文档库 最新最全的文档下载
当前位置:文档库 › 高等代数习题

高等代数习题

高等代数习题
高等代数习题

21.设A ,B 都是上三角实对称矩阵,证明;存在正交矩阵T 使B AT T =-1

的充分必要条件是A ,B 的特征多项式的根全部相同。

证明 必要性是显然的,因为相似矩阵有相同的特征值。

现证充分性,设n λλλ,,,21 是A 的特征根,则它们也是B 的特征根。于是存在正交矩阵X 和Y ,使

BY Y AX X 1

411--=??????

? ?

?=λλ

λ,

所以 YX

1

-AXY

1

-=B 。令T=XY

1

-则T 也是正交矩阵,从而T

1

-AT=B,,即 证。

22.设A 是n 级实对称矩阵,且A 2

=A ,证明:存在正交矩阵T 使得

T 1

-AT=?

????????

?

?

??00111 。

证 设λ是A 的任一特征值,ξ是属于λ的特征向A ξ=λξ, A 2

ξ=A(λξ)=λA ξ=λ

2

ξ,

由于

A 2

=A ?λ

2

ξ=λξ?(λ

2

-λ)ξ=0,

又因为0ξ

≠,所以λ

2

-λ=0,即得

λ

1

=0,λ

2

=1。

换句话说,A 的特征值不是1就是0。故存在正交矩阵T ,使

T 1

-AT=?

?????????

? ??00111 。

上式中,对角线元素中1的个数为A 的特征值1的个数,0的个数是A 的特征值0的个数.。

23.证明:如果A 是n 维欧氏空间的一个正交变换,那么A 的不变子空间的正交补也是的A 不变子空间。 证 设W 是A 的任意一个不变子空间,现证W

也是A 的不变子空间。任取∈αW

, 下证A

∈αW ⊥。取ξ

1,ξ

2

, ξ

m

W 的一组标准正交基,再扩充成V 的一组标准正交基为ξ1,

ξ

2

, ξ

m

,ξ

1+m ,

,ξn

,则W=L (ξ1,

ξ2

, ξ

m

), W ⊥

=L

1+m , ,ξ

n )。因为A 是正交变换,所以A ξ

1

,A

ξ2 A ξ

n

也是一组标准正交基,由于W 是A ——子空间,A

ξ

1

A ξ2

A ξm

∈W ,且为的一组标准正交基,于是A ξ

1+m ,

,A ξ

n

∈W ⊥,

A α=k 1+m A ξ1+m +

+k n A ξ

n

∈W ⊥。

16.证明:反对称实数矩阵的特征值是零或纯虚数。 证:设ξ是属于特征值λ的特征向量,即λξξ=A ξξξξξξξξξξ)'()'('')'(''A A A A A -=-=-=-=,

于是 λλξξλξ

ξλ-=?-='',

令a bi λ=+,可得0=a ,即证bi =λ。

12.设n ααα,,,21 是n 维欧氏空间V 中的一组向量,而111212122212(,)(,)(,)(,)(,)(,)(,)(,)

(,)m m m m m m αααααααααααααααααα??

?

?

?= ?

?

??

证明:当且仅当0?

≠时m ααα,,21 线性无关。

证 设有线性关系 0221

1=+++m m k k k ααα ,

将其分别与i α取内积,可得方程组

),,2,1(0),(),(),(2211m i k k k m i m i i ==+++αααααα,

由于上述方程组仅有零解的充要条件是系数行列式不等于0,即证。 10.设V 是一n 维欧氏空间,0≠α

是V 中一固定向量,

1)证明:V },0),(|{1V x a x x ∈==是V 的一个子空间;

2)证明:V 1的维数等于n-1。

证 1)由于0,01V ∈因而V 1非空.下面证明V 1对两种运算封闭.事实上,任取,,12

1V x x ∈

则有 (0),(),21==ααx x ,于是又有(0)()(),2121=+++=+αααx x x x ,

所以121x x V +∈。另一方面,也有 (0),(),11==ααx k kx , 即11kx V ∈。故V 1是V 的一个子空间。 2)因为0≠α是线性无关的,可将其扩充为V 的一组正交基2,,n αηη ,且(0),=αηi (),3,2n i =,1(2,3,)i V i n η∈= 。下面只要证明:对任意的ββ,1V ∈可以由n ηηη ,,32线性表出,则1V 的维数就是1-n 。

事实上,对任意的

1V ∈β,都有V ∈β,于是有线性关

n

n k k k ηηαβ+++= 221,且

),(),(),(),(221αηαηαααβn n k k k +++= ,

但有假设知 ),,2,1(0),(),(n i i ===αηαβ,

所以0),(1=ααk ,又因为0≠α,故01=k ,从而有n n k k ηηβ++= 22, 再由β的任意性,即证。

5.设n ααα ,,21是欧氏空间V 的一组基,证明:

1) 如果V ∈γ

使()(),,,2,10,n i i ==αγ,那么0=γ。

2) 如果V ∈21,γγ使对任一V ∈α有()()αγαγ,,21=,那么21γγ=。 证 1)因为n ααα ,,21为欧氏空间V 的一组基,且对V ∈γ,有

()()n i ,,2,10, =αγ ,

所以可设n n k k k αααγ ++=2211,

且有

()()

()()()

n n n n k k k k k k αγαγαγαααγγγ,,,,,22112211+++=+++=

即证0=γ

2)由题设,对任一V

∈α

总有

()()

αγαγ,2

11

=,

i

α也有

()()i i αγαγ

,211

=,或者()()n i i ,,2,10,21 ==-αγγ, 再由1)可得021=-γγ,即证21γγ=。

25.设V 是复数域上的n 维线性空间,A ,B 是V 上的线性变换,且AB =BA .,证明: 1) 如过0λ是A 的一个特征值,那么0

λV 是B 的不变子空间;

2) A ,B 至少有一个公共的特征向量。 证 1)设0λα

V ∈,则A 0αλα=,于是由题设知

A (

B α)=B (A α)=B (=)0αλ0λ(B α),

故B α

∈0λV ,即证0λV 是B 的不变子空间。

3) 由1)知0

λV 是B 的不变子空间,若记B|0

λV =B 0,则B 0也是复数域上线性空间0

λV 的一个线性变换,它必有特征值,0μ使

B 0B =0μB (B ∈0

λV ,且B 0≠

),

显然也有A (B )= 0μB ,故B 即为A 与B 的公共特征向量。

24.1)设21,λλ是线性变换A 的两个不同特征值,21,εε是分别属于21,λλ的特征向量,证明:21εε+不是A 的特征向量;

