文档库 最新最全的文档下载
当前位置:文档库 › 编码器杂谈

编码器杂谈

编码器杂谈
编码器杂谈

41

编码器发展历史

早期编码器主要是指旋转变压器。旋转变压器IP值高,能在比较恶劣的环境条件下工作。由于电磁干扰敏感以及解码复杂等缺点,其逐渐退出市场,但是时至今日,仍具有特有的价值。比如,在作为混合动力汽车的速度反馈方面,其作用几乎是不可代替的;此外,在环境恶劣的钢铁行业、水利水电行业,因为防护等级高,旋转变压器同样获得了广泛的应用。随着半导体技术的发展,又产生了霍尔传感器和光电编码器。霍尔传感器价格便宜,但精度不高,而且不能耐高温,只适用于一些低端场合。光电编码器克服了上述两种编码器的缺点,具有精度高,抗干扰能力强,接口简单,使用方便等特点,因而获得了最广泛的应用。

日本多摩川公司是编码器的专业生产厂家,主要生产旋转变压器以及增量式、绝对式编码器。本文以日本多摩川公司的旋转变压器、增量式编码器和绝对式编码器为例,逐一进行介绍。

旋转变压器

旋转变压器简称旋变,它是一种输出电压随转子转角变化的信号元件。当励磁绕组以一定频率的交流电压励磁时,输出绕组的电压幅值与转子转角成正余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。

按励磁方式分,日本多摩川公司的旋转变压器分为BRT和BRX两种。BRT是单相励磁两相输出,BRX是双相励磁单相输出。用户往往选择BRT型旋变,因为它易于解码。

使用旋变时一般要注意3个参数,即传输比,励磁电压和励磁频率。传输比指输出电压和输入电压的比值。励磁电压指初级绕组的输入电压,就多摩川公司的旋转变压器而言,励磁电压可从3V到1.2倍额定电压。

多摩川公司为自己的旋变开发了专门的解码芯片AU6802N1,并有现成的解码板可供使用。解码板支持10kHz的励磁频率,0.5的传输比,可以同时提供增量式和绝对式信号输出,增量式输出1024C/T,采用长线输出;绝对式输出12位/T,采用光电隔离输出,必要时可以根据客户需要进行调整。转换后的信号和编码器无异。

增量式编码器

增量式编码器每转过一个单位,编码器就输出一个脉冲,故称为增量式。多摩川公司的增量式编码器输出信号有长线输出、开集输出、电压输出和推拉互补输出四种方式。按机械结构分,有中空轴和带轴编码器,可应用于各种不同的场合。

多摩川编码器型号众多,目前主要用于电梯曳引机、门机、伺服马达和数控设备等行业。

绝对式编码器

旋转增量式编码器转动时输出脉冲,通过CPU计数可知其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,停电后,编码器不能有任何的移动;来电时,编码器输出脉冲过程中也不能有干扰而丢失脉冲,否则计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有报错后才能知道。例如,打印机扫描仪

编码器杂谈

[摘 要] 本文简要介绍了日本多摩川编码器、旋转变压器的应用特点和接口方法,重点介绍了产品通信

协议、硬件接口电路以及专用的接收芯片AU5561应用方法。

作者:姜燕平

栏目主持:刘远江

ROBOT TECHNIQUE AND APPLICATION

技术应用

 42

的定位就采用增量式编码器原理,每次开机听到的传动马达声就是CPU正在找参考零点,然后才工作。这种方法对有些工控项目比较麻烦,有的项目不允许开机找零(开机后就要知道准确位置),于是就有了绝对编码器的出现。

绝对编码器由机械位置决定每个位置的唯一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道马达位置,什么时候就去读取它的位置,不需要像增量式编码器那样去计算。编码器还带有备用电池,断电后也能记忆断电前的位置信息,大大提高了使用绝对式编码器的安全性和可靠性。

由于绝对编码器在定位方面的明显优势,已越来越多地应用于工控定位中。其中最主要的就是应用于高精度的数控机床和伺服系统。在西方较发达国家,运动控制比较侧重于轨迹控制,如果采用绝对式编码器无疑将为控制提供更方便的位置信息。

按输出信号的编码方式来分,绝对式编码器有BCD码、GRAY码和纯2进制码(PB)输出;按输出方式来分,有并行输出和串行输出;按分辨率来分,有从8位到36位不等。用户可以根据自己的需要进行选择。

此外,绝对式编码器还有单回转和多回转之分。多回转计圈数,而单回转不计圈数。多摩川绝对式编码器最多可以达到单回转20位,多回转16位。输出信号采用串行传送,经专用芯片转换后变为并行输出信号,可以直接送给DSP,MCU,FPGA等进行处理。 对于分辨率不是很高的绝对式编码器来讲,一般适合采用并行输出,这样,接口电路简单,而且通信速率高。并行输出的编码器输出回路主要有集电极开路(如图1)和射极跟随(如图2)两种方式。采用集电极开路输出模式,用户端需要加接上拉电阻,如图1中虚线

所示;采用射极跟随输出模式,则应加下拉电阻,如图2中虚线所示。输出数据线对应从1、2、22…2?的数据位,用户从数据总线直接读取编码器数据即可。

并行输出因为占用的数据线太多,只被低分辨率的编码器采用。高精度的编码器一般不采用并行输出,而一般采用串行输出,以节省输出线。多

摩川公司提供专用串并行转换芯片,用户可依照通信协议对其进行编程,将串行输出的编码器数据转换为并行输出,用户从转换芯片的输出端读取编码器位置数据。

多摩川公司的转换芯片有AU5561和AU5688两款,可以支持所有多摩川生产的串行输出的绝对式编码器的解码。

图3是编码器和AU5561转换芯片之间的接口电路。串行输出的绝对式编码器内部多采用ADM485或类似芯片作为输出,因此在用户端的解码板上需要采用和ADM485兼容的芯片,作为与转换芯片的中间接口电路。图4是整个系统的接口电路图,

