文档库 最新最全的文档下载
当前位置:文档库 › 生活垃圾焚烧低位发热量计算及运用..

生活垃圾焚烧低位发热量计算及运用..

生活垃圾焚烧低位发热量计算及运用..
生活垃圾焚烧低位发热量计算及运用..

生活垃圾焚烧低位发热量计算及运用

作者江勇(1969.12--)男重庆三峰卡万塔公司重庆市大渡口区邮编400084

摘要:不同城市的生活垃圾,其化学成分和分类情况不尽相同,由于其成分的复杂性和取样的不合理性,垃圾低位热值的取样分析难度较大,给实际生产中生产人员的操作带来困难,不便于生产管理人员的生产管理。本文讨论了生活垃圾低位热值的计算方法和及其在实际中的运用,希望能对垃圾焚烧发电行业的生产管理有所帮助,能够对垃圾焚烧生产人员的燃烧调整有所启发。

关键词:生活垃圾;燃烧调整;低位发热量;生产管理

Abstract: Life waste in different city has different chemical composition and classification. Because of the complexity of composition and sampling of the irrationality of waste, it is very difficult to get the Low Heat Value of the waste, and it is not convenient for production management. This paper gives one way to how to calculate the waste Low Heat Value and hopes it can be helpful to the production management and waste incineration combustion adjustment in the waste incineration power generation.

Key words: Life Waste; Incineration Combustion; Low Heat Value; Production Management

前言:

重庆同兴垃圾处理有限公司(以下简称同兴公司)于2001年12月24日注册登记成立,注册资本金1.01亿元,以BOT方式运作的项目公司。同兴公司采用三峰环境公司引进的德国马丁SITY2000逆推倾斜炉排技术,日处理能力为1200吨(2×600)吨,发电机装机容量2×12MW,特许运营期25年(含建设期二年),是中国第一个以BOT(即建设-运营-移交)方式运作的垃圾焚烧发电项目,也是西南地区第一个大型垃圾焚烧发电厂。项目于2005年3月28日正式投产,能够不添加辅助燃料焚烧垃圾热值4500~10000kJ/kg、水分高的城市生活垃圾,烟气处理技术采用喷雾反应塔+活性炭喷射+布袋除尘器+尾气在线监测的半干法烟气处理装置。投产以来, 同兴公司年处理垃圾57万吨,年上网电量12000万度,烟气净化指标等各项参数均达到设计能力。

由于城市生活垃圾成分复杂,热值低、水分高,燃烧调整控制难度较大,如何控制稳定的燃烧,做到真正的城市生活垃圾处理“无害化、减量化、资源化”意义重大。本文讨论了生活垃圾低位热值的计算方法和及其在实际中的运用,希望能对垃圾焚烧发电行业的生产管理有所帮助,能够对垃圾焚烧生产人员的燃烧调整有所启发。

1问题的提出

1.1 城市生活垃圾成分

城市生活垃圾伴随着人们生活而产生,其成分和产量随着城市规模、人口、经济水平、消费方式、自然条件等不同而差异很大。城市生活垃圾是一种成分异常庞杂的混合体,数据的获取有一定的困难,其化学成分与燃料结构相关。根据我国国情,越是经济发达的城市,城市生活垃圾中可燃物所占比例越高,垃圾热值越高。

现在举例说明某城市生活垃圾化学成分和生活垃圾分类情况:

生活垃圾分类情况表(单位:%)

不同城市的生活垃圾,其化学成分和分类情况不尽相同,由于其成分的复杂性和取样的不合理性,在垃圾发电企业正常运行中,垃圾低位热值的取样分析难度较大,给实际生产中生产人员的操作带来困难,不便于生产管理人员的生产管理。本文就以上问题,提出一套生活垃圾燃烧时低位发热量的计算方法。

2 通过DCS监测等数据计算垃圾低位发热量

通常情况下,垃圾发电企业DCS监测系统中,为便于生产人员运行操作,都会将一些关键性的生产数据进行监控。我们可以借助这些数据,对垃圾低位发热量进行计算。

2.1 同兴公司一次风空气预热器加热系统

2.2 垃圾低位热值和锅炉效率计算输入量

3 计算实例及运用

3.1 同兴公司低位发热量的计算

3.2 垃圾低位发热量计算后在生产中的运用

根据表格中提供的低位发热量等计算公式,输入实际生产中必须掌握DCS 上的提供生产数据后,通过计算机的自动计算,不但可以计算出城市生活入炉垃圾的低位发热量,而且可以计算出垃圾燃烧过程的锅炉效率、排烟损失等。

同兴公司通过以上计算结果的周期性定量分析,可以明显地看出锅炉运行效率的高低,生产管理人员在生产中采取相应得措施,优化运行方式,提高垃圾焚烧燃烧效率,从而提高生产效率。与此同时,通过入炉垃圾低位发热量的变化,可以预判未来一段时间的垃圾热值的变化趋势,使生产管理人员不但可以随时掌握入炉垃圾低位发热量的变化,给生产管理人员一双慧眼,以此为依据指导生产人员的生产操作,使燃烧管理不再盲目。

高低压配电柜发热量计算方法

高低压开关柜、变压器的发热量计算方法 变压器损耗可以在生产厂家技术资料上查到(铜耗加铁耗);高压开关柜损耗按每台200W估算;高压电容器柜损耗按3W/kvar 估算;低压开关柜损耗按每台300W估算;低压电容器柜损耗按4W/kvar估算。一条n芯电缆损耗功率为:Pr=(nI2r)/s,其中I 为一条电缆的计算负荷电流(A),r为电缆运行时平均温度为摄氏50度时电缆芯电阻率(Ωmm2/m,铜芯为0.0193,铝芯为0.0316),S为电缆芯截面(mm2);计算多根电缆损耗功率和时,电流I要考虑同期系数。 上面公式中的"2"均为上标,平方。 一、如果变压器无资料可查,可按变压器容量的1~1.5%左右估算; 二、高、低压屏的单台损耗取值200~300W,指标稍高(尤其是高压柜); 三、除设备散热外,还应考虑通过围护结构传入的太阳辐射热。 主要电气设备发热量 电气设备发热量 继电器小型继电器0.2~1W 中型继电器1~3W励磁线圈工作时8~16W 功率继电器8~16W 灯全电压式带变压器灯的W数