2)证明:如果线性空间V 的线性变换A 以V 中每个非零向量作为它的特征向量,那么A 是数乘变换。

证 1)由题设知A 111)

(ελε=, A 222)(ελε=, 且21λλ≠,

若21εε+是A 的特征向量,则存在0≠λ使 A (21εε+)=)(21εελ+=21λελε+,

A (21

εε+)=2211ελελ+=21λελε+,

即 0)()(2211=-+-ελλελλ。

再由21,εε的线性无关性,知021=-=-λλλλ,即21λλλ==,这是不可能的。 故21εε+不是A 的特征向量。

2)设V 的一组基为12,,...,n εεε,则它也是A 的n 个线性无关的特征向量,故存在特征值λλ,12,,...,n λ 使 A i i i ελε=)( ),...,2,1(n i =。

由1)即知12...n k λλλ====。由已知,又有A ααk =)( )(V ∈?α,即证A 是数乘变换。

16.证明

??????? ?

?n λλλ

2

1与????

??

?

?

?n i i

i λλλ

2

1相似,其中(n i i i ,,,21 )是1,2,n , 的一个排列。 证 设有线性变换A ,使

A )21,,,(n εεε =)21,,,(n εεε ????

?

?? ??n λλλ

21=)21,,,(n εεε D 1, 则

A ( ,,21i i εε,n i ε)=( ,,21i i εε,n

i ε)?????

?

? ??n i i i λλλ

2

1=( ,,21i i εε,n i ε)D 2, 于是D 1

与D 2为同一线性变换A 在两组不同基下的矩阵,故

??????? ?

?n λλλ

2

1

与????

??

?

?

?n i i

i λλλ

2

1相似。 6.设1ε,2ε, ,n ε是线性空间V 的一组基,A 是V 上的线性变换。证明:A 是可逆变换当且仅当A 1ε,A 2ε, ,A n ε线性无关。 证 因A (1ε,2ε, ,n ε)=(A 1ε,A 2ε, ,A n ε)=(1ε,2ε, ,n ε)A ,

故A 可逆的充要条件是矩阵A 可逆,而矩阵A 可逆的充要条件是A 1ε,A 2ε, ,A n ε线性无关,故A 可逆的充要条件是A 1ε,A 2ε, ,A n ε线性无关.。 22.证明:和

∑=s

i i

V

1

是直和的充分必要条件是∑-=1

1

i j j i

V V {0}(2,...,)i s ==。

证 必要性是显然的。这是因为}0{1

1

1

=?∑∑≠-=j j i i j j i V V V V ,所以

∑-=1

1

i j j i

V V }0{=。

充分性 设

∑=s

i i

V

1

不是直和,那么0向量还有一个分解s ααα+++=...021,

其中(1,2,...,)j j V j s α∈=。

在零分解式中,设最后一个不为0的向量是),(s k k ≤α 则k k αααα++++=-121...0 ,即 k k αααα-=+++-121

...,

因此,1

1

,k k k j j k

V V ∈∈∑-=αα,这与}0{1

1

=∑-=k j j k V V 矛盾,充分性得证。

20. 证明:如果,,1211121V V V V V V

⊕=+=那么 21211V V V V ⊕⊕=。

证 由题设知,21211V V V V ++= 因为 ,21V V V ⊕=所以

)dim()dim()

dim(21V V V +=, 又因为,12111V V V ⊕= 所以

),dim()dim()dim(12111V V V += 故)dim()dim()dim()dim(21211V V V V ++=, 即21211V V V V ⊕⊕=。

19. 设1V 与2V 分别是齐次方程组n n n x x x x x x x =====+++-12121...,0...的解空间,证明:.21V V P n

⊕= 证 由于0...21=+++n x x x 的解空间是你n -1维的,其基为)1,...,0,0,1(),...,0,...,1,0,1(),0,...,0,1,1(121-=-=-=-n ααα而由 n n x x x x ====-121...

知其解空间是1维的,令

,1=n x 则其基为).1,...,

1,1(=β且βααα,,...,,121-n 即为

n P 的一组基,从而.21V V P n +=又

)dim()dim()dim(21V V P n +=,故 .21V V P n ⊕=。

16.设()AX X x x x f n '=,,,21 是一实二次型,若有实n 维向量21,X X 使

01

>'AX X , 022<'AX X 。 证明:必存在实n 维向量00≠X 使000

='AX X 。 设A 的秩为r ,作非退化线性替换CY X =将原二次型化为标准型

22

22211r r y d y d y d AX X +++=' , 其中r d 为1或-1。由已知,必存在两个向量21,X X 使

011

>'AX X 和 022<'AX X , 故标准型中的系数r d d ,,1 不可能全为1,也不可能全为-1。不妨设有p 个1,q 个-1, 且r q p =+,即

2

21221q p p p y y y y AX X ++---++=' , 这时p 与q 存在三种可能:

q p =, q p >, q p < 下面仅讨论q p >的情形,其他类似可证。

令11===q y y , 01===+p q y y , 11===++q p p y y ,

则由CY

Z

=可求得非零向量

0X 使

02

2122100=---++='++q p p p y y y y AX X ,

即证。

14.证明:二次型()n x x x f ,,,21 是半正定的充分必要条件是它的正惯性指数与秩相等。

证 必要性。采用反证法。若正惯性指数≠p 秩r ,则r p <。即

()n x x x f ,,,21 2

2122221r p p y y y y y ---+++=+ ,

若令 021====p y y y ,11===+r p y y ,

则可得非零解

()n x x x ,,,21 使()0,,,21

0≥矛盾,故r p =。

充分性。由r p =,知

()n x x x f ,,,21 22221p y y y +++= ,

故有

()0,,,21≥n x x x f ,即证二次型半正定。

12.设

A 为一个n 级实对称矩阵,且0

0<'A X X 。

证 因为

0

()BY Y ACY C Y AX X '='

'='

-1 2

222122221n p p p y y y y y y ----+++=

++ ,

且在规范形中必含带负号的平方项。于是只要在Y C Z

1-=中,令p y y y === 21

,1,021=====++n p p y y y 则可得一线性方程组

???????????=+++=+++=+++=++++++1

10

02211,122,111,122111212111n nn n n n n p p p n pn p p n n x c x c x c x c x c x c x c x c x c x c x c x c ,