从图4可

3 

编码器和AU5561转换芯片之间的接口电路

图1 集电极开路输出模式图2 射极跟随输出模式

栏目主持:刘远江

ROBOT TECHNIQUE AND APPLICATION

技术应用

43

图4 

系统接口电路图

图6 TS5643N50等编码器和转换芯片之间的接口电路

图5 AU5688

转换芯片的时针电路

图7 TS5643N353等编码器和转换芯片之间的接口电路

栏目主持:刘远江

ROBOT TECHNIQUE AND APPLICATION

技术应用

以看出,芯片共可输出40位,用户可以根据自己的CPU选择通讯模式,16位、32位单片机或DSP模式,可从用户数据总线上读取编码器数据。该芯片可用于TS5647,TS5648,TS5667,TS5668及TS5669等型号的绝对式编码器转换。采用该电路,波特率为2.5MB/s,较适于在高速实时控制场合使用。

图5是另一款转换芯片—AU5688转换芯片的时针电路,R1为1MΩ,C1、C2为10PF,晶振频率8MHz。该型编码器采用26LS31芯片作为输出级,因此在用户端的解码板上需要采用和26LS31对应的芯片,如26LS32,作为与转换芯片的中间接口电路。芯片共可输出16位数据线,低12

位是单回转,高4位是多回转。用户可以从用户数据总线上读取编码器数据。采用该电路,波特率为2.5MB/s。

图6是TS5643N50等编码器和转换芯片之间的接口电路。用户可以通过自己的CPU等控制器下发请求信号,编码器的输出数据通过26LS32送解码芯片转换后,再经过AU5688转换为并行输出的数据,供用户读取。

图7是TS5643N353等编码器和转换芯片之间的接口电路。编码器信号的进出都经过AU5688芯片,输出数据都是16位,12位单回转,4位多回转。

目前,多摩川公司已经推出最高达到36位的绝对式编码器,其中单回转20位,多回转16位。最大响应

频率达到52MHZ,可真正实现高速高精度实时控制。

此外,在有些大功率的伺服马达上,由于初始化时用普通增量式编码器测位置误差较大,所以适合用绝对值加增量式编码器找磁极位置角,这样可以大大提高其输出力矩。目前,多摩川公司也已经推出混合式编码器,其增量式输出A、B、Z三相,绝对值输出24位,11单回转,13位多回转,能极大地提高伺服马达初始化时的定位精度,同时对位置控制和速度计算也极为方便。

DPCM系统设计

通信原理课程设计 设 计 报 告 课题名称: DPCM系统设计 院系:XXXXXXXXXXXX 专业班级:xxxxxxxxxxxxxxxx 姓名:XXXXXX 学号:XXXXXXXXXX 指导老师:XXXXXXXXXX 时间:2015年12月

DPCM系统设计 摘要:通过研究,差分脉冲编码调制(DPCM)是用二进制码组对信号的差值进行幅度量化和编码。然而DPCM是利用信号的相关性找出可以反映信号变化特征的一个差值量进行编码。“差值”就是信号的当前抽样值与预测值之差。根据相关性原理,这一差值的幅度范围一定要小于原信号的幅度范围。但是差值编码一般是以预测的方式来实现的。我们利用MATLAB集成环境下的Simulink仿真平台, 根据DPCM 编码及解码原理图设计一个DPCM编码与解码系统;改变不同模块的数据并用示波器观察编码与解码前后的信号波形;加上各种噪声源,用误码测试模块测量误码率最后根据运行结果和波形来分析该系统性能。 关键词:MATLAB;Simulink平台;DPCM差分编码;仿真

前言 (4) 1.课程设计的意义 (5) 2.DPCM的介绍 (5) 3.DPCM的基本原理 (6) 3.1 DPCM编码与解码系统的研究内容 (6) 3.2 DPCM系统的编码与解码过程 (7) 4.课程设计分析 (7) 4.1 DPCM编码与解码的仿真电路图 (7) 4.2 DPCM编码与解码模块的参数设置 (8) 4.3编码与解码的仿真结果 (12) 5.总结与体会 (12) 参考文献 (13)

本课程设计是通过DPCM系统设计进行仿真。根据DPCM编解码原理,运用正弦波模块、零点保持模块、量化模块、积分器模块、普通编码模块、普通解码模块、增益模块、低通滤波器模块。对语音信号基带通信传输系统进行绘制,设置模块参数,然后运行,最后通过示波器得到相应的仿真波形。通过对仿真波形的观察,能够检验该系统功能是否正确实现。实验表明,经过DPCM调制后的信号,其传输的比特率要比PCM的低,相应要求的系统传输带宽也大大地减小了。此外,在相同比特速率条件下,DPCM比PCM信噪比也有很大的改善。与ΔM相比,由于它增多了量化级,因此,在改善量化噪声方面优于ΔM系统。DPCM的缺点是易受到传输线路上噪声的干扰,在抑制信道噪声方面不如ΔM。

编码器工作原理汇总

编码器的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,旋转编码器也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器的输出数据。故障现象:1、旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”...联合动作才能起作用。要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电子电路来处理。编码器pg接线与参数矢量变频器与编码器pg之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的接口,因此选择合适的pg卡型号或者设置合理. 编码器一般分为增量型与绝对型,它们存着最大的区别:在增量编码器的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。 现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用编码器、伺服电机专用型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。 编码器是把角位移或直线位移转换成电信号的一种装置。前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。 按照工作原理编码器可分为增量式和绝对式两类。增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。 旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。这样的编码器是由码盘的机械位置决定的,它不受停电、干扰的影响。 绝对编码器由机械位置决定的每个位置的唯一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。 由于绝对编码器在定位方面明显地优于增量式编码器,已经越来越多地应用于工控定位中。绝对型编码器因其高精度,输出位数较多,如仍用并行输出,其每一位输出信号必须确保连接很好,对于较复杂工况还要隔离,连接电缆芯数多,由此带来诸多不便和降低可靠性,

