文档库 最新最全的文档下载
当前位置:文档库 › 细胞生物学第五章

细胞生物学第五章

细胞生物学第五章
细胞生物学第五章

物质的跨膜运输

1.膜转运蛋白膜转运蛋白是存在于膜上的膜整合蛋白,参与细胞对物质的被动运输和主动运输过程。

通道蛋白(channel proteins)介导被动运输具有离子选择性;离子通道是门控的;

类型:电压门通道;配体门通道;压力激活通道水通道通道蛋白相当于桥

大多数的水分子通过直接扩散进入细胞,但也有一部分水是通过蛋白通道进行扩散的。水的蛋白通道称为水通道蛋白

通道蛋白所介导的被动运输不需要与溶质分子结合,它横跨膜形成亲水通道,允许适宜大小的分子和带电荷的离子通过

载体蛋白(carrier proteins)介导被动与主动运输具有通透酶(permease)性质。

载体蛋白相当于船

每种载体蛋白能与特定的溶质分子结合,通过一系列构象的改变介导溶质分子的跨膜转运。载体蛋白的特点:

有特异性的结合位点;

转运过程具有饱和动力学特征;

可被竞争性抑制和非竞争性抑制

2.物质的跨膜运输是细胞维持正常生命活动的基础之一。

被动运输:简单扩散、协助扩散

穿膜运输

主动运输:Na+-K+泵、Ca2+泵、协同运输

胞吞作用:胞饮作用、吞噬作用

膜包运输

胞吐作用

4.被动运输

特点:转运动力来自物质的浓度梯度或电化学梯度,不需要细胞提供代谢能量。

协助扩散:疏水的小分子和小的不带电荷的极性分子在以简单扩散方式跨膜转运中,不需要细胞提供能量,也不需要膜蛋白的协助,因此称为简单扩散。小分子比大分子易穿膜,

非极性分子比极性分子易穿膜。

协助扩散:各种极性分子和无机离子顺其浓度梯度或电化学梯度减小的方向的跨膜转运。

5.主动运输

主动运输是由载体蛋白所介导的物质逆浓度梯度或电化学梯度进行跨膜转运的方式。

主动运输包括三种基本类型

a由ATP直接提供能量的主动运输

"钠钾泵"钙泵"质子泵

b 协同运输(cotransport):小肠上皮细胞对葡萄糖的吸收

c物质的跨膜转运与膜电位

7.协同运输

协同运输是一类由Na+-K+泵(或H+泵)与载体蛋白协同作用,靠间接消耗ATP所完成的主动运输方式。

协同运输物质跨膜运动所需要的直接动力来自于膜两侧的离子电化学浓度梯度,而维持这种离子电化学浓度梯度则是通过Na+-K+泵(或H+泵)消耗ATP来完成的

8.胞吞作用与胞吐作用

完成大分子与颗粒性物质的跨膜运输,又称膜泡运输或批量运输(bulk transport),属于主动运输。胞吞作用和胞吐作用同时进行,保证细胞膜面积和细胞体积的恒定。

胞吞作用分为胞饮作用与吞噬作用

胞内体

胞内体是存在于动物细胞内的一种由膜包围的细胞器,其作用是传输由胞吞作用新摄入的物质到溶酶体被降解。

胞内体膜上有A TP驱动的质子泵,将H+泵入胞内体腔中,使胞内体内的pH值降低,从而引起配体与受体分离。

在胞吞作用过程中,胞内体是膜泡运输的主要的分选站。

胞吐作用

组成型的外排途径

所有真核细胞,是连续分泌过程。用于质膜更新(膜脂、膜蛋白、胞外基质组分、营养或信号分子)。

调节型外排途径

特化的分泌细胞,储存——刺激——释放。产生的分泌物(如激素、粘液或消化酶)储存在分泌泡内,当细胞在受到胞外信号刺激时,分泌泡与质膜融合并将内含物释放出去。

分子细胞生物学

第一章绪论 1 [1、构成有机体的基本单位。2、代谢与功能的基本单位。3、遗传的基本单位。] 原核:除Cell质膜外,无其他膜相结构;有核糖体。(细菌,支原体) 2、细胞生物 3、细胞器能的细胞器。包括线粒体、高尔基复合体、内质网、溶酶体等。 非膜相结构:细胞质中没有膜包裹的细胞结构。包括微管、微丝、核糖体、 核仁、中间丝等。 4、细胞细胞学说细胞学细胞生物学分子细胞生物学 19世纪自然科学的三大发现之一(进化论、能量守恒及转换定律) 的科学。 华生和克里克对DNA分子双螺旋结构的阐明和“中心法则”的提出以及三联体遗传密码的证明,为细胞分子水平的研究奠定了基础。 透射式电镜:观察细胞内部结构。 5、电子显微镜 扫描式电镜:细胞或组织表面的观察。 第二章细胞的化学组成 1 质,如核酸、蛋白质。 2、蛋白质的一级结构:是蛋白质的基本单位,表示一种蛋白质中氨基酸的数目、种类和排 列顺序。 3、DNA的种类:A-DNA、B-DNA、Z-DNA。 4、RNA按功能分为三种:tRNA(转运核糖核酸)、rRNA(核糖体核糖核酸)、mRNA(信 使核糖核酸)。还有snRNA、hnRNA。 第四章细胞膜及细胞表面 1 夹板”式形态,称之为单位膜。 2、磷脂分为:卵磷脂(PC)、脑磷脂(PE)、鞘磷脂(SM)、磷脂酰肌醇(PI)、磷脂酰丝 氨酸(PS)。 3、细胞膜的分子结构模型:磷脂双分子层模型、“蛋白质-脂质双分子层-蛋白质”三夹板模 型、单位膜模型、流动镶嵌模型、脂筏模型。 4、细胞表面的结构(P55图4-10):细胞被、细胞膜、细胞溶胶。 细胞表面蛋白质的作用:载体、受体、G蛋白(是一种酶)、受体介导入胞蛋白。 5、细胞通讯的机制(P61):环腺苷酸(cAMP)信号通路[P61图4-17及最后一段解释): 腺苷酸环化酶(AC)]、磷脂酰肌醇信号通路。 6、细胞表面的特化结构:微绒毛和内褶、伪足、纤毛和鞭毛。 第五章核糖体与蛋白质的生物合成 1、核糖体是由rRNA和蛋白质组成的核糖体颗粒。核糖体的大、小亚基来源于核仁。