由于

0≠C ,故可得唯一组非零解()ns s s s x x x X ,,,21 =使

()0111000<--=----+++='p n AX X s s

, 即证存在

0≠X ,使0<'A X X 。

11.证明:如果A 是正定矩阵,那么1

-A 也是正定矩阵。

证 因A 是正定矩阵,故AX X '为正定二次型,作非退化线性替换Y A X 1-=,又1-A 也是对称矩阵,故 ()

0111>'='

'='

---AX X Y AA A Y Y A Y , 从而Y A Y 1'-'

为正定二次型,即证1-A 为正定矩阵。 6.证明:一个实二次型可以分解成两个实系数的一次齐次多项式的乘积的充分必要条件是:它的秩等于2且符号差等于0,或者秩

等于1。

证 必要性。设

()()()n n n n n x b x b x b x a x a x a x x x f ++++++= 2211221121,,,,

其中()n i b a i i ,,2,1, =均为实数。

1) 若上式右边的两个一次式系数成比例,即

i i ka b = ()n i ,,2,1 =

不失一般性,可设01≠a ,则可作非退化线性替换

()???==+++=n i x y x a x a x a y i

i n

n ,,222111

使二次型化为

()2121,,,ky x x x f n = ,

故二次型

()n x x x f ,,,21 的秩为1。

2) 若两个一次式系数不成比例,不妨设2

2

11b a b a ≠,则可作非退化线性替换

()???

??==+++=+++=n i x y x b x b x b y x a x a x a y i i

n

n n n ,,32211222111 ,

使

()n x x x f ,,,21 21y y =。

再令

()???

??==-=+=n i z y z z y z z y i i

,,3212211 ,

则二次型可化为

()n x x x f ,,,21 21y y =2

2

21z z -=, 故二次型()n x x x f ,,,21 的秩为2,且符号差为0。

充分性。1)若()n x x x f ,,,21 的秩为1,则可经非退化线性替换CY

Z =使二次型化为

()n x x x f ,,,21 21ky =,

其中

1y 为n x x x ,,,21 的一次齐次式,即

n n x a x a x a y +++= 22111,

()n x x x f ,,,21 ()

2

2211n n x a x a x a k +++=

()()n n n n x a x a x a x ka x ka x ka ++++++= 22112211。

2)若()n x x x f ,,,21 的秩为2,且符号差为0,则可经非退化线性替换CY

Z =使二次型化为

()n x x x f ,,,21 ()()21212

221y y y y y y -+=-=

()()n n n n x b x b x b x a x a x a ++++++= 22112211, 故()n x x x f ,,,21 可表成两个一次齐次式的乘积。 4.设A 是一个n 阶矩阵,证明:

1)A 是反对称矩阵当且仅当对任一个n 维向量X ,有0='

A X X 。 2)如果A 是对称矩阵,且对任一个n 维向量X 有0='

A X X ,那么0=A 。 证 1)必要性。因为A A '-=,即()j i a a a ji ij ii ≠-==,0,所以

()j i j

i ji ij j i j

i ij x x a a x x a AX X ∑∑≠+==',

由于0=+ji ij

a a ,故

()0=+='∑≠j i j

i ji ij x x a a AX X 。

充分性。因为n R X ∈?,有0='A X X ,即 ()()2

2221112121122111x a x x a x x x a a x a n n n ++++++

()02222=+++++n nn n n n x a x x a a ,

这说明原式是一个多元零多项式,故有

,02211====nn a a a ()j i a a ji ij ≠-=,

A A -='。

2)由于A 是对称的,且0='

A X X ,即 2

2

221121122

1

1122x a x x a x x a x a n n ++++ 022

22=++++n nn n n x a x x a ,

这说明

AX

X '为一个多元零多项式,故有

02211

====nn a a a ,

002==?=ji ij ij a a a , 即0=A 。

高等代数试题及答案

中国海洋大学2007-2008学年第2学期期末考试试卷 a ?? 的子空间.

授课教师命题教师或 命题负责人签字年月日院系负责人签 字年月日 共2 页第2 页

,,是的值域与核都是a b b a a ? ????? ,a b ≠上线性空间V 上的线性变换,多项式

中国海洋大学 2007-2008学年 第2学期 期末考试 数学科学 学院 《高等代数》试题(A 卷)答案 一.判断题 1.× 2.× 3.× 4.√ 5.√ 二.解:A =???? ????????1111111111111111, 3|(4)E A λλλ-=-|,所以特征值为0,4(3重). 将特征值代入,求解线性方程组()0E A x λ-=,得4个线性无关的特征向量(答案可以不唯一),再正交单位化,得4个单位正交向量: 11111 ,,,)'2222α=( ,2α=, 3α= ,4'6662α--=(-. 所以正交阵1 2612 10210 2 2T ?-????? ?=??????????? 而40'00T AT ??????=??????. 三.证:(1) ,.A B M ?∈ 验证,A B kA M +∈即可. (2) 令1101 01 0011 0n E D E -?? ?? ? ??? ? ?== ????? ?????? ,D 为循环阵, 00n k k k E D E -?? = ??? ,(k E 为k 阶单位阵) 则2 1,, ,,n n D D D D E -=在P 上线性无关.

且21121n n n n A a E a D a D a D ---=++++,令112(),n n f x a a x a x -=++有 ()A f D =. B M ?∈,必P ?上1n -次多项式()g x ,使()B g D =,反之亦真. ()()()()AB f D g D g D f D BA ∴=== (3)由上可知:2 1,,, ,n E D D D -是M 的一组基,且dim M n =. 四.解:A 的行列式因子为3 3()(2)D λλ=+, 21()()1D D λλ==. 所以,不变因子为3 3()(2)d λλ=+, 21()()1d d λλ==,初等因子为3 (2)λ+, 因而A 的Jordan 标准形为21212J -?? ??=-?? ??-?? 五.证:"":()()() ()()()0f x g x q x f A g A q A ?=∴== ""?:()0,()0f A g A == 设()()()()f x g x q x r x =+, ()0r x =或(())(())r x g x ?