带电阻器灯的W数+约10W 控制盘电磁控制盘依据继电器的台数,约300W 程序盘 主回路盘低压控制中心100~500W 高压控制中心100~500W 高压配电盘100~500W 变压器变压器输出kW(1/效率-1) (KW) 电力变换装置半导体盘输出kW(1/效率-1) (KW) 照明灯白炽灯灯W数 放电灯 1.1X灯W数 假设变压器为1000KVA,其有功输出为680KW,则其效率大致为680/850=0.8,根据上述计算损耗的公式,该变压器的损耗为680*(1/0.8-1)=170KW!!! 变压器的热损失计算公式: △Pb=Pbk+0.8Pbd △Pb-变压器的热损失(kW) Pbk-变压器的空载损耗(kW) Pbd-变压器的短路损耗(kW)

生活垃圾焚烧发电厂环评简本

漳州市蒲姜岭生活垃圾焚烧发电厂环评简本 1工程概况 1.1工程基本情况 漳州市蒲姜岭生活垃圾焚烧发电厂拟选厂址位于龙海市城区西北面的榜山镇雩林村蒲姜岭。项目属城市建设基础设施、垃圾资源利用及环境保护工程。工程服务范围是漳州市区及龙海市区几周边两个镇区生活垃圾。本项目的建设规模为:漳州市垃圾焚烧发电厂拟定规模为一期日焚烧垃圾700吨,二期日焚烧垃圾1050吨。余热锅炉和汽轮发电机组配置为中温中压,余热锅炉3台(一期2台),单台锅炉蒸发量28t/h,汽轮发电机组为12MW+6MW凝汽式机组。一期可向电网送电约0.78×108kW.h,二期可向电网送电约1.18×108kW.h。垃圾焚烧炉运行时间按330天/年考虑,项目服务年限为20年(含建设期2年)。 本项目拟采用BOT方式运作,本项目拟采用BOT方式运作,本项目拟采用BOT方式运作,项目总投资一期32778.96万元,二期10821.07万。企业投资部分按70%银行贷款,30%自筹。 根据生产工艺流程和功能的要求,本工程分为主厂房区、辅助子项区、运输设施区、办公生活区等功能区。工程拟采用3台日处理量350的炉排炉和6MW与12MW汽轮发电机组各一台。焚烧产生的烟气则经过“半干法+活性炭吸附+袋式除尘法”的烟气处理系统加以处理。工程产生的渗滤液及垃圾卸料大厅等冲洗污水经厂内污水处理装置预处理达到《污水综合排放标准》(GB8978-1996)后用槽车送到龙海市污水处理厂处理;实验室排水、化水排水、车间冲洗水、生活污水则用槽车送到龙海市污水处理厂处理。焚烧炉渣配套综合利用企业进行综合利用(拟与垃圾焚烧发电项目捆绑投标)或进行填埋。焚烧飞灰经固化预处理后进行安全处置(运到漳州市城市生活垃圾填场填埋)或综合利用。 1.2主要环境问题 本项目主要环境问题表现为垃圾卸料及储存过程产生的恶臭问题,垃圾焚烧过程产生的烟尘、HCl、HF、SO2以及二恶英等大气污染物,垃圾储坑渗滤液、垃圾卸料大厅冲洗水及其他污废水,焚烧炉渣及飞灰等对周边环境的影响。

煤炭发热量计算公式

煤样中水分的测定 全水(Mt) 挥发分是反应煤化程度的一个指标,而焦渣可以判断煤炭粘接性的好坏,所以煤炭的挥发分和焦渣特征可以估计煤炭的工业分析和加工利用途径! 以收到状态单位质量的煤燃烧后产生的热量。 收到基As received basis 已收到状态的煤为基准ar 空气干燥基Air dried basis 与空气湿度达到平衡状态的煤为基准ad 分析基 干燥基Dry basis 以假想无水状态的煤为基准 d 干基 1、恒容低位发热量 煤或水煤浆(称取水煤浆干燥试样时)的收到基恒容低位发热量按下式计算Qnet,v,ar=(Qgr,v,ad-206Had)×-23Mt式中: Qnet,v,ar——煤或水煤浆的收到基恒容低位发热量,单位为焦耳每克(J/g);Qgr,v,ad——煤(或水煤浆干燥试样)的空气干燥基恒容高位发热量,单位为焦耳每克(J/g); Mt——煤的收基全水分或水煤浆的水分(Mcwm)(按GB/T211测定)的质量分数,%; Mad—煤(或水煤浆干燥试样)的空气干燥基水分(按GB/T212测定)的质量分数,%;

Had——煤(或水煤浆干燥试样)的空气干燥基氢的质量分数(按GB/T476测定),%; 206——对应于空气干燥煤样(或水煤浆干燥试样)中每1%氢的气化热校正值(恒容),单位为焦耳每克(J/g); 23——对应于收到基煤或水煤浆中每1%水分的气化热校正值(恒容),单位为焦耳每克(J/g)。如果称取的是水煤浆试样,其恒容低位发热量按下式计算:Qnet,v,cwm=Qgr,v,cwm-206Hcwm-23Mcwm 式中: Qnet,V,cwm—水煤浆的恒容低位发热量,单位为焦耳第克(J/g ); Qgr,v,cwm——水煤浆的恒容高位发热量,单位为焦耳第克(J/g); Hcwm——水煤浆氢的质量分数,%; Mcwm——水煤浆水分的质量分数,% 其余符号意义同前。 2、低位发热量基的换算 煤的各种不同水分基的恒容低位发热量按下式换算: Qnet,v,M=(Qgr,v,ad-206Had)×-23M 式中: Qnet,v,M—水分为M的煤的恒容低位发热量,单位为焦耳每克(J/g);M——煤样的水分,以质量分数表示,%; 干燥基时M=0;空气干燥基时M=Mad;收到基时,M=Mt 其余符号意义同前。

