降雨量为537.7毫米,来水量为8474.4万立方米,出库总水量为15690.4万立方米,其中城市供水6798.4万立方米,渠道放水3522.0万立方米,河道放水2363.3万立方米,向转角楼水库调水3006.7万立方米,大坝泄洪0万立方米。 同期历史平均数据为(统计区间为2005年~2008年):水库上游平均降雨量760.8毫米,来水量为27121.8万立方米,出库总水量为26662.3万立方米,其中城市供水4055.6万立方米,渠道放水2813.1万立方米,河道放水1615.8万立方米,向转角楼水库调水5999.1万立方米,大坝泄洪12178.7万立方米。 二、水库兴利调度总结 2.1雨水情分析 统计资料显示,英那河流域2009年主汛期30毫米以上的降雨只有3次,7、8月降雨总量198.1毫米,较历史平均减少51.8%,7、8月来水总量3502.6万m3,较历史平均减少82.9%,8月末水库蓄水位为74.68m,离正常蓄水位还缺8287万m3。 目前看来2009年是枯水年,分析其汛期来水少的原因,主要有以下几个方面: 1.汛期降雨总量少,是来水量少的主要原因。英那河流域7月份降雨量为130.3毫米,8月份降雨量为67.8毫米,7、8月降雨总量较历史平均减少51.8%。降水通过流域的产汇流形成径流,其中大部分经过截留、填洼、蒸发、补充地下水等损失掉了,只有一部分能够形成径流。降雨总量少,形成径流的来水量相应的也很少。 2.降雨强度不高,雨量损失较大,有效降雨偏少。资料显示,英那河流域主汛期30毫米以上的降雨只有3次,50毫米以上的降雨只有1次。高强度降雨可以减少下渗损失,产生更多的径流。而今年英那河流域降雨强度普遍很低,很大部分降雨量没有形成径流。 3.两次降雨间隔较长,导致每次降雨的前期土壤含水量不高,使得降雨产生的径流偏少。 2.2 水文气象预报成果及误差 庄河市气象台2009年7月13日的报告《前期降水实况及汛期预测》中提到,

C-2 水库调洪演算的数值解程序

C-2 水库调洪演算的数值解程序 作者 张校正(新疆水利厅 ) 一、程序功能 已知水库的水位--水面面积关系,洪水量过程线,对于每一种调洪方案(包括泄流条件、调洪方式、泄水建筑物参数)由调洪起始水位依次计算,直至洪水过程结束,计算机输出各时段末之水位、泄洪洞流量、溢洪道流量、水库出库总流量等。并用彩色曲线绘制洪水过程线、泄洪过程线和水库水位变化线。 二、算法简介 1,水库水量平衡分方程的数值解: 水库水量平衡微分方程: q Q dt dZ f -= 式中: f=f(z) 水库水面面积,是水位z 的函数; Z=Z(t) 水位,是时间t 的函数; Q=Q(t) 入库流量,是时间t 的函数; Q=q(z) 出库流量,是水位z 的函数。 将上式移项,并定义调洪函数 )()()(),(z f Z q t Q Z t F -= 则得 ?????==00)(),(Z t Z Z t F dt dZ 这是一个一阶常微分方程的初值问题。应用定步长的龙格-库塔方法求解。其公式为:)22(6143211K K K K Z Z n n ++++=- 式中: )() ()(),(111111------?=?=n n n n n Z f Z q t Q T Z t F T K )21()2()2()2,2(11111112K Z f K Z q T t Q T K Z T t F T K n n n n n ++-+?=++?=----- )2()2()2()2,2(212112113K Z f K Z q T t Q T K Z T t F T K n n n n n ++-+?=++?=----- )()()(),(3131314K Z f K Z q t Q T K Z t F T K n n n n n ++-?=+?=--- T 为洪水流量时段间隔;