高等代数(上)_习题集(含答案)

《高等代数(上)》课程习题集 一、填空题1 1. 若3 1x -整除()f x ,则(1)f =( )。 2. 如果方阵A 的行列式 0=A ,则A 的行向量组线性( )关。 3. 设A 为3级方阵,*A 为A 的伴随矩阵,且3 1= A ,则=--1*A A ( )。 4. 若A 为方阵,则A 可逆的充要条件是——( )。 5. 已知1 21 1A ??=????,1 12 1B ?? =???? ,且3A B C A B +=+,则矩阵C =( ) 。 6. 每一列元素之和为零的n 阶行列式D 的值等于( )。 7. 设行列式01 49007 16 =--k ,则=k ( ) 8. 行列式 2 2 3 5 007425120403 ---的元素43a 的代数余子式的值为( ) 9. 设矩阵?? ? ? ??????-=40 3 212221 A ,11k α?? ?= ? ???,若αA 与α线性相关,则=α( ) 10. 设A 为3阶矩阵, 5 1= A ,则12--A =( ) 11. 已知:s ααα,,,21 是n 元齐次线性方程组0=Ax 的基础解系,则系数矩阵A 的秩 =)(A R ( ) 12. 多项式)(),(x g x f 互素的充要条件是( ) 13. 多项式 )(x f 没有重因式的充要条件是( )

14. 若排列 n j j j 21的逆序数为k ,则排列11j j j n n -的逆序数为( ) 15. 当=a ( )时,线性方程组??? ??=++=++=++0 402032 21321321x a x x ax x x x x x 有零解。 16. 设A 为n n ?矩阵,线性方程组B AX =对任何B 都有解的充要( ) 17. 设00 A X C ??=? ??? ,已知1 1 ,A C --存在,求1 X -等于( ) 18. 如果齐次线性方程组0=AX 有非零解,则A 的列向量组线性( )关 19. )(x p 为不可约多项式,)(x f 为任意多项式,若1))(),((≠x f x p ,则( ) 20. 设A 为4级方阵, 3-=A ,则=A 2( ) 21. 设m ααα,,,21 是一组n 维向量,如果n m > .,则这组向量线性( )关 22. 设矩阵?? ? ? ??????-=40 3 212221A ,11k α?? ?= ? ???,若αA 与α线性相关,则k=( )。 23. 每一列元素之和为零的n 阶行列式D 的值等于( ) 24. 设A 为n 阶方阵,若I 2A -A -7=0,求()1 3A I --=( ) 25. 如果2 4 2 11()|x A x B x -++,则A =( ),B =( )。 26. 若行列式1 25 1 3202 5 x -=,则x =( )。 27. 向量α线性无关的充要条件是( ) 28. 已知1 211A ??=????,1 12 1B ?? =???? ,且3A B C A B +=+,则矩阵C =( ) 。 29. 行列式 2 2 3 5 007425120403 ---的元素43a 的代数余子式的值为( )

高等代数第6章习题参考答案

第六章 线性空间 1.设,N M ?证明:,M N M M N N ==I U 。 证 任取,M ∈α由,N M ?得,N ∈α所以,N M I ∈α即证M N M ∈I 。又因 ,M N M ?I 故M N M =I 。再证第二式,任取M ∈α或,N ∈α但,N M ?因此无论 哪 一种情形,都有,N ∈α此即。但,N M N Y ?所以M N N =U 。 2.证明)()()(L M N M L N M I Y I Y I =,)()()(L M N M L N M Y I Y I Y =。 证 ),(L N M x Y I ∈?则.L N x M x Y ∈∈且在后一情形,于是.L M x N M x I I ∈∈或所以)()(L M N M x I Y I ∈,由此得)()()(L M N M L N M I Y I Y I =。反之,若 )()(L M N M x I Y I ∈,则.L M x N M x I I ∈∈或 在前一情形,,,N x M x ∈∈因此 .L N x Y ∈故得),(L N M x Y I ∈在后一情形,因而,,L x M x ∈∈x N L ∈U ,得 ),(L N M x Y I ∈故),()()(L N M L M N M Y I I Y I ? 于是)()()(L M N M L N M I Y I Y I =。 若x M N L M N L ∈∈∈U I I (),则x ,x 。 在前一情形X x M N ∈U , X M L ∈U 且,x M N ∈U 因而()I U (M L ) 。 ,,N L x M N X M L M N M M N M N ∈∈∈∈∈?U U U I U U I U U U U I U I U 在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L )即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量 乘法; 3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算: 2121211211 12 b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,) ()k 。(a ,)=(ka ,kb +

高等代数习题

高等代数试卷 一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、)(x p 若是数域F 上的不可约多项式,那么)(x p 在F 中必定没有根。 ( ) 2、若线性方程组的系数行列式为零,由克莱姆法则知,这个线性方程组一定是无解的。 ( ) 3、实二次型),,,(21n x x x f 正定的充要条件是它的符号差为n 。 ( ) 4、(){ }321321;3,2,1,,,x x x i R x x x x W i ===∈=是线性空间3R 的一个子空间。( ) 5、数域F 上的每一个线性空间都有基和维数。 ( ) 6、两个n 元实二次型能够用满秩线性变换互相转化的充要条件是它们有相同的正惯性指数和负惯性指数。 ( ) 7、零变换和单位变换都是数乘变换。 ( ) 8、线性变换σ的属于特征根0λ的特征向量只有有限个。 ( ) 9、欧氏空间V 上的线性变换σ是对称变换的充要条件为σ关于标准正交基的矩阵为实对称矩阵。 ( ) 10、若{}n ααα,,,21 是欧氏空间V 的标准正交基,且∑==n i i i x 1αβ,那么 ∑== n i i x 1 2 β。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写 在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、关于多项式的最大公因式的下列命题中,错误的是( ) ①()()() ()()()n n n x g x f x g x f ,,=; ②()()()n j i j i f f f f f j i n ,,2,1,,,1,1,,,21 =≠=?=; ③()()()()()()()x g x g x f x g x f ,,+=; ④若()()()()()()()()1,1,=-+?=x g x f x g x f x g x f 。 2、设D 是一个n 阶行列式,那么( ) ①行列式与它的转置行列式相等; ②D 中两行互换,则行列式不变符号; ③若0=D ,则D 中必有一行全是零; ④若0=D ,则D 中必有两行成比例。 3、设矩阵A 的秩为r r (>)1,那么( ) ①A 中每个s s (<)r 阶子式都为零; ②A 中每个r 阶子式都不为零;