【通用文档】细胞生物学《第十章》.doc

第十章细胞核与染色体 一、选择题 1.当前认为核被膜的组成,以下不包括的是() A核膜B核孔复合体C核周间隙D核纤层 2.研究核孔复合体形态的经典方法不包括下列哪一项() A树脂包埋超薄切片技术B负染色技术C电镜制样技术D冷冻蚀刻技术 3.关于核孔复合体的主动运输选择性表现,下列选项不属于的是() A 对运输颗粒的大小有限制 B 通过核孔复合体的主动运输是一个信号识别与载体介导过程 C 通过核孔复合体的主动运输具有方向性 D 核孔复合体的运输有能量需求 4.在下列选项中不属于间期细胞核中的染色质构成的是() A.DNA B组蛋白与非组蛋白C少量RNA D核酸 5.生物基因组DNA可以分为四类下列不属于的是() A蛋白编码序列,以三联体密码方式进行编码 B 编码rRNA.tRNA.snRNA和组蛋白的串联重复序列 C含有重复序列的DNA D已经分类的间隔DNA 6.高度重复DNA序列由一些短的DNA序列呈串联重复排列,可以进一步分为几种不同的类型,下列不属于的是() A卫星DNA,重复单位长5—100bp B.小卫星DNA,重复单位长12-100bp C.微卫星DNA,重复序列长1-5bp D.超卫星DNA,重复序列长为0.01-0.05bp 7.DNA二级结构型分为三种,下列不属于的是() A.B型DNA(右手双螺旋) B.A型DNA(右手双螺旋) C.D型DNA(左手螺旋) D.Z型DNA(左手螺旋) 8.下列不属于非组蛋白的特性() A.非组蛋白具有多样性 B.识别DNA具有特异性 C.具有功能多样性 D.具有样式多样性

9.根据多级螺旋模型,从DNA到染色体要经过四级组装,下列错误的是() A.DNA压缩7倍→核小体 B.核小体压缩6倍→螺线管 C.螺线管压缩40倍→超螺线管 D.超螺线管压缩6倍→染色单体 10.下列不属于组蛋白的修饰的是() A.乙酰化 B.甲基化 C.磷酸化 D.糖基化 11.常染色质是() A.经常存在的染色质 B.染色很深的染色质 C.不呈异固缩的染色质 D.呈异固缩的染色质 12.染色体的三大功能原件,下列不属于的是() A.至少一个DNA复制起点,确保染色体在细胞周期中能够自我复制,维持染色体在细胞世代传递中的连续性 B.一个着丝粒,使细胞分裂时已完成复制的染色体能平均分配到子细胞中! C.在染色体的末端,必须要有端粒,保证染色体的独立性和稳定性 D.必须要有终止子,保证染色体复制正常结束。 13.核小体是() A.染色质的一种基本结构 B.原生动物空泡状核中着色深的小体 C.染色体畸变是无着丝粒的片段 D.真核生物中可用苏木精染色并主要由蛋白质和RNA构成的小体 14.核仁最基本的功能是() A.稳定核的结构 B.参与核糖体的装配 C.合成核糖体rRNA D.控制蛋白质合成的速度 二、判断题 1.细胞核是真核细胞内最大,最重要的细胞器,是细胞遗传与代谢的控制中心,是真核细胞区别于原核细胞的标志之一。() 2.对于核膜组装的机制极其与核孔复合体,及核纤层的关系,目前已经研究清楚() 3.一般说来,转录功能活跃的细胞,其核孔复合体数量较多。()

医学细胞生物学

线粒体与细胞的能量转换 名词解释: 1.基粒:线粒体内膜的内表面上突起的圆球形颗粒. 2.细胞呼吸:在细胞内特定的细胞器内,在氧气的参与下,分解各种大分子物质,产生二氧化碳; 与此同时,分解代谢所释放出的能量储存于ATP中. 3.转位接触点:在线粒体的内外膜上存在一些内外膜相互接触的地方,此处膜间隙变狭窄. 4.ATP合酶复合体:这种物质就是基粒,是线粒体内膜内表面上突起的圆球形颗粒. 5.热休克蛋白70:与大多数前体蛋白结合,使前体蛋白打开折叠,防止已松弛的前体蛋白聚集. 6.基质导入序列(MTS):一种N端具有一段富含有精氨酸,赖氨酸,丝氨酸,苏氨酸的氨基酸序列,介导在细胞质中合成的前体蛋白输入到线粒体基质的信号. 问答: 1.线粒体的标志酶? 内膜标志酶为细胞色素氧化酶,外膜标志酶为单胺氧化酶,基质的标志酶为苹果酸脱氢酶, 膜间腔的标志酶为腺苷酸激酶. 2.线粒体基质蛋白的转运条件及过程? (1)需要条件:基质导入序列和分子伴侣NAC和Hsp70 (2)转运过程: a.前体蛋白与受体结合 b.mthsp70可与进入线粒体腔的前导肽链交联,防止了前导肽链退回细胞质. c.定位于线粒体内膜上,切除大多数蛋白的基质导入序列. d.多肽链需在线粒体基质内在分子伴侣的帮助下,重新折叠并成熟形成其天然构象,以行 使其功能,形成有活性的蛋白质. e.跨膜运输是单向的,需水解ATP提供能量. 3.细胞内葡萄糖彻底氧化转变为能量的反应部位和主要过程? a.葡萄糖在细胞质中进行糖酵解产生丙酮酸和NADH,丙酮酸在线粒体基质中氧化脱羧生 成乙酰CoA. b. 乙酰CoA在线粒体基质中进行三羧酸循环产生NADH和FADH2. c.在线粒体内膜进行的氧化磷酸化偶联是能量转换的关键. 4.基粒的结构和功能? 结构有头部,柄部和基片;功能有催化ADP磷酸化生成ATP,控制质子流和基粒是氧化磷酸化作用的关键装置. 5.试述线粒体的超微结构基础? 外膜:外膜是一层包围在线粒体表面的单位膜,厚约6nm,仅含少量酶蛋白. 内膜:约4.5nm,折叠形成嵴,富含各种酶蛋白,内膜上有电子传递链和基粒,有转运蛋白和各种转运系统. 膜间腔:内外膜之间空隙组成的空间,宽约6~8nm,富含可溶性酶,底物和辅助因子. 基质:含有线粒体DNA,RNA,各种酶蛋白和核糖体. 基粒:每个线粒体大约有10000~100000个,在基粒的头部具有酶活性. 6.简述线粒体的化学组成特点? a.蛋白质:线粒体的主要成分,多分布于内膜和基质,又分为可溶性和不溶性,又有很多酶系. b.脂类:占线粒体干重较多,大部分为磷脂. c. DNA和完整的遗传系统. d.多种辅酶. e.含有维生素和各类无机离子.