水库调洪计算试算法

水库调洪演算试算法 一、水库调洪计算的任务 入库洪水流经水库时,水库容积对洪水的拦蓄、滞留作用,以及泄水建筑物对出库流量的制约或控制作用,将使出库洪水过程产生变形。与入库洪水过程相比,出库洪水的洪峰流量显著减小,洪水过程历时大大延长。这种入库洪水流经水库产生的上述洪水变形,称为水库洪水调节。水库调洪计算的目的是在已拟定泄洪建筑物及已确定防洪限制水位(或其他的起调水位)的条件下,用给出的入库洪水过程、泄洪建筑物的泄洪能力曲线及库容曲线等基本资料,按规定的防洪调度规则,推求水库的泄流过程、水库水位过程及相应的最高调洪水位和最大下泄流量。 若水库不承担下游防洪任务,那么水库调洪计算的任务是研究和选择能确保水工建筑物安全的调洪方式,并配合泄洪建筑物的形式、尺寸和高程的选择,最终确定水库的设计洪水位、校核洪水位、调洪库容及二种情况下相应的最大泄流量。若水库担负下游防洪任务,首先应根据下游防洪保护对象的防洪标准、下游河道安全泄量、坝址至防洪点控制断面之间的区间入流情况,配合泄洪建筑物形式和规模,合理拟定水库的泄流方式,确定水库的防洪库容及其相应的防洪高水位;其次,根据下游防洪对泄洪方式的要求,进一步拟定为保证水工建筑物安全的泄洪方式,经调洪计算,确定水库的设计洪水位与校核洪水位及相应的调洪库容。 二、水库调洪计算基本公式 洪水进入水库后形成的洪水波运动,其水力学性质属于明渠渐变不恒定流。常用的调洪计算方法,往往忽略库区回水水面比降对蓄水容积的影响,只按水平面的近似情况考虑水库的蓄水容积(即静库容)。水库调洪计算的基本公式是水量平衡方程式:

t t t t t t V V t q q t Q Q -=?+-?++++1121121)()( (3-1) 式中: t ?——计算时段长度(s ); 1,+t t Q Q ——t 时段初、末的入库流量(m 3/s ); 1,+t t q q ——t 时段初、末的出库流量(m 3 /s ); 1,+t t V V ——t 时段初、末水库蓄水量(m 3 )。 当已知水库入库洪水过程线时,1,+t t Q Q 均为已知;t t q V ,则是计算时段t 开始的初始条件。于是,式中仅11,++t t q V 为未知数。必须配合水库泄流方程q =f (V )与上式联立求解11,++t t q V 的值。当水库同时为兴利用水而泄放流量时,水库泄流量应计入这部分兴利泄流量。假设暂不计及自水库取水的兴利部门泄向下游的流量,若泄洪建筑物为无闸门表面溢洪道,则下泄流量q 的计算公式为: 1 11 2gh mBh q ε= (3-2) 式中: ε 侧收缩系数; m 流量系数; B 溢洪道宽; h 1 堰上水头。 若为孔口出流,则泄流公式为: 2 2 2gh q μω= (3-3) 式中: μ 孔口出流系数; ω 孔口出流面积; h 2 孔口中心水头。 由式(3-2)或(3-3)所反映泄流量q 与泄洪建筑物水头h 的函数关系可转换为泄流量q 与库水位Z 的关系曲线q =f (Z )。借助于水库容积特性V =f (Z ),