发热量计算

(2)煤的各种发热量名称的含义 a.煤的弹筒发热量(Qb) 煤的弹筒发热量,是单位质量的煤样在热量计的弹筒内,在过量高压氧(25~35个大气压左右)中燃烧后产生的热量(燃烧产物的最终温度规定为25C)。 由于煤样是在高压氧气的弹筒里燃烧的,因此发生了煤在空气中燃烧时不能进行的热化学反应。如: 煤中氮以及充氧气前弹筒内空气中的氮,在空气中燃烧时,一般呈气态氮逸出,而在弹筒中燃烧时却生成N2O5或NO2等氮氧化合物。这些氮氧化合物溶于弹筒税种生成硝酸,这一化学反应是放热反应。另外,煤中可燃硫在空气中燃烧时生成SO2气体逸出,而在弹筒中燃烧时却氧化成SO3,SO3溶于弹筒水中生成硫酸。SO 2、SO3,以及H2SO4溶于水生成硫酸水化物都是放热反应。所以,煤的弹筒发热量要高于煤在空气中、工业锅炉中燃烧是实际产生的热量。为此,实际中要把弹筒发热量折算成符合煤在空气中燃烧的发热量。 b.煤的高位发热量(Qgr) 煤的高位发热量,即煤在空气中大气压条件下燃烧后所产生的热量。实际上是由实验室中测得的煤的弹筒发热量减去硫酸和硝酸生成热后得到的热量。 应该指出的是,煤的弹筒发热量是在恒容(弹筒内煤样燃烧室容积不变)条件下测得的,所以又叫恒容弹筒发热量。由恒容弹筒发热量折算出来的高位发热量又称为恒容高位发热量。而煤在空气中大气压下燃烧的条件湿恒压的(大气压不变),其高位发热量湿恒压高位发热量。恒容高位发热量和恒压高位发热量两者之间是有差别的。一般恒容高位发热量比恒压高位发热量低8.4~20.9J/g,实际中当要求精度不高时,一般不予校正。 煤的低位发热量,是指煤在空气中大气压条件下燃烧后产生的热量,扣除煤中水分(煤中有机质中的氢燃烧后生成的氧化水,以及煤中的游离水和化合水)的汽化热(蒸发热),剩下的实际可以使用的热量。

电气设备发热量确定

几种电气设备的发热量计算 1. 发电机组发热量 发电机组的散热量主要来自于两个方面,一是发电机组的盖板传热和机壳围护结构传热,另一是发电机组的冷却循环风的漏风所带来的热量。 大、中型发电机组的冷却方式通常采用封闭式空气自循环冷却方式,发电机绕组的损耗传给冷却空气,空气的热量再通过机组水冷却器由冷却水带走。根据实测的数据,定子排出的空气温度一般不超过65℃,而进入转子的空气温度一般不低于5℃。 发电机机壳的散热量可以按下式计算: w 其中:——发电机机壳的传热系数 w/㎡·℃ ——发电机机壳的面积㎡ ——发电机冷却循环风的平均温度℃ ——室内空气温度℃ 发电机的漏风散热量可以按下式计算: w 其中:——漏风系数,钢盖板取0.3% ——发电机的冷却循环风量m3/h ——空气比热w/kg·℃ ——空气容重取1.2kg/m3 ——发电机漏风温度℃ ——室内空气温度℃ 根据发电机组内部的冷却风温和发电机的表面积,我们不难计算机组壳体的传热量。但漏风热量的计算上却有较大的差异,随着机械制造技术的不断提高,特别是空气冷却器的效率的提高,发电机组的冷却循环风量各个厂商有较大区别。例如按机电设计手册计算,30万KW机组的冷却循环风量约为200m3/h,但多数国际厂商提供的冷却风量约为120m3/h,这就给计算结果产生较大的出入。一般情况下,冷却风温越低,发电机的线圈温度也越低,发电机的效率就越高,但是冷却风温受冷却器的布置尺寸影响,冷却器大,机组的制造难度相对增大,经济性下降,冷却风温不可能无限降低,机组制造厂设计时考虑一个经济区域,达到机组的最大性价比。因此,在实际的设计计算中,应由发电机厂商提供冷却循环风量参数对漏风热量加以核算。 2. 变压器发热量

煤的低位发热如何计算

煤的低位发热如何计算? 计算烟煤低位发热量新公式 以焦耳表示的计算方式: Qnet.ad=35859.9-73.7Vad-395.7Aad-702.0Mad+173.6CRC 焦/克 或用卡制表示的计算式: Qnet.ad=8575.63-17.63Vad-94.64Aad-167.89Mad+41.52CRC 卡/克 Qnet.ad——分析基低位发热量; Vad——分析基挥发分(%); Aad——分析基灰分(%); Mad——分析基水分(%); CRC——焦渣特征。 焦渣特征(CRC)煤炭热分解以后剩余物质的形状。根据不同形状分为8个序号,其序号即为焦渣特征代号。 1、粉状。全部是粉末,没有相互粘着的颗粒; 2、粘着。用手指轻碰即成为粉末状或基本上是粉末状,其中较大的团块轻轻一碰机即成粉末。 3 、弱粘性。用手指轻压即成小块; 4、不熔融粘结。用手指用力压才裂成小块,焦渣上表面无光泽,下表面稍微有银白色光泽; 5、不膨胀熔融粘结。焦渣形成扁平的块,煤粒的界限不易分清。焦渣上表面有明显的银白色金属光泽,下表面银白色光泽更明显; 6、微膨胀熔融粘结。用手指压不碎,焦渣的上、下表面均有银白色金属光泽。但是焦渣表面具有较小的膨胀泡; 7、膨胀熔融粘结。焦渣上下表面均有银白色金属光泽,明显膨胀,但高度不超过15mm; 8、强膨胀熔融粘结。焦渣上、下表面有银白色金属光泽,焦渣高度超过15mm。 2.计算无烟煤低位发热量新公式 以焦耳表示的计算方式: Qnet.ad=34813.7-24.7Vad-382.2Aad-563.0Mad焦/克 或者以卡制表示的计算式: Qnet.ad=8325.46-5.92Vad-91.41Aad-134.63Mad卡/克 如果有条件能测定H值,或者从固定用煤矿区取得矿区以往H值的平均值,用下式计算的无烟煤低位发热量结果精度更高。 以焦耳表示的计算式: Qnet.ad=32346.8-161.5Vad-345.8Aad-360.3Mad+1042.3Had焦/克 或者用卡制表示的计算式: Qnet.ad=7735.52-38.63Vad-82.70Aad-86.16Mad+249.27Had卡/克