分子细胞生物学复习题

二、简答题 1、已知有哪些主要的原癌基因与抑癌基因与细胞周期调控有关?并举例说明。 原癌基因:Src、Myc、Fos、Ras、Jun 抑癌基因:P53、Rb、JNNK 2、原核细胞与真核细胞生命活动本质上有何不同? (1)原核细胞DNA的复制、DNA的转录和蛋白质的合成可以同时在细胞质内连续进行;而真核细胞的DNA的复制发生在细胞核内,而只有蛋白质的合成发生在细胞质中,整个过程具有严格的阶段性和区域性,不是连续的。(2)原核细胞的繁殖具有明显的周期性,并且具有使遗传物质均等分配到子细胞的结构。(3)原核细胞的代谢形式主要是无氧呼吸。产能较少,而真核细胞的代谢形式主要是有氧呼吸辅以无氧呼吸,可产生大量的能量。 3、简述高尔基体对蛋白的分拣作用。 高尔基复合体对经过修饰后形成的溶酶体酶。分泌蛋白质和膜蛋白等具有分拣作用,其反面高尔基网可根据蛋白质所带有的分拣信号,将不同命运的蛋白质分拣开来,并以膜泡形式将其运至靶部位。 存在于粗面内质网中执行功能的蛋白为内质网驻留蛋白,它定位于内质网腔中,其C 短大都有KDEL序列,此序列为分拣信号。但有时此蛋白会混杂在其他蛋白中进入高尔基体。在顺面高尔基网内膜含有内质网驻留蛋白KDEL驻留信号的受体,该受体可识别KDEL 序列并与之结合形成COPI有被运输泡,通过运输泡与内质网膜融合将内质网驻留蛋白重新回收到内质网中。因此,KDEL驻留信号也是一个回收信号。内质网腔中的pH略高于高尔基体扁囊,由于内离子条件的改变在内质网腔中内质网驻留蛋白与受体分离,内质网膜又通过COPII有被小泡溶于顺面高尔基体,从而使受体循环利用。 4、简述单克隆抗体的制作原理及过程。 5、简述甘油二酯(DG)与三磷酸肌醇(IP3)信使途径。 6、试述有丝分裂前期主要特点。 1、染色质通过螺旋化和折叠,变短变粗,形成光学显微镜下可以分辨的染色体,每条 染色体包含2个染色单体。 2、S期两个中心粒已完成复制,在前期移向两极,两对中心粒之间形成纺锤体微管, 当核膜解体时,两对中心粒已到达两极,并在两者之间形成纺锤体。 7、简述亲核蛋白进入细胞核的主要过程。 第一:亲核蛋白与输入蛋白α/β异二聚体,即NLS受体(NBP)结合。 第二:形成的亲核蛋白-受体复合物与核孔复合体的胞质丝结合。 第三:核孔复合体形成亲水通道,蛋白质复合物进入核内。 第四:该复合物与Ran-GTP相互作用,引起复合物解体,释放出亲核蛋白。 第五:核输入蛋白β与Ran-GTP结合在一起被运回细胞质,Ran-GTP在细胞质中被水解为Ran-GDP,Ran-GDP随后被运回核内,而核输入蛋白α也在核输入蛋白的 帮助下从核内运回细胞质。 8、试述有丝分裂与减数分裂的区别。 第一:有丝分裂是体细胞的分裂方式,而减数分裂仅存在于生殖细胞中。 第二:有丝分裂是DNA复制一次细胞分裂一次,染色体数由2n→2n,DNA量由4C变为2C;减数分裂是DNA复制一次,细胞分裂两次,DNA量由4C变为1C,染色体 数由2n→1n。 第三:有丝分裂前,在S期进行DNA合成,然后经过G2期进入有丝分裂期;减数分裂的DNA合成时间较长,特称为减数分裂前DNA合成,,合成后立即进入减数分裂, G2期很短或没有。

【高考生物】细胞生物学第十章

(生物科技行业)细胞生物 学第十章

第十章细胞核与染色体 一、选择题 1.当前认为核被膜的组成,以下不包括的是() A核膜B核孔复合体C核周间隙D核纤层 2.研究核孔复合体形态的经典方法不包括下列哪一项() A树脂包埋超薄切片技术B负染色技术C电镜制样技术D冷冻蚀刻技术 3.关于核孔复合体的主动运输选择性表现,下列选项不属于的是() A对运输颗粒的大小有限制 B通过核孔复合体的主动运输是一个信号识别与载体介导过程 C通过核孔复合体的主动运输具有方向性 D核孔复合体的运输有能量需求 4.在下列选项中不属于间期细胞核中的染色质构成的是() A.DNAB组蛋白与非组蛋白C少量RNAD核酸 5.生物基因组DNA可以分为四类下列不属于的是() A蛋白编码序列,以三联体密码方式进行编码 B编码rRNA.tRNA.snRNA和组蛋白的串联重复序列 C含有重复序列的DNA D已经分类的间隔DNA 6.高度重复DNA序列由一些短的DNA序列呈串联重复排列,可以进一步分为几种不同的类型,下列不属于的是() A卫星DNA,重复单位长5—100bpB.小卫星DNA,重复单位长12-100bp C.微卫星DNA,重复序列长1-5bp D.超卫星DNA,重复序列长为0.01-0.05bp 7.DNA二级结构型分为三种,下列不属于的是() A.B型DNA(右手双螺旋) B.A型DNA(右手双螺旋) C.D型DNA(左手螺旋) D.Z型DNA(左手螺旋) 8.下列不属于非组蛋白的特性() A.非组蛋白具有多样性 B.识别DNA具有特异性 C.具有功能多样性 D.具有样式多样性 9.根据多级螺旋模型,从DNA到染色体要经过四级组装,下列错误的是() A.DNA压缩7倍→核小体 B.核小体压缩6倍→螺线管 C.螺线管压缩40倍→超螺线管 D.超螺线管压缩6倍→染色单体