编码器类来料检验标准(6)

一、目的 建立和规范适当之检验流程、检验方法,以使检验结果具有环保性和全面性以及准确性。 二、范围 适用于本公司所有符合产品的编码器类之进料检验。 三、权责单位 1. 本检验规范由品管部制定并核准后发行。 2. 所制定之规格,如有修改时,须经原核准单位同意后修改之。 四、参考文件 4.1 抽样计划 4.2 承认书 4.3环保测试报告、使用环保材料保证书 4.4产品的监视和测量控制程序. 五、 检验计划 5.1品质检验计划 5.1.1 批之构成:以一次送验量为单位检查批 5.1.2 抽验计划:依MIL-STD-105E 计数值抽样计划实施单次抽样 5.1.3 检验水准:一般检验水准采用Ⅱ级 特殊检验(S-2) 5.1.4 AQL 抽样标准:(Ⅱ级) 严重缺点:CR ——0 主要缺点:MA ——0.4 次要缺点:MI ——1.0 六、检验设备 6.1 游标卡尺 6.2 万用表 6.3编码器测试治具 七、定义(略) 八、环保测试: 鼎品科技有限公司 文件编号 DP-PG-SI-004 版本 V.1.0 文件名称 编码器类来料检验标准 生效日期 制定 沈国正/2014/3/18 审核 批准

8.1.验证供应商是否提供SGS 报告。 九、缺点判定标准 十、记录 10.1将检验结果记录在来料检验报告上。 10.2在物料标签上加盖判定章。 制定 沈国正/2014/3/18 审核 批准 序号 检验项目 缺点说明 缺点别 MA MI 1 一般检验 送料件与《验收入库单》核对,实物与料号不相符。 √ 2 外观检验 1.无环保测试报告. √ 2.无环保料号 √ 3.外包装无环保标识或标签. √ 4.端子与金属弹片有锈迹. √ 5.PIN 脚变形. √ 6.与工程样品对比不相符. √ 3 尺寸检验 脚距:与工程样品不相符. √ 4 电气测试 1.段落感与样品不相符. √ 2.转动时出现有杂音. √ 3.与工程承认样品对比不相符. √ 5 上锡试验 PIN 脚上锡度不良. √ 6 寿命测试 装入测试机内以36次/分。来回360°旋转10万次 后测试功能不正常 √

语音信号频带传输通信系统仿真基于DPCM编码与ASK调制

语音信号频带传输通信系统仿真 ——基于DPCM编码与ASK调制 摘要本课程设计的主要内容是设计一个基于DPCM编码与ASK调制的语音信号频带传输通信系统,并对其进行仿真。该课程设计用的设计和仿真平台是MATLAB7.0集成系统中的Simulink。在Simulink中实现该课程设计,调整系统参数设置,通过观察比较发现输入的语音信号和输出的语音信号一致,其传输质量达到要求,最终结果达到设计的指标。 关键词DPCM编解;ASK调制解调;MA TLAB/Simulink 1 引言 本课程设计的内容为设计一个基于DPCM编码与ASK调制的语音信号频带传输通信系统,并对其进行系统仿真。该系统的主要步骤是录制一段语音信号,对其进行DPCM 编码后再进行ASK调制,送入加性高斯白噪声信道传输,在接收端对其进行ASK解调和DPCM解码以恢复原信号,回放比较传输前后的语音质量,并观察前后信号波形是否一致,绘制误码率曲线。 1.1课程设计的目的 1、对通信原理这门课程有更深入、更系统地认识。 2、掌握一个系统的整体过程,能够对一个系统有全面的了解和认识,能够根据要求设计所需要的系统。 3、掌握数字传输系统的好处与意义。 4、掌握模拟信号的数字化,即模拟信号的编码,本课程设计用的是DPCM编码。 5、掌握把数字信号转化为模拟信号,即数字信号的译码,本课程用的是DPCM的解

码。 6、掌握频带传输的意义和好处。 7、掌握频带传输的调制与解调,本课程为ASK的调制与解调。 8、学会运用设计平台来模拟所需设计的通信系统。 1.2课程设计的要求 1、模型设计应该符合工程实际,模块参数设置必须与原理相符合。 2、处理结果和分析结论应该一致,而且应符合理论。 3、独立完成课程设计并按要求编写课程设计报告书。 1.3设计平台 MATLAB中的Simulink。 Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。 Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。Simulink提供了一个建立模型方块图的图形用户接口(GUI) ,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。 Simulink®是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试[1]。 2 设计原理