高等代数试题附答案

科目名称:《高等代数》 姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ ≌≌≌≌ 一、填空题(每小题5分,共25分) 1、在[]X P 中,向量21x x ++关于基23,1,12+--x x x 的坐标为 。 2、向 量 组 ()()()()()8,3,5,2,1,1,3,0,3,2,4,2,1,2,154321-=-==-=-=ααααα的秩 为 ,一个最大无关组为 .。 3、(维数公式)如果21,V V 是线性空间V 的两个子空间,那么 。 4、假设??? ? ? ??-----=175131023A 的特征根是 ,特征向量分别 为 。 5、实二次型()323121321224,,x x x x x x x x x f ++-= 的秩为 二、是非题(每小题2分,共20分) 1、如果r a a a ,,,21 线性无关,那么其中每一个向量都不是其余向量的线性组合。( ) 2、在][x P 中,定义变换)()(0x f x Af =,其中P x ∈0,是一固定的数,那么变换A 是线性变换。( ) 3、设21,W W 是向量空间V 的两个子空间,那么它们的并 21W W 也是V 的一个子空间。( ) 4、两个欧氏空间同构的充分且必要条件是它们有相同的维数。( )

5、令),,,(4321x x x x =ξ是4R 的任意向量,那么δ是4R 到自身的线性变 换。其中),,,()(24232221x x x x =ξδ。( ) 6、矩阵A 的特征向量的线性组合仍是A 的特征向量。( ) 7、若矩阵A 与B 相似,那么A 与B 等价。( ) 8、n 阶实对称矩阵A 有n 个线性无关的特征向量。( ) 9、在)(2R M 中,若W 由所有满足迹等于零的矩阵组成,那么W 是 )(2R M 的 子空间。( ) 10、齐次线性方程组0)(=-X A E λ的非零解向量是A 的属于λ的特征向量。( ) 三、明证题(每小题××分,共31分) 1、设n εεε,,,21 是线性空间V 的一组基,A 是V 上的线性变换,证明:A 可逆当且仅当n A A A εεε,,,21 线性无关。 (10) 2、设δ是n 维欧氏空间V 的一个线性变幻,证明:如果δ是对称变幻, 2δ=l 是单位变幻,那么δ是正交变换。(11) 3、设V 是一个n 维欧氏空间,证明:如果21,W W 都是V 得子空间,那么() ⊥⊥⊥ =+2121W W W W 。(10) 四、计算题(每小题8分,共24分) 1、求矩阵??? ? ? ??---=466353331A 的特征根与特征向量,并求满秩矩阵P 使 得AP P 1-为对角形矩阵。 2、求一个正交矩阵U ,使得AU U '使对角形式,其中

高等代数第6章习题解

第六章习题解答 习题6.1 1、设2V R =,判断下面V 到V 的映射哪些是V 的线性变换,哪些不是? (1),()x x y V f y y αα+????=∈= ? ?????;(2),()x x y V f y y αα-????=∈= ? ????? ; (3)2,()x y V f y x y αα+????=∈= ? ?+???? ; (4)0,()x V f y αααα??=∈=+ ???,0V α∈是一个固定的非零向量。 (5)0,()x V f y ααα??=∈= ???,0V α∈是一个固定的非零向量。 解:(1)是。因为1122(,),(,),x y x y k F αβ''?==?∈,有 (2)是。因为1122(,),(,),x y x y k F αβ''?==?∈,有 (3)不是。因为 而 121211*********()()y y y y f f x y x y x x y y αβ++++??????+=+= ? ? ?+++++?????? 所以()()()f f f αβαβ+≠+ (4)不是。因为0()f k k ααα=+,而000()()kf k k k k ααααααα=+=+≠+ 所以()()f k kf αα≠ (5)不是。因为0()f αβα+=,而00002()()f f αβαααα+=+=≠ 2、设n n V P ?=是数域F 上全体n 阶方阵构成的集合,有§4.5,V 是F 上2 n 维线性空间, 设A V ∈是固定元,对任意M V ∈,定义 ()f M MA AM =+ 证明,f 是V 的一个线性变换。 证明:,,M N V k F ?∈∈,则 所以 f 是V 的一个线性变换。 3、设3 V R =,(,,)x y z V α=∈,定义

高等代数(上)期末复习题培训课件

高等代数(1)复习题 一、判断题 1、四阶行列式中含因子2311a a 的项为42342311a a a a 和44322311a a a a 。( ) 2、设D 为六阶行列式,则162534435261a a a a a a 是D 中带负号的项。( ) 3、对任一排列施行偶数次对换后,排列的奇偶性不变。( ) 4、排列()3211Λ-n n 的逆序数为n 。( ) 5、排列()3211Λ-n n 为偶排列。( ) 6、若行列式中所有元素都是整数,且有一行中元素全为偶数,则行列式的值一定是偶数。( ) 7、若22B A =,则B A =或B A -=。( ) 8、若AC AB =,0≠A ,则C B =。( ) 9、若矩阵A 满足A A =2,则0=A 或E A =。( ) 10、设A 是n 阶方阵,若0≠A ,则必有A 可逆。( ) 11、若矩阵A 满足02=A ,则0=A 。( ) 12、若矩阵B A ,满足0AB =,且0A ≠,则0B =。( ) 13、对n 阶可逆方阵A ,B ,必有()111 ---=B A AB 。( ) 14、对n 阶可逆方阵A ,B ,必有()111 ---+=+B A B A 。( ) 15、设A ,B 为n 阶方阵,则必有B A B A +=+。( ) 16、设A ,B 为n 阶方阵,则必有BA AB =。( ) 17、若矩阵A 与B 等价,则B A =。( ) 18、若A 与B 都是对称矩阵,则AB 也是对称矩阵。( ) 19、若矩阵A 的所有1r +级的子式全为零,则A 的秩为r 。( ) 20、设n m A ?,n m B ?为矩阵,则()()()B R A R B A R +≤+。( ) 21、设A =0,则()0=A R 。( )

高等代数试题附答案

高等代数试题附答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

科目名称:《高等代数》 姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ 一、填空题(每小题5分,共25分) 1、在[]X P 中,向量21x x ++关于基23,1,12+--x x x 的坐标为 。 2、向量组()()()()()8,3,5,2,1,1,3,0,3,2,4,2,1,2,154321-=-==-=-=ααααα的秩 为 ,一个最大无关组为 .。 3、(维数公式)如果21,V V 是线性空间V 的两个子空间,那么 。 4、假设??? ? ? ??-----=175131023A 的特征根是 ,特征向量分别为 。 5、实二次型()323121321224,,x x x x x x x x x f ++-= 的秩为 二、是非题(每小题2分,共20分) 1、如果r a a a ,,,21 线性无关,那么其中每一个向量都不是其余向量的线性组合。( ) 2、在][x P 中,定义变换)()(0x f x Af =,其中P x ∈0,是一固定的数,那么变换A 是线性变换。( ) 3、设21,W W 是向量空间V 的两个子空间,那么它们的并 21W W 也是V 的一个子空间。( ) 4、两个欧氏空间同构的充分且必要条件是它们有相同的维数。( ) 5、令),,,(4321x x x x =ξ是4R 的任意向量,那么δ是4R 到自身的线性变换。其中 ),,,()(2 4232221x x x x =ξδ。( ) 6、矩阵A 的特征向量的线性组合仍是A 的特征向量。( )