医学细胞生物学名词解释

《细胞生物学》名词解释 1.拟核:原核细胞仅由细胞膜包绕,在细胞质内含有DNA区域,但 无被膜包围,该区域称为拟核。 2.单位膜:电子显微镜下,生物膜呈“两暗一明”的铁轨样形态,称 为单位膜。 3.脂质体:膜脂都是两亲性分子,具有亲水的极性头部和疏水的非 极性尾部。当这些两亲性分子被水环境包围时,它们就聚集起来,使疏水的尾部埋在里面,亲水的头部露在外面与水接触,形成双分子层。为了避免双分子层两端疏水尾部与水接触,其游离端往往能自动闭合,形成自我封闭的脂质体。 4.主动运输:是载体蛋白介导的物质逆浓度梯度或电化学梯度,由 低浓度一侧向高浓度一侧进行的跨膜转运方式。 5.自由扩散:不需要跨膜运输蛋白协助,转运是由高浓度向低浓度 方向进行,所需的能量来自高浓度本身所包含的势能,不需要能量的一种跨膜转运方式。 6.易化扩散:一些非脂溶性(或亲水性)的物质不能通过简单扩散 的方式通过细胞膜,但它们在载体蛋白的介导下,不消耗细胞的代谢能量,顺物质浓度梯度或电化学梯度进行转运,称为易化扩散。 7.协同运输:是一类由Na+-K+泵(或H+泵)与载体蛋白协同作用, 间接消耗ATP所完成的主动运输方式。

8.內吞作用:又称胞吞作用或入胞作用,它是质膜内陷,包围细胞 外物质形成胞吞泡,脱离质膜进入细胞内的转运过程。分为,吞噬作用、吞饮作用及受体介导的内吞作用。 9.核孔复合体:核空上镶嵌有复杂的结构,它是由多个蛋白质颗粒 以特殊的方式排列成的蛋白分子复合物,称为核孔复合体。 10.核纤层:是附着于内核膜下的纤维蛋白网。它与中间纤维及核骨 架相互连接,形成贯穿于细胞核与细胞质的骨架体系。 11.核定位信号:亲核蛋白是一类在细胞质中合成,需要或能够进入 细胞核发挥功能的蛋白质,通常它们是4~8个氨基酸组成的特殊序列来保证整个蛋白质能够通过核孔复合体被转运到核内,该序列称为核定位序列或核定位信号。 12.常染色质:是间期核内碱性染料染色时着色较浅,螺旋化程度低, 处于伸展状态的染色质细丝。 13.异染色质:间期核中处于凝缩状态,结构致密,无转录活性,用 碱性染料染色较深。分为,结构异染色质、兼性异染色质。 14.端粒:是染色体末端特化部位,由富含G的端粒DNA和蛋白质 构成。 15.基因组:指细胞或生物体的一套完整的单倍体遗传物质,是所有 染色体上全部基因和基因间的DNA的总和,它含有一个生物体进行各种生命活动所需的全部遗传信息。 16.核型:是指一个体细胞的全部染色体在有丝分裂中期的表现,包 括染色体数目、大小的形态特征。

细胞生物学 第十章

第十章 知识点自测 (一)选择题 1、能够稳定微丝(MF)的特异性药物是() A.秋水仙素 B.细胞松弛素 C.笔环肽 D.紫杉醇 2、较稳定、分布具组织特异性的细胞质骨架成分是() A.MT D.以上都不是 3、细胞骨架分子装配中没有极性的是() A.微丝 B.微管 C.中间纤维 D.以上全是 4、用细胞松弛素处理细胞可阻断下列()的形成 A.胞饮泡 B.吞噬泡 C.分泌小泡 D. 包被小泡 5、下列属于微管永久结构的是() A.收缩环 B.纤毛 C.微绒毛 D.伪足 6、肌动踏车行为需要消耗能量,由下列哪项水解提供() A.ATP 7、下列细胞骨架中,只有9+0结构的是() A.鞭毛 B.中心粒 C.中间丝 D.纤毛 8、用适当浓度的秋水仙素处理分裂细胞,可导致()

A.姐妹染色单体不分离,细胞停滞在有丝分裂中期 B.姐妹染色单体分开,但不向两极运动 C.微管破坏,纺锤体消失 D.微管和微丝都破坏,使细胞不能分裂 9、下列蛋白质没有核苷酸结合位点的是() A.α—微管蛋白 B.β—微管蛋白 C.肌动蛋白 D.中间丝蛋白 10、下列分子没有马达蛋白功能的是() A.胞质动力蛋白 B.驱动蛋白 C.肌球蛋白 11、下列药物能抑制胞质环流的是() A、细胞松弛素 B、紫杉醇 C、秋水仙素 D、长春花碱 12、下列物质中,()抑制微管的解聚。 A、秋水仙碱 B、紫杉醇 C、鬼笔环肽 D、细胞松弛素B 13、微管全是以三联管的形式存在的结构() A.纤毛 B. 中心粒 C. 鞭毛 D.动粒微管 14、在下列微管中对秋水仙素最敏感的是() A.细胞质微管 B. 纤维微管 C. 中心粒微管 D.鞭毛微管 15、微管蛋白的异二聚体上有哪种核苷三磷酸的结合位点()。 A.UTP B. CTP C. GTP 16、下列药物中仅与已聚合微丝结合的药物是()。

细胞生物学第十三章 第十四章 习题

第十三章细胞衰老与凋亡 本章要点:本章着重阐述细胞生命的基本现象衰老与死亡。要求掌握细胞衰老的基本特征及基本原理,重点掌握细胞凋亡的生物学意义,细胞凋亡的研究进展,细胞凋亡的形态和生化特征、分子机制及检测方法。 一、名词解释 1、细胞衰老 2、Hayflick界限 3、致密体 4、端粒 5、细胞死亡 6、细胞凋亡 7、凋亡小体 8、DNA ladders 9、细胞坏死 10、caspase 家族 11、bcl-2 12、P53 二、填空题 1、体外培养的细胞的增殖能力与的年龄有关,也反映了细胞在体内的 状况;细胞衰老的决定因素存在于内;决定了细胞衰老的表达而不是细胞质。 2、衰老细胞的膜的减弱、能力降低;线粒体的数目,嵴呈状;核的体积、核膜、染色质。 3、端粒是由简单的富含和的DNA片段的序列组成;随着每次细胞分裂,端粒会。 4、端粒酶以自身的一段为模板,通过出一段端粒片段连接在染色体的端粒末端,从而保持了细胞的生长;人类正常组织的体细胞端粒酶活性。 5、ROS主要有三种类型即:、和。 6、2002年的生理学或医学诺贝尔奖颁给了两位英国科学家和一位美国科学家,以表彰他们为研究器官发育和程序性细胞死亡过程中的所作出的重大贡献。 7、细胞凋亡的发生过程,在形态学上可分为三个阶段,即、和。 8、HIV进入人体后,引起CD4+T细胞数目的重要机制就是。 9、细胞凋亡最主要的生化特征是由于内源性的活化,被随机地在核小体的部位打断,结果产生含有不同数量的的片段,进行电泳时,产生了特征性的,其大小为的整倍数。 三、选择题 1、下列不属于细胞衰老结构变化的是()。 A、细胞核随着分裂次数的增加而增大 B、内质网呈弥散状 C、线粒体的数目随分裂次数的增加而减少 D、线粒体体积随分裂次数的增加而减小 2、致密体属于() A、初级溶酶体 B、次级溶酶体 C、残体 D、都不对 3、端粒存在于()。 A、细胞质中 B、中心体 C、线粒体上 D、染色体上 4、细胞凋亡是指()。 A、细胞因年龄增加而导致正常死亡 B、细胞因损伤而导致死亡 C、细胞程序性死亡 D、细胞非程序性死亡 5、在caspase家族中,起细胞凋亡执行者作用的是()。 A、caspase1,4,11 B、caspase2,8,9 C、caspase3,6,7 D、caspase3,5,10 6、端粒存在于染色体DNA两端,是一富含()的简单重复序列。 A、U B、A C、T D、C