编码器

编码器工作原理,光电编码器的工作原理分析 编码器工作原理 绝对脉冲编码器:APC 增量脉冲编码器:SPC 两者一般都应用于速度控制或位置控制系统的检测元件. 旋转编码器是用来测量转速的装置。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。 增量型编码器与绝对型编码器的区分 编码器如以信号原理来分,有增量型编码器,绝对型编码器。 增量型编码器(旋转型) 工作原理: 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 信号输出: 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、

h.264的编码过程

H.264编码算法的实现 在H.264编码具体实现过程中,采用了目前国际上应用最广泛的开源编码器X.264作为实现的基础。X.264和JM系列编码器、T.264编码器相比有着优秀的性能和出色效果。由于X.264没有提供直接的开发API,所以在本系统中的编码部分重新封装了X.264的编码API,便于软件系统的设计和使用。以下是本系统中H.264编码的具体实现过程: 1) RGB和YUV颜色空间的转换 在系统中通过Logitech摄像头获得的视频数据为RGB24格式,但是X.264的输入流为标准的YUV(4:2:0)的图像子采样格式。因此,在编码前需要将RGB颜色空间转换为YUV的颜色空间。实现的函数调用有InitLookupTable()用于初始化色彩空间转换; RGB2YUV420(int x_dim, int y_dim, unsigned char *bmp, unsigned char *yuv, int flip);用于实际的转换。由于人眼的生理特性,经过图像子采样后,实际的图像大小已经减小为采样前的1.5个样本点,即减小了一半的数据量。 2) 设置H.264编码参数 使用x264_param_default(x264_param_t *param)对当前需要编码的图像参数进行设置。包括数据帧数量(param .i_frame_total)、采样图像的长宽度和高度(param .i_width,param .i_height)、视频数据比特率(param .rc.i_bitrate) 、视频数据帧率(param .i_fps_num)等参数进行设置,以完成编码前预设置。 3) 初始化编码器 将上步中的设置作为编码器初始化的参数, x264_t*x264_encoder_open ( x264_param_t *param )。如果初始化失败将返回NULL,在这里需要对编码器初始化结果进行处理。 4) 分配编码空间 如果编码器初始化成功,则需要为本次处理分配内存空间 Void x264_picture_alloc(x264_picture_t *pic, int i_csp, int i_width, int i_height)。 5) 图像编码 将以上步骤初始化后的数据作为编码输入,使用下面的方法进行编码: int x264_encoder_encode( x264_t *h,x264_nal_t **pp_nal, int *pi_nal,x264_picture_t *pic_in,x264_picture_t *pic_out );

伺服电机编码器

伺服电机编码器 伺服电机编码器是安装在伺服电机上用来测量磁极位置和伺服电机转角及转速的一种传感器,从物理介质的不同来分,伺服电机编码器可以分为光电编码器和磁电编码器,另外旋转变压器也算一种特殊的伺服编码器,市场上使用的基本上是光电编码器,不过磁电编码器作为后起之秀,有可靠,便宜,抗污染等特点,有赶超光电编码器的趋势。 基本信息 ?中文名称 伺服电机编码器 ?OC输出 三极管输出 ?推挽输出 接口连接方便 ?分类 abz uvw 目录1原理 2输出信号 3分类 4正余弦 5维修更换 6注意事项 7选型注意 8订货代码 原理 伺服编码器这个基本的功能与普通编码器是一样的,比如绝对型的有A,A反,B,B反,Z,Z反等信号,除此之外,伺服编码器还有着跟普通编码器不同的地方,那就是伺服电机多数为同步电机,同步电机启动的时候需要知道转子的磁极位置,这样才能够大力矩启动伺服电机,这样需要另外配几路信号来检测转子的当前位置,比如增量型的就有UVW等信号,正因为有了这几路检测转子位置的信号,伺服编码器显得有点复杂了,以致一般人弄不懂它的道理了,加上有些厂家故意掩遮一些信号,相关的资料不齐全,就更加增添了伺服电机编码器的神秘色彩。

由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率-编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 输出信号 1、OC输出:就是平常说的三极管输出,连接需要考虑输入阻抗和电路回路问题. 2、电压输出:其实也是OC输出一种格式,不过置了有源电路. 3、推挽输出:接口连接方便,不用考虑NPN和PNP问题. 4、差动输出:抗干扰好,传输距离远,大部分伺服编码器采用这种输出. 分类 增量编码除了普通编码器的ABZ信号外,增量型伺服编码器还有UVW信号,国产和早期的进口伺服大都采用这样的形式,线比较多。 增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。 解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。 比如,打印机扫描仪的定位就是用的增量式编码器原理,每次开机,我们都能听到噼哩啪啦的一阵响,它在找参考零点,然后才工作。 这样的方法对有些工控项目比较麻烦,甚至不允许开机找零(开机后就要知道准确位置),于是就有了绝对编码器的出现。

编码器标定过程

标定现场编码器 因为现场编码器所使用地点不同,标定方法不尽相同,但原理相同。此处以轧机入口侧导板 编码器为例讲解。所谓标定是指对图1中红线框中的数值进行设定使得现场的位移变化量与 程序中的位移变化量相同(误差允许范围内)。标定后的值记为β,标定前的经验值记为α。 图1 1.程序中设定 ?现在程序中对所标定参数进行设定(经验值)。 ?设定位置如图2红线框所示 图2 设定值与图2中的蓝线框中的数值有关,如果是蓝线框是100则红线框为两位数, 如果蓝线框是1000则红线框为三位数,设定方法为双击,在对话框中Device栏中 进行输入数值。此处经验值为140记为α。 2.现场测量 ?在现场设备上确定一个测量的基准点(用胶带贴在设备上,在上划线作为每次测量的基准) ?移动现场设备,先进行一次点动,移动量不用很大确保以后的移动方向与此次点动方向相同(减小误差) ?移动现场设备,测量移动距离,记录为L1(473mm) ?在程序中查看程序中的移动量,查看位置如图红线框所示(有多处与此处数值相同)。 记录为S1(565.7mm)。