《高等代数》试题库

《高等代数》试题库 一、选择题 1.在里能整除任意多项式的多项式是()。 .零多项式.零次多项式.本原多项式.不可约多项式 2.设是的一个因式,则()。 .1 .2 .3 .4 3.以下命题不正确的是()。 . 若;.集合是数域; .若没有重因式; .设重因式,则重因式 4.整系数多项式在不可约是在上不可约的( ) 条件。 . 充分 . 充分必要 .必要.既不充分也不必要 5.下列对于多项式的结论不正确的是()。 .如果,那么 .如果,那么 .如果,那么,有 .如果,那么 6.对于“命题甲:将级行列式的主对角线上元素反号, 则行列式变为;命题乙:对换行列式中两行的位置, 则行列式反号”有( ) 。 .甲成立, 乙不成立;. 甲不成立, 乙成立;.甲, 乙均成立;.甲, 乙均不成立 7.下面论述中, 错误的是( ) 。 . 奇数次实系数多项式必有实根; . 代数基本定理适用于复数域; .任一数域包含;.在中, 8.设,为的代数余子式, 则=( ) 。 . . . . 9.行列式中,元素的代数余子式是()。 .... 10.以下乘积中()是阶行列式中取负号的项。 .; .;.;. 11. 以下乘积中()是4阶行列式中取负号的项。 .; .;.; . 12. 设阶矩阵,则正确的为()。 . . . . 13. 设为阶方阵,为按列划分的三个子块,则下列行列式中与等值的是() . . . . 14. 设为四阶行列式,且,则() . . . . 15. 设为阶方阵,为非零常数,则() . . . . 16.设,为数域上的阶方阵,下列等式成立的是()。 .;. ;

.; . 17. 设为阶方阵的伴随矩阵且可逆,则结论正确的是() . . . . 18.如果,那么矩阵的行列式应该有()。 .; .;.; . 19.设, 为级方阵, , 则“命题甲:;命题乙:”中正确的是( ) 。 . 甲成立, 乙不成立;. 甲不成立, 乙成立;.甲, 乙均成立;.甲, 乙均不成立 20.设为阶方阵的伴随矩阵,则()。 . . . . 21.若矩阵,满足,则()。 .或;.且;.且;.以上结论都不正确 22.如果矩阵的秩等于,则()。 .至多有一个阶子式不为零; .所有阶子式都不为零;.所有阶子式全为零,而至少有一个阶子式不为零;.所有低于阶子式都不为零 23.设阶矩阵可逆,是矩阵的伴随矩阵,则结论正确的是()。 .;.;.;. 24. 设为阶方阵的伴随矩阵,则=() . . . . 25.任级矩阵与-, 下述判断成立的是( )。 . ; .与同解; .若可逆, 则;.反对称, -反对称 26.如果矩阵,则() . 至多有一个阶子式不为零;.所有阶子式都不为零.所有阶子式全为零,而至少有一个阶子式不为零;.所有低于阶子式都不为零 27. 设方阵,满足,则的行列式应该有()。 . . . . 28. 是阶矩阵,是非零常数,则 ( )。 . ; . ;. . 29. 设、为阶方阵,则有(). .,可逆,则可逆 .,不可逆,则不可逆 .可逆,不可逆,则不可逆.可逆,不可逆,则不可逆 30. 设为数域上的阶方阵,满足,则下列矩阵哪个可逆()。 . . . 31. 为阶方阵,,且,则()。 .; .;.;. 32. ,,是同阶方阵,且,则必有()。 . ; . ;.. 33. 设为3阶方阵,且,则()。 .;.;.;. 34. 设为阶方阵,,且,则(). . .或. . 35. 设矩阵,则秩=()。 .1 .2 .3 .4

《高等代数》(上)题库

《高等代数》(上)题库 第一章多项式 填空题 (1.7)1、设用x-1除f(x)余数为5,用x+1除f(x)余数为7,则用x2-1除f(x)余数 是。 (1.5)2、当p(x)是多项式时,由p(x)| f(x)g(x)可推出p(x)|f(x)或 p(x)|g(x)。 (1.4)3、当f(x)与g(x) 时,由f(x)|g(x)h(x)可推出f(x)|h(x)。 (1.5)4、设f(x)=x3+3x2+ax+b 用x+1除余数为3,用x-1除余数为5,那么a= b 。 (1.7)5、设f(x)=x4+3x2-kx+2用x-1除余数为3,则k= 。 (1.7)6、如果(x2-1)2|x4-3x3+6x2+ax+b,则a= b= 。 (1.7)7、如果f(x)=x3-3x+k有重根,那么k= 。 (1.8)8、以l为二重根,2,1+i为单根的次数最低的实系数多项式为 f(x)= 。 (1.8)9、已知1-i是f(x)=x4-4x3+5x2-2x-2的一个根,则f(x)的全部根 是。 (1.4)10、如果(f(x),g(x))=1,(h(x),g(x))=1 则。 (1.5)11、设p(x)是不可约多项式,p(x)|f(x)g(x),则。 (1.3)12、如果f(x)|g(x),g(x)|h(x),则。 (1.5)13、设p(x)是不可约多项式,f(x)是任一多项式,则。 (1.3)14、若f(x)|g(x)+h(x),f(x)|g(x),则。 (1.3)15、若f(x)|g(x),f(x)| h(x),则。 (1.4)16、若g(x)|f(x),h(x)|f(x),且(g(x),h(x))=1,则。(1.5)17、若p(x) |g(x)h(x),且则p(x)|g(x)或p(x)|h(x)。 (1.4)18、若f(x)|g(x)+h(x)且f(x)|g(x)-h(x),则。 (1.7)19、α是f(x)的根的充分必要条件是。 (1.7)20、f(x)没有重根的充分必要条件是。 答案 1、-x+6 2、不可约 3、互素 4、a=0,b=1 5、k=3 6、a=3,b=-7 7、k=±2

高等代数例题(全部)

