文档库 最新最全的文档下载
当前位置:文档库 › CAN总线介绍

CAN总线介绍

CAN总线介绍
CAN总线介绍

CAN总线介绍

总线可以具有两种互补的逻辑值之一:“显性”或“隐性”。用逻辑0 代表“显性”等级,逻辑1 代表“隐性”等级。

1 数据帧

数据帧携带数据由发送器至接收器,它由7个不同的位场组成,分别是帧起始、仲裁场、控制场、数据场、CRC场、应答场以及帧结束。在具体编程中只要正确地运用仲裁场、控制场中的数据长度码、数据场即可。

帧起始――标志一个数据帧或远程帧的开始,它是一个显性位。

仲裁场――包括报文标识符11位(CAN2.0A标准)和远程发送申请RTR位,这12位共同组成报文优先权信息。数据帧的优先权比同一标识符的远程帧的优先权要高。最高的7 位(ID-10 到ID-4)必须不能全是“隐性”。

控制场――由6位组成,包括2位作为控制总线发送电平的备用位(留作CAN通信协议扩展功能用)与4位数据长度码。其中数据长度码(DLC0-DLC3)指出了数据场中的字节数目0∽8(被发送/接收的数据的字节数目)。

数据场――存储在发送缓冲器数据区或接收缓冲器数据区中以待发送或接收的数据。按字节存储的数据可由微控制器发送到网络中,也可由其它节点接收。其中第一个字节的最高位首先被发送或接收。

CRC场――又名循环冗余码校验场,包括CRC序列(15位)和CRC界定符(1个隐性位)。CRC场通过一种多项式的运算,来检查报文传输过程中的错误并自动纠正错误。这一步由控制器自身来完成。

应答场――包括应答间隙和应答界定符两位。发送站发送两个“隐性”位。当接收器正确地接收到有效的报文,接收器就会在应答间隙(ACK SLOT)期间(发送ACK 信号)向发送器发送一“显性”的位以示应答。

帧结束――每一个数据帧和远程帧均结束于帧结束序列,它由7个隐性位组成。

2 错误帧

错误帧由两个不同的场组成。第一个场用作为不同站提供的错误标志(ERROR FLAG)的叠加。第二个场是错误界定符。

有两种形式的错误标志,主动错误标志(Active error flag)和被动错误标志(Passive error flag)。主动错误标志由6个连续的“显性”位组成。被动错误标志由6 个连续的“隐性”的位组成,除非被其他节点的“显性”位重写。

主动错误:“错误主动”的单元可以正常地参与总线通讯并在错误被检测到时发出主动错误标志,也就是当检测到错误就立即告诉大家。检测到错误条件的“错误主动”的站通过发送主动错误标志(显性),以指示错误。所有其他的站由此检测到错误条件并与此同时开始发送错误标志。结果就是把各个单独站发送的不同的错误标志叠加在一起。这个顺序的总长度最小为6 个位,最大为12 个位。主动错误标志?它本身就是一个错误位序列(连续

的6个显性位,不满足CAN协议的最多5个连续同性位的要求)。

被动错误:“错误被动”的单元不允许发送主动错误标志,可以发送报文和被动错误帧由隐性位组成,发送6个隐性位,不影响总线电平。

错误界定符包括8 个“隐性”的位。主动错误节点发送完6位显性错误标志以后,每一站就发送“隐性”的位并一直监视总线直到检测出一个“隐性”的位为止。然后就开始发送7 位以上的“隐性”位。

?单元状态包括错误主动,错误被动,总线关闭,三者之间关系:

此处涉及到界定单元状态的媒介:错误计数器

CAN总线包含两种错误计数器,接收错误计数器和发送错误计数器,如果两个错误计数器的值都低于错误被动的极限值128,则CAN 控制器处于错误主动状态。当至少其中一个错误计数器的值等于或超过128 时,CAN 控制器处于错误被动状态。若发送错误计数器的值等于或超过总线关断的极限值256,CAN总线处于总线关闭状态。器件将保持该状态直到完成总线关断恢复过程,即出现128 次11 个连续隐性位,恢复到错误主动状态。

128 次11 个连续隐性位:CAN总线在正常模式时不断检测RX引脚电平的高低,当检测到RX引脚电平为连续128 次11 个连续隐性位时,总线恢复。

?接收计数器和发送计数器按以下规则更改:

1 当接收器检测到一个错误,接收错误计数就加1。在发送主动错误标志或过载标志期间所检测到的错误为位错误时,接收错误计数器值不加1。

2. 当错误标志发送以后,接收器检测到的第一个位为“显性”时,接收错误计数值加8。

3. 当发送器发送一错误标志时,发送错误计数器值加8。

例外情况1:

发送器为“错误被动”,并检测到一应答错误(注:此应答错误由检测不到一“显性”应答以及当发送被动错误标志时检测不到一“显性”位而引起)。

例外情况2:

发送器因为填充错误而发送错误标志(注:此填充错误发生于仲裁期间。引起填充错误是由于:填充位〈填充位〉位于RTR 位之前,并已作为“隐性”发送,但是却被监视为“显性”)。例外情况1 和例外情况2 时,发送错误计数器值不改变。

4. 发送主动错误标志或过载标志时,如果发送器检测到位错误,则发送错误计数器值加8。

5. 当发送主动错误标志或过载标志时,如果接受器检测到位错误(位错误),则接收错误计数器值加8。

6. 在发送主动错误标志、被动错误标志或过载标志以后,任何节点最多容许7 个连续的“显性”位。以下的情况,每一发送器将它们的发送错误计数值加8,及每一接收器的接收错误计数值加8:

当检测到第14 个连续的“显性”位后;

在检测到第8 个跟随着被动错误标志的连续的“显性”位以后;

在每一附加的8 个连续“显性”位顺序之后。

7. 报文成功传送后(得到应答及直到帧末尾结束没有错误),发送错误计数器值减1,除非已经是0。

8. 如果接收错误计数值介于1 和127 之间,在成功地接收到报文后(直到ACK 间隙接收没有错误,及成功地发送了应答位),接收错误计数器值减1。如果接收错误计数器值是0,则它保持0,如果大于127,则它会设一值介于119 到127 之间。

9. 当发送错误计数器值等于或超过128 时,或当接收错误计数器值等于或超过128 时,节点为“错误被动”。让节点成为“错误被动”的错误条件致使节点发出主动错误标志。

10.当发送错误计数器值大于或等于256 时,节点为“总线关闭”。

11. 当发送错误计数器值和接收错误计数器值都小于或等于127 时,“错误被动”的节点重新变为“错误主动”。

12. 在总线监视到128 次出现11 个连续“隐性”位之后,“总线关闭”的节点可以变成“错误主动”不再是“总线关闭”),它的错误计数值也被设置为0。

备注:起动/睡眠:如果起动期间内只有1 个节点在线,以及如果这个节点发送一些报文,则将不会有应答,如此检测到错误并重复报文。由于此原因,节点会变为“错误被动”,而不是“总线关闭”。

发送错误类型

有以下5 种不同的错误类型(这5 种错误不会相互排斥)

?位错误

站单元在发送位的同时也对总线进行监视。如果所发送的位值与所监视的位值不相符合,则在此位时间里检测到一个位错误(BIT ERROR)。但是在仲裁场(ARBITRA TION FIELD)的填充位流期间或ACK间隙(ACK SLOT)发送一“隐性”位的情况是例外的——此时,当监视到一“显性”位时,不会发出位错误(BIT ERROR)。当发送器发送一个被动错误标志但检测到“显性”位时,也不视为位错误。

?填充错误

如果在使用位填充法进行编码的信息中,出现了第6 个连续相同的位电平时,将检测到一个填充错误。

?CRC 错误

CRC 序列包括发送器的CRC 计算结果。接收器计算CRC 的方法与发送器相同。如果计算结果与接收到CRC 序列的结果不相符,则检测到一个CRC 错误(CRC ERROR)。

?形式错误

当一个固定形式的位场含有1 个或多个非法位,则检测到一个形式错误(FORM ERROR)。?应答错误

只要在ACK 间隙(ACK SLOT)期间所监视的位不为“显性”,则发送器会检测到一个应

答错误(ACKNOWLEDGMENT ERROR)。

CAN总线配置说明

?初始化设置过程

设置工作模式,使其进入配置模式

波特率配置

与数据帧有关的寄存器设置:发送寄存器,接收寄存器,接收屏蔽寄存器,接收过滤寄存器设置工作模式,使其进入正常工作模式,测试时也可以选择自测试模式

1 关于波特率

标称位率为CAN发送器每秒发送的位的数量。

标称位时间=1/标称位速率,标称位时间有整数个时间当量(TQ)的时间单位构成。

使用中,为获得最大波特率,将位长度设置8(8bit)。

所以标称位时间=8TQ

标称位时间组成:

每个时间片作用如下:

?同步时间段

用于同步总线上所有节点。

?硬件同步

硬件同步:总线空闲时,发送节点在发送数据帧时,会出现一个由隐性到显现的跳变,所有总线必须同步于帧的起始沿(强制性)。通俗理解,就是告诉大家我开始发数的时间,你们必须把你们的时间和我的调成一致。

同步时间通常占1个时间份额。

?传输时间段:这个时间片是用来弥补数据传输时网络上的物理延迟。

?相位缓冲:相位1用于定位采样点的位置。只有在采样点处各接收节点才能读总线电平

并解释各位值。相位2段用为下一发送的数据提供时间延迟。

?设计满足的条件:传输时间段+相位1》=相位2

PLC板卡代码中将传输时间段为1TQ,相位缓冲段1为3TQ,相位缓冲2段为3TQ,共8TQ。

2 波特率计算

当选用11.0592M晶振,8倍频时:根据公式

TQ=2(BRP+1)/fcan

Fcan=4fcy或Fcan=fcy

若Fcan=4fcy=4*11.0592/4*4=4*11.0592

TQ=2(BRP+1)/4*11.0592

波特率=1/8TQ=4*11.0592/2/8/(BRP+1)当BRP<5:0>=2

波特率=4*11.0592/16/3=0.9216 Mbps

若Fcan=fcy=11.0592

TQ=2(BRP+1)/11.0592

波特率=1/8TQ=11.0592/2*8(BRP+1)当BRP<5:0>=0时,波特率最大

波特率=1/8TQ=11.0592/16=0.6912 Mbps

CAN总线8个特点

CAN总线8个特点 一、CAN总线是什么 CAN总线是与串行总线不同的工业控制通信系统,是德国博世公司为提供汽车电子产品的升级服务,所有它更多的用于汽车控制。 为什么它非常适合汽车行业呢?有以下几个原因: ●CAN总线最远的数据传输距离为10公里,完全可以满足汽车的通讯控制需求。●CAN总线具有很强的抗干扰性,不容易出现问题,可以有效地保证驾驶员的安全。 ●can总线的数据传输速度快,理论峰值达到1Mbps,并且具有很高的数据通信即 时性。 ●一条CAN总线可以同时连接128个节点。对于一辆汽车,一个或两个CAN总线 可以完全完成汽车控制工作,这对于广阔的汽车行业来说是个再合适不过的选择。 二、CAN总线原理 ●需要传输的数据从一个节点通过CAN总线被广播到另一个节点,当一个节点发送 数据时,该节点的CPU将发送的数据和标识符发送到该节点的CAN芯片,并使它们处于就绪状态。

●当CAN芯片接收到总线分配时,消息进入发送状态,并且CAN芯片发送的数据 以预定的消息格式发送。此时,网络中的所有其他节点都处于接收状态,并且所有节点都首先接收该节点,并通过检测消息是否发送给自身来进行判断。 ●CAN总线是一种面向内容的地址方案,可实现控制系统的建立和灵活部署,并允 许在不修改硬件和软件的情况下将新节点添加到CAN总线。 三、CAN总线的8个特点 ●采用两线串行通讯方式,具有较强的错误检测能力,可以在高噪声干扰环境下工作●具有实时性强,传输距离长,电磁干扰强,成本低的优点。 ●可靠的错误处理和错误检测机制 ●节点具有严重错误时自动终止总线的功能 ●具有通过CAN控制器将多个控制模块连接到CAN总线以形成多主机本地网络的 优先级和仲裁功能。 ●消息的身份可以决定接收还是屏蔽消息 ●如果传输的信息已损坏,则可以自动重新传输 ●该消息不包含源地址和目标地址,仅使用标志来指示功能信息和优先级信息。