?再次移动现场设备(与上次方向相同)测量移动距离记录为L2(599mm)。 ?再此查看程序相同位置记录数据为S2(726.8mm)。 3.计算 ①ΔL=|L2‐L1|=126mm ②ΔS=|S2‐S1|=161.1mm ③β=ΔL÷ΔS×α=109.49 经过计算β值为109.49,现场实际测量不免有误差,多测几组(测量计算方法相同) 进行比较,得出最后结果此处给出结果β值为110。 4.验证 让设备移动较大距离(尽量减小误差),测得L1、S1、L2、S2,计算得出ΔL、ΔS比较 俩数值是否相同(误差允许范围)因为现场测量工具粗糙,此处认为误差在0.1mm即 为相同。

西门子伺服电机编码器的正确安装法

雒补清关于西门子伺服电机内置编码器的正确安装方法 一、工作内容 1、这项技术适用于对德国西门子伺服电机(型号为1FT603-1FT613, 1FK604-1FK610)内置编码器损坏后的安装、调试,配置的增量型编码器为德国海德汉公司的ERN1387.001/020, 绝对值编码器为海德汉公司EQN1325.001。 2、使用工具公制内六方扳手一套,自制专用工具一个,十字改锥及一 字改锥各一把,梅花改锥6件套。 3、可解决的问题对有故障的西门子伺服电机进行修理或更换损坏的 伺服电机内置编码器,做到修旧利废,节约维修费用。 二、操作方法 1、该操作方法和一般操作方法的区别 在数控机床配置的西门子数控系统中,驱动电机分主轴电机和伺服电机两种。当电机定子、转子、轴承有故障或其电机内置编码器损坏时,我们都需要对编码器拆卸进行修理或更换。对主轴电机来说,更换或安装编码器只要用专用工具将其安装到相应位置就可以试车了,不需要调整电机轴或编码器的角度及位置。但对伺服电机来说,则必须按照编码器的安装要求,严格执行安装步骤。只要安装过程中出一点差错,就会出现编码器方面的报警而不能起动机床或出现飞车事故,导致电机报废或机械部件损坏。因此正确安装非常重要。 2、该项技术的操作步骤 2.1拆卸损坏的编码器 关掉机床电源,解掉伺服电机的电源电缆及反馈电缆,把电机从机床

上拆下来放到工作台案上,用内六方扳手去掉电机端盖上的四条螺栓,打开端盖,先卸下编码器盖,拔下编码器上的插接电缆,用十字改锥卸下支持盘上的两条小螺丝,用内六方扳手卸出编码器中心孔内的螺栓,然后用自制专用工具把编码器从电机轴上顶出来。这样第一步工作即告完成。 图1自制专用工具尺寸图 2.2安装海德汉公司ERN1387.001/020或EQN1325.001编码器 2.2.1先安装支持盘 不同型号的电机,其支持盘的外形也不一样,如图2和图3,这由购买的备件提供。用4条M2.5*6的小螺丝将支持盘安装到编码器的轴端。注意事项:确保支持盘面和编码器的底面间距为 5.2mm或12mm。 1.支持盘 2.编码器 图2 1FT606-1FT613/1FK606-1FK613电机内置编码器的支持盘

EC16编码器设计应用案例

EC16编码器设计应用案例 摘要:介绍了一种基于单片机的智能仪器前面板的设计及实现方法。根据数字旋钮的特点,在硬件上设计了鉴相电路检测旋钮的正旋和反旋,巧妙地将旋钮扫描和按键扫描统一起来,以Philip低成本的Flash型单片机P89LPC922作为处理芯片,运用了定时中断、状态机、软件去抖、RS-232接口协议等方法实现软件设计,提高按键和旋钮的抗干扰能力,并介绍了用自定义的通信协议计算旋钮转动量和减少主机负担。具有良好的通用性,适用于短周期、低成本的按键和旋钮混合面板设计,并已成功地应用于数字存储大功率半导体管特性曲线图示仪。 关键词:单片机;智能仪器;面板;数字旋钮;鉴相电路 引言: 许多仪器的前面板通常是由诸多的旋钮、按键组成的混合界面。传统的仪器前面板上通常有两种旋钮,一种是电位器,用于调节连续变化的量;另一种是档位开关,用于调节间隔变化的量。它们嵌入在测量电路中,可以直接改变仪器的参数和设置。而在现代智能仪器[1]中,这两类调节均可以通过数字旋钮由微控制器将用户操作的变化量反馈给仪器的主处理器,再由主处理器改变仪器的参数和设置。所以,智能仪器上的数字旋钮和传统仪器上的旋钮在原理和处理方法上有很大不同。为了节省成本,面板处理往往采用体积小、性价比高的单片机(MCU)。运用单片机不但经济灵活,并可充分利用MCU逻辑处理的优势,大大简化外围连线,对旋钮按键混合控制系统[2]的处理尤为突出。 设计采用LPC900系列的P89LPC922Flash单片机来实现软件处理。P89LPC922采用高性能的处理器结构,6倍于标准80C51器件的速率,并自带波特率发生器。充分考虑单片机的资源和处理速度,分模块设计——按钮电路,旋钮电路,串口电路,扫描电路。用protel完成电路原理图,制作电路板,在KeilC环境下编写软件。软件和硬件相结合,协同实现整个面板。 1硬件设计及原理 1.1旋钮电路设计 1.1.1数字旋钮的工作原理 本设计选用常见的编码器EC16系列作为数字旋钮,如图1。4、5脚供固定之用,3脚接VCC(+5V),1、2脚在转动时输出连续脉冲。这种旋钮只有两种操作,即正旋和反旋。通过示波器可以观察到如图所示的旋钮转动时1、2脚的波形。

DPCM通信系统课程设计

课程设计 课程名称: 通信原理 设计题目:DPCM通信系统设计 学院:电力学院 专业:智能电网信息工程 班级:00000000000 姓名:0000 学号:00000000000 成绩: 指导教师:00000 日期:2020 年6月22日—2020 年6月29日