医学细胞生物学

医学细胞生物学 第一章绪论 1. 简述细胞生物学形成与发展经历的阶段(1)细胞的发现与细胞学说的建立:R.Hook最早发现细胞并命名为cell,施莱登和施旺建立细胞学说。(2)细胞学的经典时期:细胞学说的建立掀起了对多种细胞广泛的观察和描述的热潮,主要的细胞器和细胞分裂活动相继被发现。(3)实验细胞学时期:人们广泛的应用实验的手段研究细胞的特性、形态结构和功能。(4)分子生物学的兴起和细胞生物学的诞生:各个学科相互渗透,人们对细胞结构与功能的研究达到了新的高度。 第二章细胞的统一性与多样性 1.比较原核细胞和真核细胞的差别

第三章细胞膜与细胞表面 1.细胞膜的流动性有什么特点,膜脂有哪些运动方式,影响膜脂流动性的因素有哪些?(1)膜脂既具有分子排列的有序性,又有液体的流动性;温度对膜的流动性有明显的影响,温度过低,膜脂转变为晶态,膜脂分子运动受到影响,温度升高,膜恢复到液晶态,此过程称为相变。(2)膜脂的运动方式有:侧向扩散、旋转运动、摆动运动、翻转运动,其中翻转运动很少发生,侧向扩散是主要运动方式。(3)影响流动性的因素:脂肪酸链的长短和饱和程度,胆固醇的双重调节作用,卵磷脂/鞘磷脂比值越大膜脂流动性越大,膜蛋白与周围脂质分子作用也会降低膜流动性。此为环境因素(如温度)也会影响膜的流动性,温度在一定范围内升高,流动性增强。 2.简述膜蛋白的种类及其各自特点,并叙述膜的不对称性有哪些体现 (1)膜蛋白分为膜外在蛋白、膜内在蛋白、脂锚定蛋白。膜外在蛋白属于水溶性蛋白,分布在膜的两侧,与膜的结合松散,一般占20%-30%;膜内在蛋白属于双亲性分子,嵌入、穿膜,是膜功能的主要承担者,与膜结合紧密,占70%-80%。脂锚定蛋白通过共价键与脂分子结合,分布在膜两侧,含量较低。(2)膜的内外两侧结构

医学细胞生物学知识点归纳

线粒体: 1.呼吸链(电子传递链)Respiratory chain一系列能够可逆地接受和释放H+和e-的化学物质所组成的酶体系在线粒体内膜上有序地排列成互相关联的链状。 2.化学渗透假说(氧化磷酸化偶联机制):线粒体内膜上的呼吸链起质子泵的作用,利用高能电子传递过程中释放的能量将H+泵出内膜外,造成内膜内外的一个H+梯度(严格地讲是离子的电化学梯度),A TP合酶再利用这个电化学梯度来合成A TP。 3.电子载体:在电子传递过程中与释放的电子结合并将电子传递下去的物质称为电子载体。参与传递的电子载体有四种∶黄素蛋白、细胞色素、铁硫蛋白和辅酶Q,在这四类电子载体中,除了辅酶Q以外,接受和提供电子的氧化还原中心都是与蛋白相连的辅基。 4.阈值效应:突变所产生的效应取决于该细胞中野生型和突变型线粒体DNA的比例,只有突变型DNA达到一定数量(阈值)才足以引起细胞的功能障碍,这种现象称为阈值效应。 5.导向序列:将游离核糖体上合成的蛋白质的N-端信号称为导向信号,或导向序列,由于这一段序列是氨基酸组成的肽,所以又称为转运肽。 6.信号序列:将膜结合核糖体上合成的蛋白质的N-端的序列称为信号序列,将组成该序列的肽称为信号肽。 7.共翻译转运:膜结合核糖体上合成的蛋白质通过定位信号,一边翻译,一边进入内质网,由于这种转运定位是在蛋白质翻译的同时进行的,故称为共翻译转运。 8.蛋白质分选:在膜结合核糖体上合成的蛋白质通过信号肽,经过连续的膜系统转运分选才能到达最终的目的地,这一过程又称为蛋白质分选。 核糖体: 1.原核生物mRNA中与核糖体16S rRNA结合的序列称为SD序列(SD sequence) 。 2.核酶:将具有酶功能的RNA称为核酶。 3.N-端规则(N-end rule): 每一种蛋白质都有寿命特征,称为半衰期(half-life)。研究发现多肽链N-端特异的氨基酸与半衰期相关,称为N-端规则。 4.泛素介导途径:蛋白酶体对蛋白质的降解通过泛素(ubiquitin)介导,故称为泛素降解途径。蛋白酶体对蛋白质的降解作用分为两个过程:一是对被降解的蛋白质进行标记,由泛素完成;二是蛋白酶解作用,由蛋白酶体催化。 细胞核: 1.核内膜:有特有的蛋白成份(如核纤层蛋白B受体),膜的内表面有一层网络状纤维蛋白质,即核纤层(nuclear lamina),可支持核膜。 核外膜:靠向细胞质的一层,是内质网的一部分,胞质面附有核糖体 核周隙:内、外膜之间有宽20~40nm的腔隙,与粗面内质网腔相通 核孔复合体:内、外膜融合处,物质运输的通道 核纤层:内核膜内表面的纤维网络,支持核膜,并与染色质、核骨架相连。 2.核孔复合体:是细胞核内外膜融合形成的小孔,直径约为70 nm,是细胞核与细胞质间物质交换的通道。 3.核孔蛋白:参与构成核孔的蛋白质,可能在经核孔的主动运输中发挥作用。 核运输受体:参与物质通过核孔的主动运输。 核周蛋白: 是一类与核孔选择性运输有关的蛋白家族,相当于受体蛋白。 5.输入蛋白:核定位信号的受体蛋白, 存在于胞质溶胶中, 可与核定位信号结合, 帮助核蛋白进入细胞核。 输出蛋白:存在于细胞核中识别并与输出信号结合的蛋白质, 帮助核内物质通过核孔复合