恒温恒湿冷量计算

为了确定空调机的容量,以满足机房温度、湿度、洁净度和送风速度的要求(简称四度要求)。必须首先计算机房的热负荷。 机房的热负荷主要来自两个方面: 其一是机房内部产生的热量,它包括: 室内计算机及外部设备的发热量,机房辅助设施和机房设备的发热量(电热、蒸气水温及其它发热体)。这些发热量显热大、潜热小; 照明发热(显热); 工作人员的发热(显热小、潜热大); 由于水分蒸发、凝结产生的热量(潜热)。 其二是机房外部产生的热量,它包括: 传导热。通过建筑物本体侵入的热量,如从墙壁、屋顶、隔断和地面传入机房的热量(显热); 放射热(也称辐射热)。由于太阳照射从玻璃窗直接进入房间的热量(显热);对流产生的热量。从门窗等缝隙侵入的高温室外空气(也包含水蒸气)所产生的热量(显热、潜热); 为了使室内工作人员减少疲劳和有利于人体健康而引入的新鲜空气所产生的热量(包括显热和潜热)。 总之,人体放出的热量、缝隙风侵入的热量和换气带进的热量,不仅使室温升高,也会增加室内的含湿量,因此需要除湿。这部分热负荷称为潜热负荷,而机房内所有设备散发的热量只是室内的温度升高,这种热负荷称为显热负荷。与一般宾馆、办公室、会议室等潜热占有相当大比例所不同的是,计算机、程控机机房内的热负荷是以显热负荷为主。因此对于热负荷状况不同的场合应选用不同类型的空调机。通常用显热比(SFH)作为空调机的重要指标。 概略计算(也称为估算)

在机房初始设计阶段,为了较快的选定空调机的容量,可采用此方法,即以单位面积所需冷量进行估算。 计算机房(包括程控交换机房): 楼层较高时,250~300kcal/m2h 楼层较低时,150~250kcal/m2h(根据设备的密度作适当的增减)办公室(值班室):90kcal/m2h 简易热负荷计算 计算机房空调负荷,主要来自计算机设备、外部设备及机房设备的发热量,大约占总热量的80%以上,其次是照明热、传导热、辐射热等,这几项计算方法与一般空调房间负荷计算相同。计算机制造商,一般能提供设备发热量的具体数值。否则根据计算机的耗电量计算其发热量。 a.外部设备发热量计算 Q=860N¢(kcal/h) 式中: N:用电量(kW);¢: 同时使用系数( 0.2~ 0.5);860:功的热当量,即l kW电能全部转化为热能所产生的热量。 b.主机发热量计算Q=860×P×h 1×h 2 ×h 3 式中,P: 总功率(kW); h 1:同时使用系数;

小型生活垃圾焚烧处理方案设计

垃圾焚烧处理方案设计 1总说明 1.1工程概况及基本特征 1)简要说明工程概况及其基本特征,工程建设背景中含社会政治、经济现状及发展规划。 2)工程位置简介中含地形、河流湖泊、水库、气象、水文、工程地质等自然条件。 3)业主介绍,含组织机构、业绩、资金、管理、人材、设备等技术实力、建设及运营经验的简介。 4)建设内容及规模、服务范围与使用年限;项目所在地垃圾清运现状、处理现状及近期或远期规划概况。 5)项目的定性设计,含全厂设计使用寿命、防洪、防风、防火、防震等的定性设计。 1.2设计指导思想与原则 结合项目特点,阐明设计遵循的指导思想和原则。 1.3设计依据及设计范围 (1)与项目业主签订的设计合同; (2)行政主管部门批准的项目可行性研究报告、环境影响评价报告、选址报告等,包括批准机关、文号、日期等; (3)工程测量及工程地质、水文地质初勘报告; (4)采用或参考的设计标准及规范; (5)其它有关文件、会议纪要等;项目业主提供的其它与工程相关、并经设计单位确认的资料。 1.4主要技术经济指标 简要汇总说明初步设计得出的主要技术经济指标,主要包括:工程(分期)建设规模,占地面积,绿化面积、道路面积,建构筑物占地面积;焚烧炉处理能力、发电装机容量,使用年限,劳动定员,单位能耗物耗指标、工程投资、财务指标等; 2 ?处理厂工艺总体设计 2.1垃圾产生量及理化特性分析 根据可行性研究报告批复规定的工程服务范围与期限,调查说明垃圾现状产量、成份及理化特性,并对服务年限内垃圾产生量、垃圾成份及其理化特性的变化趋势作出合理预测,计算确

定其设计点低位热值。 2.2工程规模及厂址选择 根据服务年限内垃圾产生量、垃圾成份及其理化特性的变化趋势,确定工程规模及其分期建设规模;论证确定垃圾焚烧生产线配置数量,进一步论证确定经可行性研究报告批准的机炉配置方案。 场址选择需说明城市总体规划和环境卫生专业规划对场址的原则性要求;项目环境影响评价报告对场址的要求;综合分析地形地貌、工程地质及水文地质,道路交通,占地面积,水源、电力供应情况,卫生防护距离与城镇布局关系、污水排放条件等因素的影响,说明拟建场址的合理性与不足之处,以及需采取的针对性技术方案等内容。 2.3垃圾的接收、贮存与输送 根据垃圾接收量及生产线布置状况: 1)合理确定并说明进厂垃圾检视设施、计量设施布置、数量及技术规格、参数。 2)进厂垃圾卸料门的数量、技术规格、参数。 3)垃圾贮坑的容量、垃圾贮坑构造应具有的防渗、防撞、防腐措施。防垃圾臭气 外泄的负压状态的保持措施。 4)垃圾贮坑设置的渗沥液收集设施。 5)根据垃圾的混合、倒堆、给料的时间分配,合理确定并说明垃圾起重抓斗的布 置、数量及技术规格、参数,重点描述抓斗防碰撞、及称量等功能。 2.4垃圾处理工艺系统 1)描述垃圾焚烧处理工艺系统。 2)根据服务年限内垃圾产生量、垃圾成份及其理化特性的变化趋势,确定配置的每台垃圾焚烧炉处理能力、焚烧炉炉型、技术规格及参数。 3)垃圾进料斗、给料溜槽的结构形式、技术规格及参数;说明在溜槽内垃圾检测装置的数量、技术规格及参数,防火、防堵塞、防搭桥的措施。 4)垃圾推料器的结构形式、技术规格及参数。 5)垃圾焚烧炉结构形式、技术规格及参数,垃圾焚烧工况图,同时说明料层调节 装置的结构形式、技术规格及参数。 6)焚烧炉调节控制油系统的工艺流程,主要设备的技术规格及参数。 7)燃烧空气系统构成及主要设备技术规格及参数。 8)辅助燃烧系统及主要设备技术规格及参数。