课程设计成绩考核表

设计说明 首先安装MATLAB软件,然后熟悉软件环境以及各个模块并利用MATLAB集成环境下的Simulink仿真平台,建立一个很小的系统,用示波器观察正弦波信号的平方的波形;理解DPCM编码及解码原理图并根据DPCM编解码原理图设计一个DPCM 编码与解码系统;改变不同模块的数据并用示波器观察编码与解码前后的信号波形;最后根据运行结果和波形来分析该系统性能,从而更深入地掌握DPCM编码与解码系统的相关知识使自己受益。 关键词:差分脉冲编码调制;编码;解码

1 绪论 (1) 1.1 课程设计意义 (2) 1.2课程设计的步骤 (2) 1.3 课程设计要求 (2) 2 DPCM通信原理的介绍 (3) 2.1 预测编码简介 (3) 2.2 DPCM的基本原理 (4) 2.3 差分脉冲编码调制原理及性能 (4) 3 Simulink仿真过程分析 (7) 3.1 Simulink仿真建模 (7) 3.2 DPCM编码与解码的参数设置 (7) 3.3仿真结果的分析 (11) 4 程序仿真 (12) 4.1仿真程序 (12) 4.2仿真程序运行结果 (12) 结论......................................................................................................... 错误!未定义书签。参考文献.. (14)

电机编码器解码器

maxon motor maxon motor control Encoder HEDL 550_Technical Documentation April 2000 edition The latest edition of these operating instructions may also be found in the internet under:https://www.wendangku.net/doc/b15436581.html,/Service&Support/Downloads/Tacho.htm Encoder Line Drivers Technical Data HEDL-550X/554X HEDL-556X/557X HEDL-560X/564X HEDL-9000/9100/9200HEDL-9040/9140 HEDL-9060/9160/9260HEDL-9061/9161 Features ? Available on Both Encoder Modules (HEDS-9000Series) and Encoder Kit Housings (HEDS-5500Series) ? Complementary Outputs ? Industry Standard Line Driver IC ? Single 5 V Supply ? Onboard Bypass Capacitor ? 70°C and 100°C Versions Available Description Line Drivers are available for the HEDS-55XX/56XX series and the HEDS-9000/9100/9200/9040/ 9140 series encoders. The line driver offers enhanced perform-ance when the encoder is used in noisy environments, or when it is required to drive long distances.The 70°C version utilizes an industry standard line driver IC (26LS31) which provides comple-mentary outputs for each encoder channel. The 100°C version utilizes an industry standard line driver IC, 26C31, which provides complementary outputs for each encoder channel. Thus, the output of the line driver encoder is A, A, B, B and I/I for three channel versions. Suggested line receivers are 26LS32 and 26LS33. For additional information, please refer to: HEDS-5500/5540/5600/5640data sheet, HEDS-90X0/91X0/92X0 data sheets, HEDS-9000 series extended resolution data sheet, and 26LS31 data sheet.Device Characteristics ESD WARNING: NORMAL HANDLING PRECAUTIONS SHOULB BE TAKEN TO AVOID STATIC DISCHARGE also refer to: https://www.wendangku.net/doc/b15436581.html,/motion/hedl550x.html

各种编码器的调零方法

各种编码器的调零方法 增量式编码器的相位对齐方式 增量式编码器的输出信号为方波信号,又可以分为带换相信号的增量式编码器和普通的增量式编码器,普通的增量式编码器具备两相正交方波脉冲输出信号A和B,以及零位信号Z;带换相信号的增量式编码器除具备ABZ输出信号外,还具备互差120度的电子换相信号UVW,UVW各自的每转周期数与电机转子的磁极对数一致。带换相信号的增量式编码器的UVW电子换相信号的相位与转子磁极相位,或曰电角度相位之间的对齐方法如下: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.用示波器观察编码器的U相信号和Z信号; 3.调整编码器转轴与电机轴的相对位置; 4.一边调整,一边观察编码器U相信号跳变沿,和Z信号,直到Z信号稳定在高电平上(在此默认Z信号的常态为低电平),锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,Z信号都能稳定在高电平上,则对齐有效。 撤掉直流电源后,验证如下: 1.用示波器观察编码器的U相信号和电机的UV线反电势波形; 2.转动电机轴,编码器的U相信号上升沿与电机的UV线反电势波形由低到高的过零点重合,编码器的Z信号也出现在这个过零点上。 上述验证方法,也可以用作对齐方法。 需要注意的是,此时增量式编码器的U相信号的相位零点即与电机UV线反电势的相位零点对齐,由于电机的U相反电势,与UV线反电势之间相差30度,因而这样对齐后,增量式编码器的U相信号的相位零点与电机U相反电势的-30度相位点对齐,而电机电角度相位与U相反电势波形的相位一致,所以此时增量式编码器的U相信号的相位零点与电机电角度相位的-30度点对齐。 将编码器的U相信号零点与电机电角度的零点直接对齐,为达到此目的,可以: 1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线; 2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U相反电势波形; 3.依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置; 4.一边调整,一边观察编码器的U相信号上升沿和电机U相反电势波形由低到高的过零点,最终使上升沿和过零点重合,锁定编码器与电机的相对位置关系,完成对齐。 由于普通增量式编码器不具备UVW相位信息,而Z信号也只能反映一圈内的一个点位,不具备直接的相位对齐潜力,因而不作讨论。 绝对式编码器的相位对齐方式 绝对式编码器的相位对齐对于单圈和多圈而言,差别不大,其实都是在一圈内对齐编码器的检测相位与电机电角度的相位。早期的绝对式编码器会以单独的引脚给出单圈相位的最高位的电平,利用此电平的0和1的翻转,也可以实现编码器和电机的相位对齐,方法如下:1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.用示波器观察绝对编码器的最高计数位电平信号;