水库兴利调节计算

第十一章水库兴利调节 第一节水库及其特性 一、水库特性曲线 水库是指在河道、山谷等处修建水坝等挡水建筑物形成蓄集水的人工湖泊。水库的作用是拦蓄洪水,调节河川天然径流和集中落差。一般地说,坝筑得越高,水库的容积(简称库容)就越大。但在不同的河流上,即使坝高相同,其库容相差也很大,这主要是因为库区内的地形不同造成的。如库区内地形开阔,则库容较大;如为一峡谷,则库容较小.此外,河流的坡降对库容大小也有影响,坡降小的库容较大,坡降大的库容较小。根据库区河谷形状,水库有河道型和湖泊型两种。 一般把用来反映水库地形特征的曲线称为水库特性曲线.它包括水库水位~面积关系曲线和水库水位~容积关系曲线,简称为水库面积曲线和水库容积曲线,是最主要的水库特性资料。(一)水库面积曲线 水库面积曲线是指水库蓄水位与相应水面面积的关系曲线。水库的水面面积随水位的变化而变化。库区形状与河道坡度不同,水库水位与水面面积的关系也不尽相同。面积曲线反映了水库地形的特性. 绘制水库面积曲线时,一般可根据l/10000~ l/5000比例尺的库区地形图,用求积仪(或按比例尺数方格)计算不同等高线与坝轴线所围成的水库的面积(高程的间隔可用l,2或5 m),然后以水位为纵座标,以水库面积为横坐标,点绘出水位~面积关系曲线,如图2-1所示. 图2-1水库面积特性曲线绘法示意 (二)水库容积曲线 水库容积曲线也称为水库库容曲线。它是水库面积曲线的积分曲线,即库水位Z与累积容积V的关系曲线。其绘制方法是:首先将水库面积曲线中的水位分层,其次,自河底向上逐层计算各相邻高程之间的容积。

0 i F 1+i F 水面面积库F (106 m 2) 水库容积V (106 m 3) 图 2—2 水库容积特性和面积特性 1-水库面积特性; 2-水库容积特性 假设水库形状为梯形台,则各分层间容积计算公式为: ()2/1Z F F V i i ?+=?+ (2—1) 式中:V ?——相邻高程间库容(m 3); i F 、1+i F ——相邻两高程的水库水面面积(m 2 ); Z ?——高程间距(m). 或用较精确公式: 3/(11Z F F F F V i i i i ?++=?++) (2-2) 然后自下而上按 ∑=?=n i i V V 1 (2-3) 依次叠加,即可求出各水库水位对应的库容,从而绘出水库库容曲线. 水库总库容V 的大小是水库最主要指标.通常按此值的大小,把水库划分为下列五级: 大Ⅰ型——大于 l0亿 m 3; 大Ⅱ型—— l ~10亿 m 3; 中 型--0。1~l亿 m 3; 小Ⅰ型——0。01~0。1亿 m 3; 小Ⅱ型—-小于0.01亿 m 3. 水库容积的计量单位除了用m 3表示外,在生产中为了能与来水的流量单位直接对应,便于调 节计算,水库容积的计量单位常采用 (m 3/s )·Δt 表示。Δt 是单位时段,可取月、旬、日、 时。如1月?s m 3表示 l s m 3的流量在一个月(每月天数计为30。4天)的累积总水量,即 库 水位Z (m )

兴利调节作业

兴利调节作业 1. 已知某不完全年调节水库的设计枯水年的来水与用水(见表1),水库水位面积、水位容积关系(见表2),蒸发、渗漏损失(见表3)。水库死库容为63 20010m ?。 (1)试用列表法(暂不计蒸发、渗漏损失)确定兴利库容和兴利蓄水位。 (2)考虑蒸发、渗漏损失时,其结果如何? (3)若为完全年调节水库(暂不计蒸发、渗漏损失),则需兴利库容多大? 兴利蓄水位多高?月平均供水量多大? 表1 表2 表3 4 5 6

兴利调节—作业1 作业答案: 图1 天然来水和用水过程 ⑴ 列表法(暂不计蒸发、渗漏损失)确定兴利库容和兴利蓄水位 ① 依据表1和图1,划定蓄水期和供水期。 ② 根据天然来水和用水资料(表1),计算各供水期各计算时段(一个月) 不足水量(见表4)。 ③ 分别计算各蓄水期可蓄水量和各供水期不足水量。 1170210120=500W =++蓄,180W =供; 2204060W =+=蓄,220140160W =+=供; 37090160W =+=蓄,34080120W =+=供。 ④ 分析确定所需兴利库容和兴利蓄水位。 因为 11W W >蓄供,22W W <蓄供,33W W >蓄供, 所以122V ()80(16060)180W W W =+-=+-=兴1供供蓄 3V 120W ==兴2供 12V V >兴兴,V V =兴兴1