发热量计算公式

发热量计算公式 以煤工业分析结果,创立计算煤炭低位发热量新公式的原理与方法,不再详述。仅就实际应用的计算公式介绍如下: 1.计算烟煤低位发热量新公式 以焦耳表示的计算方式: Qnet.ad=35859.9-73.7Vad-395.7Aad-702.0Mad+173.6CRC 焦/克 或用卡制表示的计算式: Qnet.ad=8575.63-17.63Vad-94.64Aad-167.89Mad+41.52CRC卡/克Qnet.ad——分析基低位发热量; Vad——分析基挥发分(%); Aad——分析基灰分(%); Mad——分析基水分(%); CRC——焦渣特征。 2.计算无烟煤低位发热量新公式 以焦耳表示的计算方式: Qnet.ad=34813.7-24.7Vad-382.2Aad-563.0Mad焦/克 或者以卡制表示的计算式: Qnet.ad=8325.46-5.92Vad-91.41Aad-134.63Mad卡/克

如果有条件能测定H值,或者从固定用煤矿区取得矿区以往H值的 平均值,用下式计算的无烟煤低位发热量结果精度更高。 以焦耳表示的计算式: Qnet.ad=32346.8-161.5Vad-345.8Aad-360.3Mad+1042.3Had 焦/克 或者用卡制表示的计算式: Qnet.ad=7735.52-38.63Vad-82.70Aad-86.16Mad+249.27Had 卡/克 3.计算褐煤低位发热量新公式 以焦耳表示的计算式: Qnet.ad=31732.9-70.5Vad-321.6Aad-388.4Mad焦/克 或者用卡制表示的计算式: Qnet.ad=7588.69-16.85Vad-76.91Aad-92.88Mad卡/克 4.在水泥生产使用中,计算标准煤耗时,按上述公式计算的分析基低 位发热量(Qnet.ad)用下式换算成应用煤低位发热量(Qnet.ar)后,再 计算标准煤耗。 应用煤低位发热量计算公式 100-Mad100-Mar Qnet.ar=Qnet.ad×──────-23(Mar-Mad×─────) 焦/克 100-Mad100-Mad 煤经挥发分测定后遗留在坩埚内固体残渣的特征。 焦渣特征(CRC)煤炭热分解以后剩余物质的形状。根据不同形状分为8

机房散热量计算

所有的电子设备在工作过程中都要产生热量,这些热量必须排出到设备外部,否则热量的积累将会导致故障。选择适合的通风或冷却系统,首先需要知道设备的产热量和散热空间。 热是一种能量,其度量单位是焦耳,BTU(British thermal unit,英制单位)和卡。通用的计量标准是BTU/小时或焦耳/秒(焦耳/秒等同于瓦特),在实际应用中这两个单位会需要换算,计算公式如下: 3.41 BTU/小时 = 1 瓦特 在计算机或其他处理信息的仪器中真正用于处理数据的电源能量是很少的,可以忽略不记。因此,交流电源的能量几乎全转化成热量了,也就是说,从设备的电源消耗就可推算出热量的产生量。 制冷量取决于全部系统 一个系统总的发热量是由所有产热设备相加得出。产生的热量通常用表示为 BTU/小时,也可以用其他单位表示,这个数据可以从设备的手册中得到。将每个设备的发热量相加就得出整个系统总的值。UPS作为一个特殊的例子在下面详细介绍。 很多IT设备的交流功率消耗(瓦特)可以在APC的UPS选择方案中找到,或者从设备的产品数据中也可查到。若设备的耗电量由VA或电压-电流值的形式来表示,那么设备的伏安数也可以代替瓦来衡量热量的输出。要是设备的功耗用安或安培表示,则用电流值乘以交流供电电压得出伏安值。由于有功率因数存在,用伏安值来估算设备的发热量,其准确程度是比不上用瓦特来表示的,依据不同的设备会有0到35%的误差。但是,这些估算方法都可以给出一个比较保守的,不会低估的设备发热量。 对于UPS散热量的确定

由于UPS将功率从输入端送到输出端,因此在计算UPS的散热量时与其他IT设备时是有区别的。UPS工作在不同的模式下,其产生的热量也是不同的。在UPS的绝大多数运行时间内,是工作在普通状态下的,即把AC电源提供给被保护设备,这时UPS运行效率可以达到80%到98% 。因此,UPS的无用功(或称功率损失)会在2%到20%之间,这部分交流输入功率会转化成热量。 不同类型的UPS产生的无用功是由其设计电路结构决定的,可由下表估算出: UPS热量的产出由此公式计算得出: 产热量(BTU/小时) = 负载功率(瓦特)x 无用功比例(由表1查出)x 3.41 (BTU转换常数) 注意:当UPS工作在电池放电模式或正在给电池充电时,它的产热量会增加,但这是很正常的。UPS输出的这些能量并不需要特别注意,无须计算在通风冷却系统的设计容量中。 综述 一个电子系统总的热量输出是其中每个设备热量输出的总和。热量的输出(BTU/小时)是设备自身的一个指标;但在技术手册中不一定能查到,也可以用设备的电源功率消耗来估算。UPS的产热量可由技术手册中查到,或通过负载量和产生无用功比例计算得出。在设计通风冷却系统时,应将容量考虑的大一些,以适应将来设备的增加而带来的额外热量。 工艺设备的散热量计算公式 工艺设备的散热量计算公式为:

垃圾焚烧发电行业市场概况分析

一、垃圾发电行业基本情况 (一)行业基本情况 目前中国城市生活垃圾累积堆存量已达70亿吨。2010年我国城市垃圾年产量为亿吨,2014年、2015年分别达和亿吨,预计2020年将达到亿吨。 我国城市垃圾焚烧发电最早投入运行始于1987年。之后,随着一大批环保产业化和环保高技术产业化项目的相继启动,垃圾焚烧发电技术得到了得到了快速发展,实现了大型垃圾焚烧发电技术的本土化,垃圾焚烧处理能力在近5年间增长了5倍。 垃圾处理的原则是无害化、减量化、资源化。垃圾焚烧发电因大大减少填埋而能够节约大量的土地资源,同时也减少了填埋对地下水和填埋场周边环境的大气污染。 根据我国现行政策,城市生活垃圾焚烧发电技术将以机械炉排炉为主导,辅以煤-垃圾混烧流化床垃圾焚烧技术和其他技术。按照日处理1800吨二段往复式垃圾焚烧设备计算,年发电量可达亿千瓦时,可节约标准煤万吨,年减少氮氧化合物排放480吨、二氧化硫排放768吨。 随着我国城市化进程的加快,垃圾污染日益严重,处理不当将会制约城市的生存与发展。为此,我国2011年专门制定了《全国城市生活垃圾无害化处理设施建设“十一五”规划》,在全国范围内实施垃圾处理