细胞生物学[第十三章程序性细胞死亡与细胞衰老]课程预习

第十三章程序性细胞死亡与细胞衰老衰老(aging,senescence,senility)又称老化,通常指生物发育成熟后,在正常情况下随着年龄的增加,机能减退,内环境稳定性下降,结构中心组分退行性变化,趋向死亡的不可逆的现象。 一、程序性细胞死亡 (一)动物细胞的程序性死亡 动物细胞的死亡方式主要包括三种:凋亡、坏死和自噬。 1.细胞凋亡 细胞凋亡是一个主动的由基因决定的自动结束生命的过程。由于细胞凋亡受到严格的由遗传机制决定的程序性调控,所以也常常被称为细胞编程性死亡(programmed cell death,PCD)。PCD最初是发育生物学中提出的概念,其含义是发育过程中(例如幼虫发育为成虫)发生的某类细胞(例如肌肉细胞)的大量死亡,而这种细胞死亡要求一定的基因表达。 (1)形态学特征。 1)凋亡起始。该时期特征主要为:①骨架杂乱,细胞间接触消失,细胞间粘附力下降;②细胞质和核浓缩,显微镜下观察可发现细胞膜发泡,染色质凝集,一沿着核膜形成新月形帽状结构;③内质网腔膨胀,核糖体从内质网上脱落,伴随着这些变化凋亡小体逐渐形成。 2)凋亡小体形成。随着细胞膜内折,染色质断裂成片断,染色质片断及线粒体等细胞器反折的细胞膜包围并逐渐分开,形成单个的凋亡小体。 3)凋亡小体消失。凋亡小体被邻近的细胞或巨噬细胞识别吞食及消化。该过程一般较快,从凋亡开始到凋亡小体形成不过几分钟的时间,整个凋亡过程大约持续几个小时。 (2)生化特征。

1)染色质DNA的降解:由于内源性核酸内切酶基因的活化和表达,激活核酸内切酶,使染色质DNA降解成片段大小有规律的(200bp的倍数)的寡核苷酸小体,在进行琼脂糖凝胶电泳时,可见特征性的梯状DNA条带(ladder)。 2)细胞内钙离子浓度的快速、持续的升高。 (3)细胞凋亡的生理意义。 细胞凋亡对于多细胞生物个体发育的正常进行,自稳平衡的保持以及抵御外界各种因素的干扰方面都起着非常关键的作用。通过细胞凋亡,有机体得以清除不再需要的细胞,而不引起炎症反应。另一方面,细胞凋亡的失调包括不恰当的激活或抑制会导致疾病,例如Alzheimer氏病、各种肿瘤、艾滋病以及自身免疫病等。 (4)细胞凋亡的检测方法。 1)形态学观察。有的染料如台盼蓝为活细胞排斥,但是可以使死细胞着色。或者DAPI或Giemsa染色在显微镜下观察细胞核的形态。 2)DNA电泳。细胞凋亡时,细胞内特异性核酸内切酶活化,染色质DNA在核小体间被特异性切割,DNA降解成180~200bp或其整数倍片段,电泳时呈现梯度条带。 3)TUNEL测定法。借助一种可观测的标记物,对DNA中产生的3’-0H末端进行原位标记,用荧光显微镜即可进行观察。 4)彗星电泳法。将单个细胞悬浮于琼脂糖凝胶中,经裂解处理后,再在电场中进行短时间的电泳,并用染料染色。凋亡细胞中的DNA片段在电场中泳动速度较快,呈现出彗星式图案,而正常细胞的无DNA端粒的核在泳动时保持圆球形。 5)流式细胞仪分析。与正常完整的二倍体细胞相比,凋亡细胞DNA发生断裂和丢失,呈亚二倍体状态。采用碘化丙锭染色使。DNA产生激发荧光,流式细胞仪能够检测出凋亡的亚二倍体细胞。

分子生物学基本含义

分子生物学 分子生物学的基本含义(p8) 分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。 分子生物学与其它学科的关系 分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以至信息科学等多学科相互渗透、综合融会而产生并发展起来的,凝聚了不同学科专长的科学家的共同努力。它虽产生于上述各个学科,但已形成它独特的理论体系和研究手段,成为一个独立的学科。 生物化学与分子生物学关系最为密切: 生物化学是从化学角度研究生命现象的科学,它着重研究生物体内各种生物分子的结构、转变与新陈代谢。传统生物化学的中心内容是代谢,包括糖、脂类、氨基酸、核苷酸、以及能量代谢等与生理功能的联系。 分子生物学则着重阐明生命的本质----主要研究生物大分子核酸与蛋白质的结构与功能、生命信息的传递和调控。 细胞生物学与分子生物学关系也十分密切: 传统的细胞生物学主要研究细胞和亚细胞器的形态、结构与功能。探讨组成细胞的分子结构比单纯观察大体结构能更加深入认识细胞的结构与功能,因此现代细胞生物学的发展越来越多地应用分子生物学的理论和方法。 分子生物学则是从研究各个生物大分子的结构入手,但各个分子不能孤立发挥作用,生命绝非组成成分的随意加和或混合,分子生物学还需要进一步研究各生物分子间的高层次组织和相互作用,尤其是细胞整体反应的分子机理,这在某种程度上是向细胞生物学的靠拢。 第一章序论 1859年发表了《物种起源》,用事实证明“物竞天择,适者生存”的进化论思想。 指出:物种的变异是由于大自然的环境和生物群体的生存竞争造成的,彻底否定了“创世说”。达尔文第一个认识到生物世界的不连续性。 意义:达尔文关于生物进化的学说及其唯物主义的物种起源理论,是生物科学史上最伟大的创举之一,具有不可磨灭的贡献。