0.40.4 180200Z ( )()29.60.080.08 V V ++===兴死兴 兴利调节时历列表计算表4: 水量单位为106m 3 ⑵ 考虑蒸发、渗漏损失,确定兴利库容和兴利蓄水位 ① 计算各项损失水量和总损失水量(表5)。 ② 确定毛用水过程(见表6第③栏)。 ③ 同⑴步骤分析确定所需兴利库容和兴利蓄水位。 1164.5202.7112.3=479.5W =++蓄,187.0W =供; 213.833.647.4W =+=蓄,225.9144.0169.9W =+=供; 366.785.9152.6W =+=蓄,344.484.3128.7W =+=供。

多年调节水库兴利库容计算方法.

6.7 多年调节水库兴利调节计算 由年调节水库的兴利调节计算可知,当设计年用水量小于设计年来水量时,只要将当年汛期的部分多余水量蓄起来,就能满足枯水期所缺的水量,即水库只需进行年内调节。但当设计年来水量小于设计年用水量时,说明设计年来水量不够用,需要将丰水年的余水蓄存在水库中,跨年度补给枯水年使用,这种跨年度的径流调节称为多年调节。 多年调节与年调节的不同之处,在于它不仅能重新分配年内来水量,而且同时能重新分配年与年之间的来水量。因此,多年调节所需的调节库容也大,调节程度高,对来水的利用也较充分。 多年调节计算,要考虑年径流系列中各种连续枯水年组成的总缺水情况,其兴利库容的大小将决定于连续枯水年组的总亏水量,故对年径流系列要求更长些。兴利调节计算的基本原理与方法,则与年调节计算相类似。本节仅对长系列时历列表法与数理统计法作扼要的介绍。 1.长系列时历列表法 当实测年径流系列较长,包含一个或几个枯水年组时,可根据多数年份的来、用水情况,划分水利年度,列表计算各年余缺水期的余缺水量,判定各年所需的调节库容,然后绘出库容保证率曲线,由设计保证率在库容保证率曲线上查得多年调节的兴利库容。此法即为长系列时历列表法。 这种方法与年调节水库的长系列法基本相同。需要注意的是,多年调节时有些年份的调节库容不能只以本年度缺水期的缺水量来定,而必须与前一年或前几年的余缺水量统一考虑。 【实例6-5】长系列时历列表法兴利调节计算 某水库坝址处有30年实测年径流资料,经分析能代表多年的变化情况。各年的用水量过程也已知。根据大多数年份的来、用水情况确定水利年度为当年的6月1日至次年的5月31日。各年的余缺水期的余缺水量经统计计算,成果如表所示。当设计保证率 年调节的兴利库容。 【解答】 =90%时,试确定多 (1)判定各年度所需的调节库容 根据各年度的余缺水量情况,用类似年调节计算判定调节库容的方法,判定各年所需的调节库容,填入表内,并在备注栏内注明“年调节”字样。这些注有“年调节”字样的年份,年来水总量大于年用水总量,水库只需进行年调节。对于1969~1970年度和1970~1971年度,年来水总量小于年用水总量,需进行多年调节。这两年所需的调节库容,应联系1968~1969年度的余缺水量统一考虑。为确定这两年的调节库容,绘出上述连续3年来的用水过程示意图,如图所示:

水库兴利调节及调洪演算

《水资源规划及利用》课程设计说明书 在过去的一周里,我们进行了《水资源规划及利用》的课程设计,我们做的是梅山水库的三个典型年的兴利演算及其发电量的计算还有68年梅山水库的一次调洪演算。现在,我们基本上已经设计完毕,通过课程设计,进一步加强了我们对所学内容的理解水平和应用能力,培养了我们分析问题与解决问题的能力。下面,就是我们在课程设计的过程。 概述 1.梅山水库概况:梅山水库位于淮河支流史河上游的安徽省金寨县境内,东与淠河西源为邻,西与灌河隔岭为界,南源于大别山北麓,北距史河 入淮口130km。水库流域南北长约70km,东西宽约40km,流域面积 1970km2。梅山水库按500年一遇洪水设计,5000年一遇洪水校核,设 计洪水位137.66m,校核洪水位139.93m,正常蓄水位128.0m,汛限水 位125.27m,死水位94.00m,总库容22.64亿m3,兴利库容9.57亿m3,死库容1.26亿m3,为年调节水库。梅山水库现有水电站装机容量为4 万kW,4台发电机组,单机最大过水流量29.8m3/s,电站主要结合灌溉 供水或利用泄洪弃水发电,原则上不单独为发电目的而放水入横排头水 库。现状情况下多年平均发电量为9925万kW·h。 2.设计内容:①.熟悉资料,绘出相关曲线; ②.根据梅山水库的1969-2008年的一年中各旬的入库流量资 料,定出对应设计保证率为10%,50%,90%的设计典型年; ③.分别对梅山水库的三个典型年的一、二种方案进行兴利调 节和水能计算,求出各种方案的年平均发电量,并且比较各方案的利弊。 ④.用第一种方案分别对梅山水库的1969年的一次洪水进行 调洪演算。3.设计方案:兴利方案:①方案一:正常蓄水位:128 m,汛限水位:125.27 m。②方案二:正常蓄水位:128 m,汛限水位:124.57 m。

水库调洪计算试算法

水库调洪计算试算法 水库调洪演算试算法一、水库调洪计算的任务 入库洪水流经水库时,水库容积对洪水的拦蓄、滞留作用,以及泄水建筑物对出库流量的制约或控制作用,将使出库洪水过程产生变形。与入库洪水过程相比,出库洪水的洪峰流量显著减小,洪水过程历时大大延长。这种入库洪水流经水库产生的上述洪水变形,称为水库洪水调节。水库调洪计算的目的是在已拟定泄洪建筑物及已确定防洪限制水位(或其他的起调水位)的条件下,用给出的入库洪水过程、泄洪建筑物的泄洪能力曲线及库容曲线等基本资料,按规定的防洪调度规则,推求水库的泄流过程、水库水位过程及相应的最高调洪水位和最大下泄流量。 若水库不承担下游防洪任务,那么水库调洪计算的任务是研究和选择能确保水工建筑物安全的调洪方式,并配合泄洪建筑物的形式、尺寸和高程的选择,最终确定水库的设计洪水位、校核洪水位、调洪库容及二种情况下相应的最大泄流量。若水库担负下游防洪任务,首先应根据下游防洪保护对象的防洪标准、下游河道安全泄量、坝址至防洪点控制断面之间的区间入流情况,配合泄洪建筑物形式和规模,合理拟定水库的泄流方式,确定水库的防洪库容及其相应的防洪高水位;其次,根据下游防洪对泄洪方式的要求,进一步拟定为保证水工建筑物安全的泄洪方式,经调洪计算,确定水库的设计洪水位与校核洪水位及相应的调洪库容。 二、水库调洪计算基本公式 洪水进入水库后形成的洪水波运动,其水力学性质属于明渠渐变不恒定流。常用的调洪计算方法,往往忽略库区回水水面比降对蓄水容积的影响,只按水平面的近似情况考虑水库的蓄水容积(即静库容)。水库调洪计算的基本公式是水量平衡方程式: 11(Q,Q),t,(q,q),t,V,V (3-1) tt,1tt,1t,1t22

相关文档