收费制度,并进一步加大了对垃圾发电的政策支持力度。《京都议定书》生效后,各国正在积极采取措施,控制污染物的排放。这些给以垃圾发电为代表的清洁能源产业带来了无限的商机。 垃圾发电厂的设计运行年限一般为30年左右,垃圾焚烧发电项目的政府特许经营年限一般为25年左右。这意味者它的稳定收益期将长达25年。垃圾发电厂的收益稳定,并享受国家政策的优惠,但是,真正地要做到“环保地处理垃圾”,运营成本并不低,投资者的回报只能说在市政基础设施的合理范围内,内部收益率一般6%~8%。但是,如果掺煤发电,且对社会、环保不负责任地运营,以节省成本、增加回报,则投资者的内部收益率将远超出6%~8%。 从20世纪70年代开始,一些发达国家就开始利用焚烧垃圾进行发电。最先利用垃圾发电的是德国和法国,近三十年来,美国和日本在垃圾发电方面的发展也相当迅速。目前我国的垃圾发电事业还刚刚起步,处于研究开发的初级阶段,现在的设备和技术基本是从国外引进。但是由于中国拥有丰富的垃圾资源,所以蕴含着巨大的资源潜力和潜在的经济效益。 (二)行业政策 1、受环保产业政策支持,大力推进资源综合利用以及无害化处理 根据国务院印发的《国家环境保护“十二五”规划》、《“十二五”节能环保产业发展规划》、《生物产业发展规划》、《国务院关于

煤炭发热量计算公式

煤炭发热量计算公式 弹筒发热量高位发热量低位发热量 Qb,ad——分析基弹筒发热量Qgr,ad——分析基高位发热 量 Qnet,ad——分析基低位发热量 Qb,d——干燥基弹筒发热量Qgr,d——干燥基高位发热 量 Qnet,d——干燥基低位发热量 Qb,ar——收到基弹筒发热量Qgr,ar——收到基高位发热 量 Qnet,ar——收到基低位发热量 Qb,daf——干燥无灰基弹筒发热量Qgr,daf——干燥无灰基高 位发热量 Qnet,daf——干燥无灰基低位 发热量 注:分析基又称空气干燥基 实际贸易中一般使用到的发热量:Qgr,ad——分析基高位发热量 Qnet,ad——分析基低位发热量 Qnet,ar——收到基低位发热量 热值转换公式: 1、分析基弹筒发热量与分析基(空气干燥基)高位热值换算: Qgr,ad=Qb,ad-95Sb,ad-aQb,ad Qgr,ad——分析煤样的高位发热量,J/g; Qb,ad——分析煤样的弹筒发热量,J/g; Sb,ad——由弹筒洗液测得的煤的硫含量,%; 95——煤中每1%(0.01g)硫的校正值,J/g; a——硝酸校正系数。 Qb,ad≤16700J/g,a=0.001; 16700J/g25100J/g ,a=0.0016; 当Qb,ad〉16700J/g,或者12500J/g

煤炭质量分级及低位发热量计算

目录 煤的分级 (1) 煤炭质量分级煤炭灰分分级 (3) 煤炭质量分级煤炭发热量分级 (4) 煤炭质量分级煤炭硫分分级 (5) 煤的固定碳分级 (7) 煤中磷分分级 (7) 煤中磷分分级 (7) 煤中氯含量分级 (8) 煤中砷含量分级 (8) 煤中铅含量分级 (9) 煤中汞含量分级 (9) 煤中锗含量分级 (9) 煤的热稳定性分级 (10) 烟煤粘结指数分级 (10) 煤的着火温度 (10) 稀散元素 (11) 灰粘度 (11) 结渣性 (11) 煤炭粒度分级 (12) 沾污指数的分级 (13) 结渣指数分级 (13) 1

煤炭可选性评定方法 (14) 中国煤炭分类.......................................................... 错误!未定义书签。各种工业用煤的质量要求 ..................................... 错误!未定义书签。煤炭分析试验项目专用符号 ................................. 错误!未定义书签。低位发热量的计算.. (17) 2

煤的分级 煤炭质量的好坏、煤的性质如何,均需通过不同的煤质标准来评价。因此国家和煤炭行业标准,分别依据煤的全水分、灰分、挥发分、固定碳、发热量、硫分、可磨性、煤灰熔融性等主要煤质指标并按全国煤炭资源的实际情况对煤进行了分级。 (一)全水分分级 1

煤灰流动温度(FT)分级(MT/T 853.2-2000)见下表: 2

(GB/T15224.1-2004) (2004年4月30日批准2004年10月1日起实施) 1、主题内容与适用范围 本标准规定了煤炭按干燥基灰分(A d)范围分级及其命名。 本标准适用于煤炭勘探、生产、加工利用和煤炭销售中对煤炭按灰分分级。 2、煤炭灰分分级 3

我国生活垃圾焚烧处理技术回顾与展望-环境生态论文

我国生活垃圾焚烧处理技术回顾与展望-环境生态论文 我国生活垃圾焚烧处理技术回顾与展望 摘要从生活垃圾焚烧厂在我国的发展以及焚烧技术在国内的应用情况进行回顾,并针对垃圾焚烧产生的废气、废液、废渣提出相应的污染物控制方案。国内垃圾焚烧已从“达标生产”向“蓝色焚烧”发展,清洁焚烧已成为垃圾焚烧技术发展的首选方向,新技术和新思维将进一步指导生活焚烧厂的规划、建设和运营管理,同时垃圾焚烧行业的健康发展,也需政府、企业和公众的共同努力,以期建成社会友好型的智能化垃圾焚烧厂‘,消除公众的“邻避”疑虑。 关键词生活垃圾;垃圾焚烧;焚烧发电;焚烧厂;邻避;蓝色焚烧 ■文,张益 我国垃圾焚烧发展概况 我国生活垃圾焚烧厂的发展历程回顾 随着我国城市生活垃圾焚烧行业的逐步发展推进,垃圾焚烧厂的投运数量逐年增加,已由2000年之前的2座快速增加到2015年底的224座,总焚烧规模达到20.78万吨/日,约占无害化处理能力的40%,垃圾的处置能力得到大幅提升。 从垃圾焚烧厂投运分布情况来说,东南部沿海地区设施建设进度明显领先于中部、西部地区,其中浙江、山东、江苏、广东、福建在焚烧设施数量和焚烧设施处理规模上居于全国前列,这五个省份共计已建有129座焚烧设施,占全国焚烧设施总量的57. 6%,该比例远超过中部、西部地区。 “十二五”期间大量的焚烧厂投入使用。由图1可知,截止到2 0 1 5年底,我国城市在“十二五”期间共投运生活垃圾焚烧设施129座,占总投运数