细胞生物学第十章 课后思考题

第十章细胞骨架 1.Which of the following statenents are correct? Explain your answers. A. Kinesin moves endoplasmic reticulum membranes along microtubules so that the network of ER tubules becomes stretched throughout the cell. 驱动蛋白沿着微管推动内质网运动,从而使内质网遍布在细胞内。 对。ER持续地向外移动是必需的。如果没有微管,ER就会朝向细胞中心坍塌。 B. Without actin, cells can form a functional mitotic spindle and pull their chromosomes apart but cannot divide. 如果没有肌动蛋白,细胞能够形成有功能的纺锤体并将染色体拉开,但细胞不能分裂。 对。在细胞分裂时,将两个子细胞分开的收缩环需要肌动蛋白,而将染色体分到两个子细胞中去的纺锤体是由微管组成的。 C. GTP is hydrolyzed by tubulin to cause the bending of flagella. GTP被微管蛋白水解,造成鞭毛的弯曲。 错。为了引起弯曲,ATP需要被结合在鞭毛外侧微管上的动力蛋白(马达蛋白)水解。 D. The plus ends of microtubules grow faster because they have a larger GTP cap. 微管的正极生长的较快,因为它们有较大的GTP帽。 错。微管生长的速度与GTP帽的大小无关。微管正极和负极的生长速度之所以不一样是由于它们对于进来的微管蛋白亚基具有物理性质不同的结合部位,因而微管蛋白亚基在两端添加上去的速率是不同的。 E. Cells having an intermidiate-filament network that cannot be depolymerized would die. 细胞中的中间丝网络如果不能解聚的话,细胞就会死亡。 错。细胞不重排其中间丝,就不能进行分裂。但是许多终末分化的细胞以及长寿命的细胞如神经细胞,就有稳定的中间丝,目前还没有发现它们有解聚的现象。

常用分子生物学和细胞生物学实验技术介绍

常用分子生物学和细胞生物学实验技术介绍 (2011-04-23 11:01:29)转载▼ 标签:分子生物学细胞生物学常用实用技术基本实验室技术生物学实验教育 常用的分子生物学基本技术 核酸分子杂交技术 由于核酸分子杂交的高度特异性及检测方法的灵敏性,它已成为分子生物学中最常用的基本技术,被广泛应用于基因克隆的筛选,酶切图谱的制作,基因序列的定量和定性分析及基因突变的检测等。其基本原理是具有一定同源性的原条核酸单链在一定的条件下(适宜的温室度及离子强度等)可按碱基互补原成双链。杂交的双方是待测核酸序列及探针(probe),待测核酸序列可以是克隆的基因征段,也可以是未克隆化的基因组DNA和细胞总RNA。核酸探针是指用放射性核素、生物素或其他活性物质标记的,能与特定的核酸序列发生特异性互补的已知DNA或RNA片段。根据其来源和性质可分为cDNA探针、基因组探针、寡核苷酸探针、RNA探针等。 固相杂交 固相杂交(solid-phase hybridization)是将变性的DNA固定于固体基质(硝酸纤维素膜或尼龙滤膜)上,再与探针进行杂交,故也称为膜上印迹杂交。 斑步杂交(dot hybridization) 是道先将被测的DNA或RNA变性后固定在滤膜上然后加入过量的标记好的DNA或RNA探针进行杂交。该法的特点是操作简单,事先不用限制性内切酶消化或凝胶电永分离核酸样品,可在同一张膜上同时进行多个样品的检测;根据斑点杂并的结果,可以推算出杂交阳性的拷贝数。该法的缺点是不能鉴定所测基因的相对分子质量,而且特异性较差,有一定比例的假阳性。 印迹杂交(blotting hybridization) Southern印迹杂交:凝胶电离经限制性内切酶消化的DNA片段,将凝胶上的DNA 变性并在原位将单链DNA片段转移至硝基纤维素膜或其他固相支持物上,经干烤固定,再与相对应结构的已标记的探针进行那时交反应,用放射性自显影或酶反应显

细胞生物学-第十章-细胞连接与细胞黏附-提纲资料讲解

第十章细胞连接与细胞黏附 封闭连接 细胞连接锚定连接 通讯连接 一封闭连接(紧密连接) 分布于各种上皮细胞,如消化道上皮、膀胱上皮、睾丸曲细精管生精上皮的支持细胞基部、腺体的上皮细胞管腔面的顶端侧面区域、脑毛细血管内皮细胞之间等跨膜蛋白颗粒形成的封闭索,交错形成网状,环绕每个上皮细胞的顶部,连接相邻细胞,封闭细胞间隙,防止小分子从细胞一侧经过细胞间隙进入另一侧 穿膜蛋白闭合蛋白occludin 45kD的四次穿膜蛋白C端与N端均伸向细胞质封闭蛋白claudin 20-27kD的四次穿膜蛋白C端与N端均伸向细胞质胞质外周蛋白PDZ蛋白、ZO家族。。。 紧密连接的两个主要功能: 1封闭上皮细胞的间隙,形成与外界隔离的封闭带,防止细胞外物质无选择地通过细胞间隙进入组织,或从组织回流入腔中,保持内环境的稳定。 如:血脑屏障blood-brain barrier、血睾屏障blood-testis barrier保护器官免受异物伤害 2形成上皮细胞质膜蛋白与膜脂分子侧向扩散的屏障,维持上皮细胞的极性。如紧密连接限制膜蛋白、膜脂分子流动性,保证在小肠上皮内胞质营养物质运转的方向性,还将上皮细胞联合成一个整体 二锚定连接 由细胞骨架纤维参与,存在于相互接触的细胞间或细胞与细胞外基质之间的细胞连接;主要作用是形成能够抵抗机械张力的牢固粘合;广泛分布于动物各种组织中,特别是上皮、心肌和子宫颈等需要承受机械压力的组织细胞与细胞间的黏着连接黏着带adhesion belt 黏着连接adhering junction 细胞与细胞外基质间的黏合连接黏着斑与肌动蛋白纤维相连的锚定连接adhesion plaque 桥粒连接desmosome junction 细胞与细胞间的连接桥粒desmosome 与中间纤维相连的锚定连接细胞与细胞外基质间的连接半桥粒hemidesmosome 细胞内锚定蛋白intracellular anchor proteins:在细胞膜的胞质面形成一个突出的斑,并将连 接复合体与肌动蛋白纤维/中间纤维相连 穿膜黏着蛋白transmembrane adhension proteins:其胞质区域连接细胞内锚定蛋白,其细胞 外区域与细胞外基质蛋白或相邻细胞特异的穿膜黏着蛋白 (一)黏着连接是由肌动蛋白丝参与的锚定连接 1黏着带位于上皮细胞紧密连接的下方,是相邻细胞之间形成的一个连续的带状结构参与形成黏着带的穿膜黏着蛋白称:钙黏着蛋白cadherin,是Ca2+依赖性细胞黏附分子 胞内锚定蛋白:α、β、γ联蛋白(catenins),α-辅肌动蛋白(actinin)、黏着斑蛋白(vinculin)等,锚定肌动蛋白丝 作用1在维持细胞形态和组织器官完整性