高等代数例题 第一章 多项式 1.44P 2 (1)m 、p 、q 适合什么条件时,有2 3 1x mx x px q +-++ 2.45P 7 设3 2 ()(1)22f x x t x x u =++++,3 ()g x x tx u =++的最大公因式是一个二次多项式,求t 、 u 的值。 3.45P 14 证明:如果((),())1f x g x =,那么(()(),()())1f x g x f x g x += 4.45P 18 求多项式3 x px q ++有重根的条件。 5.46P 24 证明:如果(1)()n x f x -,那么(1)()n n x f x - 6.46P 25 证明:如果233 12(1)()()x x f x xf x +++,那么1(1)()x f x -,2(1)()x f x - 7.46P 26 求多项式1n x -在复数域内和实数域内的因式分解。 8.46P 28 (4)多项式1p x px ++ (p 为奇素数)在有理数域上是否可约? 9.47P 1 设1()()()f x af x bg x =+,1()()()g x cf x dg x =+,且0ad bc -≠。求证: 11((),())((),())f x g x f x g x =。 10.48P 5 多项式()m x 称为多项式()f x ,()g x 的一个最小公倍式,如果(1)()()f x m x ,()()g x m x ; (2)()f x ,()g x 的任意一个公倍式都是()m x 的倍式。我们以[(),()]f x g x 表示首项系数为1的那个最 小公倍式。证明:如果()f x ,()g x 的首项系数都为1,那么()() [(),()]((),()) f x g x f x g x f x g x = 。 11.设 m 、n 为整数,2()1g x x x =++除33()2m n f x x x =+-所得余式为 。 12. 求证:如果()d x |()f x ,()d x |()g x ,且()d x 是()f x 与()g x 的一个组合,那么()d x 是()f x 与 ()g x 的一个最大公因式。 13. 14 3 4141)g( , 21212321)(23423456 -+--=+--+-- =x x x x x x x x x x x x f 求())(),(x g x f 。 14. 设22()(1) 21m n f x x x x =+--- (m ,n 是正整数),2()g x x x =+ 。证:()g x |()f x 。

高等代数试题及答案

. . 中国海洋大学2007-2008学年第2学期期末考试试卷 a ?? 的子空间.

授课教师命题教师或 命题负责人签字年月日院系负责人签 字年月日 共 2 页第 2 页

中国海洋大学 XXXX-XXXX 学年 第X 学期 期末考试试卷 五(10分)证明:设A 为n 级矩阵,()g x 是矩阵A 的最小多项式,则多项式()f x 以A 为根的充要条件是()g x |()f x . 六(10分)设V 是数域P 上的n 维线性空间,,是V 上的线性变换,且= . 证明: 的值域与核都是 的不变子空间. 七(10分)设2n 阶矩阵a b a b A b a b a ??????? ? =? ????????? ,a b ≠,求A 的最小多项式. 八(10分)设f 是数域P 上线性空间V 上的线性变换,多项式()(),p x q x 互素,且满足 ()()0p f q f =(零变换) 求证:()()()(),ker ,ker V W S W p f S q f =⊕==

中国海洋大学 2007-2008学年 第2学期 期末考试 数学科学 学院 《高等代数》试题(A 卷)答案 一.判断题 1.× 2.× 3.× 4.√ 5.√ 二.解:A =???? ????????1111111111111111, 3|(4)E A λλλ-=-|,所以特征值为0,4(3重). 将特征值代入,求解线性方程组()0E A x λ-=,得4个线性无关的特征向量(答案可以不唯一),再正交单位化,得4个单位正交向量: 11111 ,,,)'2222α=( ,2α=, 3α= ,4'6662α--=(-. 所以正交阵1 2612 610210 2 2T ?-????-? ?=??????????? 而40'00T AT ??????=??????. 三.证:(1) ,.A B M ?∈ 验证,A B kA M +∈即可. (2) 令1101 01 0011 0n E D E -?? ?? ? ??? ? ?== ????? ?????? ,D 为循环阵, 00n k k k E D E -?? = ??? ,(k E 为k 阶单位阵) 则2 1,, ,,n n D D D D E -=在P 上线性无关.

高等代数北大版习题参考答案

第九章 欧氏空间 1.设()ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,

(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 122222 11211)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。 4) 由定义,知 ∑=j i j i ij y x a ,),(βα , α== β==

高等代数真题答案

第六章习题册 1. 检验下述集合关于所规定的运算是否构成实数域R 上的线性空间? (a) 集合{()[]deg()}f x R x f n ∈|=关于多项式的加法和数乘. (b) 集合{()}T n A M R A A ∈|=关于矩阵的加法和数乘. (c) 集合0{{}}n n n x x R ∞=|∈关于数列的加法和数乘. 2. 设V 是数域F 上的线性空间, 证明(αβ)αβk k k ?=?, 这里αβV k F ,∈,∈.

3. 下述集合是否是()n M R 的子空间 (a) { ()}T n V A M R A A =∈|=? (b) {()()[]}V f A f x R x =|∈, 这里()n A M R ∈是一个固定方阵. 4. 叙述并证明线性空间V 的子空间1W 与2W 的并12W W ∪仍为V 的子空间的充分必要条件. 5. 设1S 与2S 是线性空间V 的两个非空子集, 证明: (a) 当12S S ?时, 12()()Span S Span S ?. (b) 1212()()()Span S S Span S Span S =+∪. (c) 1212()()()Span S S Span S Span S ?∩∩.

6. 如果123f f f ,,是实数域上一元多项式全体所成的线性空间[]R x 中三个互素的多项式, 但其中任意两个都不互素, 那么它们线性无关.试证之. 7. 设S 是数域F 上线性空间V 的一个线性无关子集, α是V 中一个向量, αS ?, 则{α}S ∪线性相关充分必要条件α()Span S ∈. 8. (a) 证明{|()}ij ji E E i j +≤是()n M F 中全体对称矩阵组成的子空间的一个基. (b). 求3()M F 的子空间{()()[]}f A f x F x |∈ 的一个基和维数, 这里010001000A ???? =?????? 9. 在4 R 中, 求向量ξ在基1234(εεεε),,,下的坐标, 其中 12341210111112εεεεξ0301311014??????????????????????????????=,=,=,=,=????????????????????????????????????????