量的一半以上。 “十二五”规划的垃圾焚烧厂大部分都进入了启动阶段,焚烧厂的高速建设将延续至“十三五”。之所以”十二五”期间垃圾焚烧厂的数量出现明显增长,主要有以下几个方面的原因:一是垃圾围城的困境,填埋场容量日趋减少且无新地,使得各地政府亟切需要寻求一种立竿见影的减量化处置手段,垃圾焚烧技术符合这种要求;二是垃圾焚烧行业经过前期十几年的摸索,在技术上已日渐成熟;三是国家对垃圾焚烧持支持态度,这从业企业的数量和预备资金规模相对充足均可看出;四是国家对环评审批流程等各种程序相对以前更简化便捷,这样缩短了整个工程建设周期。 焚烧技术的发展及应用情况 目前国内主要垃圾焚烧技术为炉排炉技术和流化床技术,这两种技术的主要特点可参考表1。

煤炭发热量计算公式

煤炭发热量计算公式 热值转换公式: 1、分析基弹筒发热量与分析基(空气干燥基)高位热值换算: Qgr,ad=Qb,ad-95Sb,ad-aQb,ad Qgr,ad——分析煤样的高位发热量,J/g; Qb,ad——分析煤样的弹筒发热量,J/g; Sb,ad——由弹筒洗液测得的煤的硫含量,%; 95——煤中每1%()硫的校正值,J/g; a——硝酸校正系数。 Qb,ad≤16700J/g,a=; 16700J/g25100J/g ,a=; 当Qb,ad〉16700J/g,或者12500J/g

2、各种高位发热量基的换算公式: Qgr,ar= Qgr,adx(100- Mt)/(100- Mad),J/g; Qgr,d = Qgr,adx100/(100- Mad),J/g; Qgr,daf= Qgr,adx100/(100- Mad-Aad),J/g; Qgr,ar——收到基高位发热量,J/g; Qgr,d——干燥基高位发热量,J/g; Qgr,daf——干燥无灰基高位发热量,J/g; Mt——全水,% Mad——分析基水分(内水),% Aad——分析基灰分,% 3、低位发热量基的换算公式: Qnet,v,m=( Qgr,v,ad-206Had)x(100-M)/(100-Mad)-23M Qnet,v,m——水分为 M的煤的恒容低位发热量,单位为焦耳每克( J / 9 ) M——煤样的水分,单位为百分数( %) 干燥基时M=0 ,分析基(空气干燥基)时M= Mad,收到基时M= Mt。 4、分析基低位发热量(Qnet,ad) 烟煤 以焦耳表示的计算方式: Qnet,ad=焦/克 用卡制表示的计算式: =卡/克 ——分析基低位发热量; Vad——分析基挥发分(%); Aad——分析基灰分(%); Mad——分析基水分(%); CRC——焦渣特征。 无烟煤

生活垃圾焚烧设施概况

生活垃圾焚烧设施概况

————————————————————————————————作者: ————————————————————————————————日期:

生活垃圾焚烧设施概况 4.1总体情况 我国城市生活垃圾焚烧设施数量和处理能力逐年增长,自2014年来建成或投运的焚烧厂数量和处理能力速度增加。根据(中国城乡建设设计年鉴)的统计数据,截止2014年底,我国城乡共建成生活垃圾焚烧设施222座,总处理能力200601吨/天,其中设市城市焚烧设施188座,处理能力185957吨/天,占城市总无害化处理能力的34%;县城焚烧设施34座,处理能力14644吨/天,占县城总无害化处理能力的9%。 图4-1 我国城镇建成焚烧厂数量和处理能力(2003年-2014年) 如图4-1所示,从焚烧处理设施的地域分布来看。已建成的生活垃圾焚烧设施主要集中在东部地区,江苏、浙江、广东、福建、山东占据了市场化垃圾焚烧发电项目的的前五位,这五省城市和县城焚烧项目总数为166个,占统计项目总数的74%,焚烧处理能力达121641吨/天,占总焚烧处理能力的60.6%,项目区域集中度较高。从中西部地区如湖北、湖南、重庆、云南等地的焚烧处理设施建设速度加快。另外,焚烧在县城生活垃圾处理中的应用逐渐扩大。从技术工艺来看,炉排炉、流化床、气化炉和水泥窑协同处置均有应用。从规划焚烧处理能力的设施建设情况来看,湖北省现已完成“十二五“无害化设施规划目标,辽宁、安徽等省市在建项目较多,规划吴彪完成度较高。 200004000060000800001000001200001400001600001800002000002200000 20406080100120140160180200焚烧处理能力(吨/ 日) 焚烧厂数量(座)

发热量的计算方法

一:通过工业分析数据估算发热量的方法 1. 古塔尔公式 ,82gr ad ad ad Q FC V α=+ 式中发热量的单位为cal/g ,α为系数,由daf V 值查出 相应关系见下表: 2. 斯密特公式 ,81003(40 ) g r a d d a f Q V =-- 3. 格美林公式 ,80.8(100)g r a d a d a d Q M A =-- α 为系数,其与ad M 的对应值见下表 4. 切诺波利公式 ,87.4(100) g r a d a d a d Q M A =-- 5. 云涅斯特公式 ,80.8(100) g r a d a d a d Q M A =-- 6. 煤科总院公式 无烟煤公式

* ,100(6)()3(40)gr ad ad ad ad ad Q K K M A V M =-++-- K 与daf H 的对 应关系 式中K 值见下表 若无法获得daf H ,则利用daf V (校)代替 K 与daf V 的对应关系如下 烟煤公式 * ,100(6)()3(40) gr ad ad ad ad ad Q K K M A V M =-++--* (40) ad M -项只在 daf V ≤35%,且ad M >3%时减去,K 值与daf V 及焦渣对应关系如下表