(完整版)医学细胞生物学常用简答题详细答案

细胞生物学复习-简答题 第三章真核细胞的基本结构 膜的流动性和不对称性极其生理意义 流动性:膜蛋白和膜脂处于不断运动的状态。主要由膜脂双层的动态变化引起,质膜的流动性由膜脂和蛋白质的分子运动两个方面组成。 膜质分子的运动:侧向移动、旋转、翻转运动、左右摆动 膜蛋白的运动:侧向移动、旋转 生理意义: 1、质膜的流动性是保证其正常功能的必要条件。如物质跨膜运输、细胞信息传递、细胞识别、细胞免疫、细胞分化以及激素的作用等等都与膜的流动性密切相关。 2、当膜的流动性低于一定的阈值时,许多酶的活动和跨膜运输将停止。 不对称性:质膜的内外两层的组分和功能有明显的差异,称为膜的不对称性。 膜脂、膜蛋白和糖在膜上均呈不对称分布,导致膜功能的不对称性和方向性,即膜内外两层的流动性不同,使物质传递有一定方向,信号的接受和传递也有一定方向 生理意义: 1、保证了生命活动有序进行 2、保证了膜功能的方向性 影响膜流动性的因素 1、胆固醇:相变温度以上,会降低膜的流动性;相变温度以下,则阻碍晶态形成。 2、脂肪酸链的饱和度:不饱和脂肪酸链越多,膜流动性越强。 3、脂肪酸链的长度:长链脂肪酸使膜流动性降低。 4、卵磷脂/鞘磷脂:比例越高则膜流动性越增加(鞘磷脂粘度高于卵磷脂)。 5、膜蛋白:镶嵌蛋白越多流动性越小 6、其他因素:温度、酸碱度、离子强度等 细胞外被作用 1、保护、润滑作用:如消化道、呼吸道和生殖道的上皮细胞的糖萼 2、决定抗原 3、许多膜受体是糖蛋白或糖脂蛋白,参与细胞识别、应答、信号传递 RER和SER的区别

高尔基体的主要功能和形态、分布特点 功能:1、形成和包装分泌物 2、蛋白质和脂类的糖基化 3、蛋白质的加工改造 4、细胞内膜泡运输的形成 形态:分为小泡、扁平囊(最富特征性)、大泡 分布特点:1、在分泌功能旺盛的细胞中,GC很发达,可围成环状或半环状 2、GC的发达程度与细胞的分化程度有关(红细胞和粒细胞除外) 3、GC在细胞中的位置基本固定在某个区域 溶酶体膜的结构特征与溶酶体主要功能 结构特征:膜有质子泵,将H+泵入溶酶体,使其PH值降低。 膜上含多种载体蛋白。 膜蛋白高度糖基化,可能有利于防止自身膜蛋白降解 主要功能:1、分解外来异物和老损细胞器 2、细胞营养 3、免疫防御 4、腺体分泌 5、个体发生、发育 线粒体的形态结构特征和核编码蛋白质的线粒体转运 形态特征:粒状、杆状、线状,与种类、生理状况有关,受酸碱度、渗透压的影响 结构特征:由内外两层膜封闭的膜囊结构,包括外膜、内膜、内部空间和基质(matrix)四个功能区外膜由脂类、蛋白质构成,通透性强 内膜蛋白质含量高,高度选择性通透 内膜内表面附有球形基粒即ATP合酶复合体,有大量向内腔突起的折叠形成嵴。 基质上有电子密度较低的可溶性蛋白质和脂肪等成分 线粒体是细胞中含酶最多的细胞器。 核编码蛋白质的线粒体转运: 1、运进线粒体的核编码蛋白质都在N端有一段基质导入序列(matrix targeting sequence, MTS),可与线粒体内外膜上相应的受体相互识别并结合。 2、线粒体前体蛋白在输送时还依赖分子伴侣的协助,从而防止紧密折叠构象的形成,也能防止已疏松蛋白的再聚集。 3、转运时大多数和分子伴侣hsc70结合的前体蛋白复合物与外膜上的受体相结合,后者与内膜接触点共同形成跨膜通道使前体蛋白得以通过。 4、当前体蛋白到达目的地后,被蛋白酶水解,然后在分子伴侣的作用下重新折叠,形成成熟蛋白发挥功能。 线粒体遗传信息特点 1、与核DNA不同,mtDNA裸露在外,不与组蛋白结合,主要编码供线粒体自身使用的tRNA、rRNA和一部分蛋白质,所使用的遗传密码也有着与核基因密码不同的含义。

(完整word版)细胞生物学题库第12章(含答案)-

《细胞生物学》题库 第—^音第一音 第早、第一二章 一、名词解释 1?荚膜2?细胞学说3?细胞生物学4?细胞周期 二、判断题 1?细胞生物学研究的主要内容包括①细胞核、染色体以及基因表达的研究②生物膜以及细胞 器的研究③细胞骨架的研究④细胞增殖及其调控⑤细胞分化及其调控⑥细胞衰老与调 之⑦细胞起源与进化⑧细胞工程。() 2?细胞生物学的发展趋势是细胞学与分子生物学等其它学科相互渗透相互交融。() 3?某些病毒含有DNA,还含有RNA。() 4?病毒是结构很简单的生物,就起源来看,病毒起源早于单细胞。() 5?细胞的形态结构与功能相一致。() 6?细胞遵守“细胞体积守恒”定律,不论其种差异有多大,同一器官和组织的细胞,其大小 倾向于在一个恒定的范围内。()三、单项选择 1?原核细胞与真核细胞都有的一种细胞器是 ______________ A.细胞骨架 B.线粒体 C.高尔基体 D.中心体 E.核糖体 2?最早发现细胞并对其命名的是___________ A. Hook R B. Leeuwe nhook A C. Brow n R D. Flemmi ng W E. Darve n C 3?细胞学说的创始人是___________ A .Hook B. Leeuwenhook C. Watson 和Crick D. Virchow E. Schleiden 和Schwann 4. 在1894年,Altmann首次发现了下列哪种细胞器 _____________ A.中心体 B.高尔基体 C.线粒体 D.内质网 E.纺锤体 5. Hook于1965年观察到的细胞实际上是___________ A.植物死亡细胞的细胞壁 B.死去的动物细胞 C.活的植物细胞 D.细菌 6.17世纪中叶Leeuwenhook用自制的显微镜观察到了 ______________ A.植物细胞的细胞壁 B.精子、细菌等活细胞 C.细胞核 D.高尔基体等细胞器 7. ________________________________________________________ 前苏联著名科学家G Fank曾说过:生命的奥秘可能蕴涵在____________________________________________ nm的大分子复合物中。

相关文档
相关文档 最新文档