DPCM和PCM系统的量化噪声与matlab实现

实验四DPCM和PCM系统的量化噪声 一、[实验目的] (1) 了解脉冲编码调制的原理。 (2) 了解均匀量化、非均匀量化的原理。 (3) 掌握均匀量化的缺点、非均匀量化的优点,从感性上知道为什么要引入非均匀量化。 (4) 了解增量调制的原理和特点。 (5) 学会用MATLAB 软件进行增量调制( ΔM)仿真实验。 二、[实验器材] 1.计算机一台 三、[实验原理] (1)图1 为PCM 系统的原理框图。由该图及所学知识可知,PCM 系统主要由抽样、量化和编码3部分组成。 1) 抽样 根据抽样定理,若x (t)表示信号源发出的样本函数,抽样器以抽样率fs ≥fm采得样值,则可以由样值无失真恢复原始信号,这里m f 是x(t)频谱中的最高频率。 2) 量化 每个信号样值量化成2^L个幅度电平之一,L是样值量化后的二进制位数。 对于均匀量化器,输出电平标定为,对应的输入信号幅度范围是 ,这里的Δ是步长,它的值是量化范围与量化级数的商。 图1 3) 编码 编码器根据PCM 编码规则将量化值数字化。编码方法也是多种多样的,现有的编码方法中,若按编码的速度来分大致可分为低速编码和高速编码两大类。通信中一般都采用第二类。编码器的种类大体上可以归结为3 种:逐次比较型、折叠级联型和混合型。经过信道传输的二进制码按照与上面3 步相反的逆过程进行解码、扩张和滤波得到输出信号。 (2)增量调制( ΔM)是在PCM 方式的基础上发展而来的另一种模拟信号数字化的方法。ΔM可以看成是DPCM 的一种简化形式,它们都是用二进制形式去表示模拟信号的方法。

在增量调制方式下,采用1比特量化器,即用1 位二进制码传输样值的增量信息,预测器是一个单位延迟器,延迟一个采样时间间隔。预测滤波器的分子系数向量是[0,1],分母系数为1。当前样值与预测器输出的前一样值进行比较,如果其差值大于零,则发1 码,如果小于零,则发0 码。 四、[实验内容] 使用抽样量化编码器和DPCM编码器分别对同一正弦信号进行量化和编码 五、[实验结果] PCM实验程序代码: 1) 连续信号的均匀量化的主程序 t=[0:0.01:10]; a=sin(t); [sqnr8,aquan8,code8]=u_pcm(a,8); [sqnr16,aquan16,code16]=u_pcm(a,16); sqnr8 %N=8 时的信号量化噪声比 sqnr16 %N=16 时的信号量化噪声比 % 信号波形及其量化后的曲线 plot(t,a,'-',t,aquan8,'-.',t,aquan16,'-',t,zeros(1,length(t))); legend('信号波形','8电平量化','16电平量化','Location','SouthEast') Array 012345678910

编码器对应代码

#include #include typedef unsigned char uchar; typedef unsigned int uint; typedef unsigned long ulong; //数码管显示定义 #define led_port P1 sbit dm=P2^0; //断码 sbit wm=P2^1; //位码 sbit pb=P3^3; //b相脉冲 sbit gn=P2^2; //功能 sbit qr=P2^3; //确认 sbit jia=P2^4; //加 sbit jian=P2^5; //减 sbit bdqr=P2^6; //标定确认 sbit amc=P3^7; //b相 sbit bmc=P3^6; //a相 bit mcbz,mcbz1; ulong a,b,f; //a,b显示8位数码管,f脉冲个数uint e; //e标定数值 ulong j; //j标定后的参数

uchar c,g,d; //c功能键对应数值,g确认按键第几次按下,d发出脉冲宽度调节uchar bcd[8]; uchar code wxian[]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80}; uchar code dxian[]={ 0x3f,//0 0x06,//1 0x5b,//2 0x4f,//3 0x66,//4 0x6d,//5 显示s 0x7d,//6 0x07,//7 0x7f,//8 0x6f,//9 0x79,//E10 0x31,//T11 0x77,//R12 0x00,//不显示13 0x37,//n14 0x7c,//b15 0x5e//d16 }; void bin_bcd(ulong f); //脉冲分离函数 void binjl(ulong a); //距离数分离函数

MPEG4 编码器流程

一、MPEG4 编码器流程 MPEG-4视频编码器的实现步骤 首先读取一帧数据,取一个宏块,根据编码控制选择编码类型,是intra 帧内编码,还是inter 帧间编码。如果是I 帧,所有宏块都是intra 帧内编码,则读取的宏块数据直接进入DCT 、Q(量化)、DC/AC 预测(直流系数与交流系数)、RLC(行程编码)并与其他信息一起合成形成码流;如果是P 帧,先进行ME(运动估计),然后判断是intra 帧内编码,还是inter 帧间编码。如果是intra 帧内编码,则直接利用宏块本身进行DCT 等一系列数据处理;如果是inter 帧间编码,则将经过运动估计得到的运动矢量MV 传送给MC(运动补偿)单元,结合帧缓存中的上一帧的重建帧数据与当前宏块的像素值做运算,得到残差数据,然后对残差值进行DCT 等处理。 在编码过程中,有一个重建图像的过程,其得到的数据存放在帧缓存中,作为下一帧的参考帧。 二、各层参数 (一)MPEG-4视频数据流结构: 其位流语法从上到下大致可以分为: 视觉对象序列(Visual Object Sequence), 视觉对象(Visual Object), 视频对象层(Video Object Layer), 视频对象平面层(Group of Video Object Plane ) 帧缓存 VLC 多路复合编码控制 MV ME MC DCT Q IQ IDCT RLC intra inter 编码模式 量化参数DC/AC 预测扫描取一个宏块读 取 一 帧 数 据