● 褐煤公式 ,100(6)()gr ad ad ad ad Q K K M A V =-++- 其中K 见下表 7. 北京物资学院: ● 无烟煤公式 ,32346.8161.5345.5360.31042.3gr ad ad ad ad ad Q V A M H =---+ ad H 可用矿区以往测定的daf H 的平均值; 如果无法获得daf H 可用下面的公式: ,34813.724.7382.2563.0gr ad ad ad ad Q V A M =--- ● 褐煤公式 ,31732.970.5321.6388.4gr ad ad ad ad Q V A M =--- 二:利用元素分析计算发热量的方法 , 4.19(873002626)ar gr ar ar ar ar Q C H S O =++- 锅炉原理:范从振等 ,3391031109()25.1ar net ar ar ar ar ar Q C H O S M =+--- 门捷列夫经验公式 三:利用量热计测定煤的发热量 煤的各种发热量名称的含义 a. 煤的弹筒发热量(b Q ) 煤的弹筒发热量,是单位质量的煤样在热量计的弹筒内,在过量高压氧(25~35个大气压左右)中燃烧后产生的热量(燃烧产物的最终温度规定为25℃)。 由于煤样是在高压氧气的弹筒里燃烧的,因此发生了煤在空气中燃烧时不能进行的热化学反应。如:煤中氮以及充氧气前弹筒内空气中的氮,在空气中燃烧时,一般呈气态氮逸出,而在弹筒中燃烧时却生成N 2O 5或NO 2等氮氧化合物。这些氮氧化合物溶于弹筒税种生成硝酸,这一化学反应是放热反应。另外,煤中可燃硫在空气中燃烧时生成SO 2气体逸出,而在

生活垃圾焚烧处理技术与发展分析

生活垃圾焚烧处理技术与发展分析 :秀娟 学号:2011034129 专业:应用化学 班级:111 生活垃圾焚烧处理技术与发展分析

(民族学院生命科学学院化学工程系应用化学111班秀娟) 摘要:综述了国外的城市生活垃圾焚烧处理概况,探讨了生活垃圾焚烧处理与环境的关系,介绍了生活垃圾焚烧处理工艺,并对我国生活垃圾焚烧处理技术现状进行了分析,同时介绍了国外垃圾焚烧厂的分布,对德国、日本、美国的焚烧处理状况作了统计和说明,最后提出了我国生活垃圾焚烧处理技术发展建议。 关键词:生活垃圾;焚烧处理技术;发展分析;二恶英 引言:近年来,我国城市生活垃圾产生量增长很快,特别是在东南部经济发达、人口稠密、土地资源特别紧缺的地区,适用于生活垃圾填埋场的场地选择越来越困难,并距离城市居住区越来越远,垃圾运输费用也相应增加,垃圾填埋处理的成本也随着环保要求的严格而提高。资料显示,2 0 0 0年我国城市生活垃圾产量已超过了15 0Mt,我国2 0 0多个城市陷入垃圾包围之中。这就意味着我国在未来的十几年甚至几十年都将面临严峻的生活垃圾废物的考验。 正文 1.国外生活垃圾焚烧处理概况 1.1 城市生活垃圾焚烧处理的特点 城市生活垃圾焚烧处理具有占地面积小、场地选择易、处理时间短、减量化显著(减重一般达70%,减容一般达90%)、无害化较彻底以及余热可回收等特点。

1.2国外城市生活垃圾焚烧处理现状 据统计,2006年全世界共有生活垃圾焚烧厂近2100座,其中生活垃圾焚烧发电厂约1000座;总焚烧处理能力约为62.1万吨/日,年生活垃圾焚烧量约为1.65亿吨(见表1) 城市生活垃圾焚烧设施绝大部分分布于发达国家和地区。按年处理量分析,其中欧盟19个国家年焚烧处理量占38%,日本占24%,美国占19%,东亚部分地区(中国、国、新加坡、泰国、中国澳门、中国大陆等)占15%,其它地区(俄罗斯、乌克兰、加拿大、巴西、摩纳哥等)占4%。 2. 生活垃圾焚烧处理与环境的关系 2.1 生活垃圾焚烧处理能够满足环境保护的要求 生活垃圾焚烧处理厂主要污染物来源是其排放的尾气,其中包括受到大众特别关注的二恶英(Dioxin)。需要特别指出的是,随着环境保护要求的日益严格,达到环境保护标准的现代化生活垃圾焚烧处理厂,其污染排放无论是浓度还是总量都已经很低。2005年9月,德国环境部(BMU)在一份报告中指出,“尽管1985

煤的发热量及换算

煤的发热量及换算 煤的发热量,又称为煤的热值,即单位质量的煤完全燃烧所发出的热量。煤的发热量是煤按热值计价的基础指标。煤作为动力燃料,主要是利用煤的发热量,发热量愈高,其经济价值愈大。同时发热量也是计算热平衡、热效率和煤耗的依据, 以及锅炉设计的参数。 1.4 ,相 1J=1N×0J 1MJ=1000KJ 焦耳时国际标准化组织(ISO)所采用的热量单位,也是我国1984年颁布的,1986年7月1日实施的法定计量热量的单位。煤的热量表示单位: J/g、KJ/g、MJ/Kg

卡(cal)是我国建国后长期采用的一种热量单位。1cal是指1g纯水从19.5C 加热到20.5C时所吸收的热量。 欧美一些国家多采用15Ccal,即1g纯水从14.5C加热到15.5C时所吸收的热量。 1cal(20Ccal)=4.1816J 1cal(15Ccal)=4.1855J 还 加 由于cal/g的热值表示因15Ccal或20Ccal等的不同而不同,所以国际贸易和科学交往中,尤其是采用进口苯甲酸(标明其cal/g)作为热量计的热容量标定时,一定要了解是什么温度(C)或条件下的热值(cal/g),否则将会对燃烧的 热值产生系统偏高或偏低。 为了使热量单位在国内外统一,必须以J取代cal作为煤的发热量表示单位。

(2)煤的各种发热量名称的含义 a.煤的弹筒发热量(Qb) 煤的弹筒发热量,是单位质量的煤样在热量计的弹筒内,在过量高压氧(25~35个大气压左右)中燃烧后产生的热量(燃烧产物的最终温度规定为25C)。由于煤样是在高压氧气的弹筒里燃烧的,因此发生了煤在空气中燃烧时不能进 SO3, 量又称为恒容高位发热量。而煤在空气中大气压下燃烧的条件湿恒压的(大气压不变),其高位发热量湿恒压高位发热量。恒容高位发热量和恒压高位发热量两者之间是有差别的。一般恒容高位发热量比恒压高位发热量低8.4~ 20.9J/g,实际中当要求精度不高时,一般不予校正。 c.煤的低位发热量(Qnet)

相关文档
相关文档 最新文档