高等代数习题集

高等代数习题集

高等代数习题集 苏州大学数学科学学院高等代数组收集 2003, 4,30 1.设X = ,求X。 2.设二次型f(x1, x2,... , x n)是不定的,证明:存在n维向量X0,使X0'AX0 = 0,其中A是该二次型的矩阵。 3.设W = {f (x)| f (x) P[x]4, f (2) = 0}。 a 证明:W是P[x]4的子空间。 b 求W的维数与一组基。 4.在R3中定义变换A:任意 (x1, x2, x3) R3, A(x1, x2, x3) = (2x2 + x3, x -4x2, 3x3)。 1 1, 证明:A是Rr3上线性变换, 2, 求A在基xi1 = (1, 0, 0), xi2 = (0, 1, 0), xi3 = (1, 1, 1)下的矩阵。 5.设,求正交矩阵T,使T'AT成对角形。 6.设V是数域P上n维线性空间,A是V上可逆线性变换,W是A的不变 子空间。证明:W也是A-1的不变子空间。

7.设V是n维欧氏空间,A是V上变换。若任意,V,有 (A, A) = (,)。证明:A是V上线性变换,从而是V上正交变换。 8.设X = ,求X。 9.设A是奇数级的实对称矩阵,且| A| > 0,证明:存在实n维向量X0 0,使X0'AX0 > 0。 10.设A = ,W = {|R4, A = 0}。证明: 1.[1,]W是4的一个子空间。 2.[2,]求W的维数与一组基。 11.设B,C = ,在R2 x 2中定义变换A: 任意X R2 x 2, A(X) = BXC。 1, 证明:A是R2 x 2上线性变换。。 2, 求A在基E11, E12, E21, E22下的矩阵。 12.用正交线性替换,化实二次型f (x1, x2, x3) = 2x1x2 +2x1x3 -2x2x3为标 准形。 13.设V为数域P上线性空间,A是V上线性变换,若 (A2)-1(0) = A-1(0), 证明:V = AV.+A-1(0)。 14.设V是n维欧氏空间。A是V上正交变换,W是A的不变子空间。证明: W也是A的不变子空间。 15.设X = ,求X。

高等代数北大版习题参考答案

第七章线性变换 1.?判别下面所定义的变换那些是线性的,那些不是: 1)?在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)?在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3)?在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4)?在P 3中,A ),,2(),,(132213 21x x x x x x x x +-=; 5)?在P[x ]中,A )1()(+=x f x f ; 6)?在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)?把复数域上看作复数域上的线性空间,A ξξ=。 8)?在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α,A )0,0,4()(=αk , A ≠ )(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+=A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- =A α+A β, A =)(αk A ),,(321kx kx kx =k A )(α, 故A 是P 3 上的线性变换。 5)是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f +=A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f +A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i,k(A a)=i,A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,

《高等代数》月测试试题与及答案

《高等代数》月测试试题与及答案(行列式与线性方程组部分) 一、(共12分)叙述下列概念或命题: (1)线性相关;(2)极大线性无关组;(3)行列式按一行(列)展开定理. 答:(1)向量组 称为线性相关,如果有数域 中不全为零的数 ,使 . 注对如下定义也视为正确:如果向量组 ( )中有一个向量可由其余的向量线性表出,那么向量组 称为线性相关的. (2)一向量组的一个部分组称为一个极大线性无关组,如果这个部分组本身 是线性无关的,并且从这向量组中任意添加一个向量(如果还有的话),所得的部分向量组都线性相关. 注对如下定义也视为正确:向量组 的一个部分组 称为一个极大线性无关组,是指:(ⅰ) 线性无关;(ⅱ) 可由 线性表出.

(3)行列式等于某一行(列)的元素分别与它们代数余子式的乘积之和. 注用公式写出按行(或列)展开定理亦可. 二、判断题:(在括号里打“√”或“×”,共20分) 1. . (×) 2.若向量组 ( )线性相关,则其中每个向量都是其余向量的线性组合.(×)3.在全部 ( )级排列中,奇排列的个数为 .(√)4.若排列 为奇排列,则排列 为偶排 列.(×)5.若矩阵 的秩是 ,则 的所有高于 级的子式(如果有的话)全为零.(√)

6.若一组向量线性相关,则至少有两个向量的分量成比 例.(×) 7.当线性方程组无解时,它的导出组也无 解.(×) 8.对 个未知量 个方程的线性方程组,当它的系数行列式等于0时,方程组一定无 解.(×) 9.等价向量组的秩相 等. (√) 10.齐次线性方程组解的线性组合还是它的 解.(√) 三、(共18分)计算行列式 (1) 解原式 . 注用其它方法计算出结果的给满分,方法正确而计算错误的,酌情给分.(2)

(完整版)高等代数习题集

《高等代数》试题库 一、 选择题 1.在[]F x 里能整除任意多项式的多项式是( )。 A .零多项式 B .零次多项式 C .本原多项式 D .不可约多项式 2.设()1g x x =+是6 2 4 2 ()44f x x k x kx x =-++-的一个因式,则=k ( )。 A .1 B .2 C .3 D .4 3.以下命题不正确的是 ( )。 A . 若()|(),()|()f x g x f x g x 则; B .集合{|,}F a bi a b Q =+∈是数域; C .若((),'())1,()f x f x f x =则没有重因式; D .设()'()1p x f x k -是的重因式,则()()p x f x k 是的重因式 4.整系数多项式()f x 在Z 不可约是()f x 在Q 上不可约的( ) 条件。 A . 充分 B . 充分必要 C .必要 D .既不充分也不必要 5.下列对于多项式的结论不正确的是( )。 A .如果)()(,)()(x f x g x g x f ,那么)()(x g x f = B .如果)()(,)()(x h x f x g x f ,那么))()(()(x h x g x f ± C .如果)()(x g x f ,那么][)(x F x h ∈?,有)()()(x h x g x f D .如果)()(,)()(x h x g x g x f ,那么)()(x h x f 6. 对于“命题甲:将(1)n >级行列式D 的主对角线上元素反号, 则行列式变为D -;命题乙:对换行列式中两行的位置, 则行列式反号”有( ) 。 A .甲成立, 乙不成立; B . 甲不成立, 乙成立; C .甲, 乙均成立; D .甲, 乙均不成立 7.下面论述中, 错误的是( ) 。 A . 奇数次实系数多项式必有实根; B . 代数基本定理适用于复数域; C .任一数域包含Q ; D . 在[]P x 中, ()()()()()()f x g x f x h x g x h x =?= 8.设ij D a =,ij A 为ij a 的代数余子式, 则 112111222212.....................n n n n nn A A A A A A A A A =( ) 。 A . D B . D - C ./ D D . (1)n D -

相关文档