视频对象平面(Video Object Plane)。 VS(Visual Object Sequence):由一系列VO视频对象组成。 场景是一个或多个声视频对象的组合。场景的逻辑结构可以用一棵树表示,树中的节点是声视频对象。MPEG4系统用二进制场景格式BIFS描述场景中声视频对象的空间和时间位置及它们之间的关系。MPEG4的视频比特流提供了对场景的分层描述。在比特流中,表示场景的层是可视对象序列VS(VideoObjectSequence),它是一个完整的MPEG4场景,其中可能包含自然对象或合成的对象以及它们的增强层。 VO(Video Object):是可视场景中景物的抽象描述,从用户的角度,它代表画面中任何有意义的物理实体。视频对象是MPEG-4编码的独立单元,由时间上连续的许多帧构成。VO的构成依赖于工具的应用和系统实际所处的环境,在超低比特率的情况下,VO可以是一个矩形帧,与MPEG-1、H.263兼容;对于基于内容的应用,VO可能是场景中的某一物体,也可能是计算机产生的二维、三维图形等。每一个VO有3类信息描述:形状信息、运动信息和纹理信息。 VOL(Video Object Layer):属于同一VO的形状、运动和纹理信息被编码成一个单独的结构,称为视频对象层(VOL)。它的引入主要是用来实现VO的视域或者空域分级(Scalable)。对同一个VO,可以用不同的空间或时间分辨率编码多层结构,从一个基础层开始,用增加一些增强层次的方法,以分层的方式重建视频。每个视频对象可以编码成可伸缩(多层)或不可伸缩(单层)的视频流,用哪一种方式编码取决于应用。

DPCM编码器与DPCM解码器的MATLAB实现及性能分析

DPCM编码器与DPCM解码器的MATLAB 实现及性能分析 学生姓名:指导老师: 摘要:利用MATLAB集成环境下的Simulink仿真平台,设计一个DPCM编码与解码系统.用示波器观察编码与解码前后的信号波形;加上各种噪声源,用误码测试模块测量误码率;最后根据运行结果和波形来分析该系统性能。 关键词:MATLAB ; DPCM编码与解码系统;误码率; 1 引言 1.1 课程设计目的 通过本课程的学习我们不仅能加深理解和巩固理论课上所学的有关DPCM编码和解码的基本概念、基本理论和基本方法,而且能锻炼我们分析问题和解决问题的能力;同时对我们进行良好的独立工作习惯和科学素质的培养,为今后参加科学工作打下良好的基础。 1.2 课程设计内容 利用MATLAB集成环境下的Simulink仿真平台,设计一个DPCM编码与解码系统.用示波器观察编码与解码前后的信号波形;加上各种噪声源,用误码测试模块测量误码率;最后根据运行结果和波形来分析该系统性能。 1.3 预测编码 预测编码方法是一种较为实用被广泛采用的一种压缩编码方法。预测编码方法原理,是从相邻像素之间有强的相关性特点考虑的。比如当前像素的灰度或颜色信号,数值上与其相邻像素总是比较接近,除非处于边界状态。那么预测编码

(predictive coding)是统计冗余数据压缩理论的三个重要分支之一,它的理论基础是现代统计学和控制论。由于数字技术的飞速发展,数字信号处理技术不时渗透到这些领域,在这些理论与技术的基础上形成了一个专门用作压缩冗余数据的预测编码技术。预测编码主要是减少了数据在时间和空间上的相关性,因而对于时间序列数据有着广泛的应用价值。在数字通信系统中,例如语音的分析与合成,图像的编码与解码,预测编码已得到了广泛的实际应用。 预测编码是根据某一模型利用以往的样本值对于新样本值进行预测,然后将样本的实际值与其预测值相减得到一个误差值,对于这一误差值进行编码。如果模型足够好且样本序列在时间上相关性较强,那么误差信号的幅度将远远小于原始信号,从而可以用较少的电平类对其差值量化得到较大的数据压缩结果。 如果能精确预测数据源输出端作为时间函数使用的样本值的话,那就不存在关于数据源的不确定性,因而也就不存在要传输的信息。换句话说,如果我们能得到一个数学模型完全代表数据源,那么在接收端就能依据这一数学模型精确地产生出这些数据。然而没有一个实际的系统能找到其完整的数据模型,我们能找到的最好的预测器是以某种最小化的误差对下一个采样进行预测的预测器。 ,当前像素的灰度或颜色信号的数值,可用前面已出现的像素的值,进行预测(估计),得到一个预测值(估计值),将实际值与预测值求差,对这个差值信号进行编码、传送,这种编码方法称为预测编码方法。 预测编码方法分线性预测和非线性预测编码方法。线性预测编码方法,也称差值脉冲编码调制法,简称DPCM(differential Pulse Code Modulation)。预测编码方法在图像数据压缩和语音信号的数据压缩中都得到广泛的应用和研究。 1.4 DPCM的基本原理 DPCM编码,简称差值编码,是对模拟信号幅度抽样的差值进行量化编码的调制方式(抽样差值的含义请参见“增量调制”)。这种方式是用已经过去的抽样值来预测当前的抽样值,对它们的差值进行编码。差值编码可以提高编码频率,这种技术已应用于模拟信号的数字通信之中。 对于有些信号(例如图像信号)由于信号的瞬时斜率比较大,很容易引起过载,因此,不能用简单增量调制进行编码,除此之外,这类信号也没有像话音信号那种音节特性,因而也不能采用像音节压扩那样的方法,只能采用瞬时压扩的方法。但

相关文档
相关文档 最新文档