CAN总线的特点有哪些

CAN总线的特点有哪些 CAN 总线的特点有哪些?(1) 多主控制在总线空闲时,所有的单元都可开始发送消息(多主控制)。最先访问总线的单元可获得发送权(CSMA/CA 方式*1)。多个单元同时开始发送时,发送高优先级ID 消息的单元可获得发送权。 (2) 消息的发送在CAN 协议中,所有的消息都以固定的格式发送。总线空闲时,所有与总线相连的单元都可以开始发送新消息。两个以上的单元同时开始发送 消息时,根据标识符(Identifier 以下称为ID)决定优先级。ID 并不是表示发送的目的地址,而是表示访问总线的消息的优先级。两个以上的单元同时开始 发送消息时,对各消息ID 的每个位进行逐个仲裁比较。仲裁获胜(被判定为优先级最高)的单元可继续发送消息,仲裁失利的单元则立刻停止发送而进行 接收工作。(3) 系统的柔软性与总线相连的单元没有类似于地址的信息。因此在总线上增加单元时,连接在总线上的其它单元的软硬件及应用层都不需要改变。(4) 通信速度根据整个网络的规模,可设定适合的通信速度。在同一网络中,所有单元必须设定成统一的通信速度。即使有一个单元的通信速度与其它 的不一样,此单元也会输出错误信号,妨碍整个网络的通信。不同网络间则可 以有不同的通信速度。(5) 远程数据请求可通过发送遥控帧请求其他单元发送数据。(6) 错误检测功能-错误通知功能-错误恢复功能所有的单元都可以检测错误(错误检测功能)。检测出错误的单元会立即同时通知其他所有单元(错误 通知功能)。正在发送消息的单元一旦检测出错误,会强制结束当前的发送。 强制结束发送的单元会不断反复地重新发送此消息直到成功发送为止(错误恢 复功能)。(7) 故障封闭CAN 可以判断出错误的类型是总线上暂时的数据错误(如外部噪声等)还是持续的数据错误(如单元内部故障、驱动器故障、断线等)。由此功能,当总线上发生持续数据错误时,可将引起此故障的单元从总

CAN总线的性能特点

CAN总线的性能特点 由于采用了许多的新技术和独特的设计,CAN总线与一般的通信总线相比,它的数据通信具有突出的可靠性、实时性和灵活性。其性能特点可以概括如下: (1)CAN是到目前为止唯一具有国际标准的现场总线; (2)CAN为“多主”工作方式,网络上任一节点均可在任意时刻主动的向网络上的节点发送信息,不分主从。 (3)在报文标识符上,CAN上的节点分成不同的优先级,可满足不同的实时要求,优先级高的数据最多可在134us内得到传输。 (4)CAN采用非破坏性总线仲裁技术。当多个节点同时向总线发送信息时,优先级较低的节点会主动退出发送,而最高优先级的节点可不受影响的继续传输数据,从而大大的节省了总线冲突仲裁时间。 (5)CAN节点只需要通过对报文的标识符滤波即可实现点对点,一点对多点及全局广播等几种方式传送接收数据,无需专门的“调度”。 (6)CAN上的节点的个数主要取决于总线驱动电路,目前可达110个。在标准“帧”报文标识符(CAN2.0A)可达2032种,而在扩展帧的报文标识符(CAN2.OB)几乎不受限制。 (7)CAN报文采用“短帧”结构,传输时间短,受干扰概率低,具有极好地检错效果。 (8)CAN的每帧信息都有CRC校验以及其他检错措施,具有很

好的检错效果。 (9)CAN节点在错误严重的情况下具有自动关闭输出功能,以使总线上的其它节点的操作不受影响。 (10)CAN的最大通信速率为1Mbps(当总线长为40m时),直接通信距离可达10km(而当通信速率为5Kbps时),其通信距离与通信速率之间的关系如下图所示: 图 1 CAN总线位的数值表示 (10)CAN总线具有较高的性能价格比。它结构简单,器件容易购置,每个节点的价格较低,而且开发技术容易掌握,能充分利用现有的单片机开发工具。

CAN总线基础(1)— CAN简介及特点

1.CAN是什么? CAN 是Controller Area Network 的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。在当前的汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种各样的电子控制系统被开发了出来。由于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,由多条总线构成的情况很多,线束的数量也随之增加。为适应“减少线束的数量”、“通过多个LAN,进行大量数据的高速通信”的需要,1986 年德国电气商博世公司开发出面向汽车的CAN 通信协议。此后,CAN 通过ISO11898 及ISO11519 进行了标准化,现在在欧洲已是汽车网络的标准协议。 现在,CAN 的高性能和可靠性已被认同,并被广泛地应用于工业自动化、船舶、医疗设备、工业设备等方面。 下图是车载网络的构想示意图。CAN 等通信协议的开发,使多种LAN 通过网关进行数据交换得以实现。

2.CAN的应用实例 3.总线拓扑图 CAN 控制器根据两根线上的电位差来判断总线电平。总线电平分为显性电平和隐性电平,二者必居其一。发送方通过使总线电平发生变化,将消息发送给接收方。 CAN的连接示意图

4.CAN的特点 CAN 协议具有以下特点: (1) 多主控制 在总线空闲时,所有的单元都可开始发送消息(多主控制)。 最先访问总线的单元可获得发送权(CSMA/CA 方式)。 多个单元同时开始发送时,发送高优先级ID 消息的单元可获得发送权。 (2) 消息的发送 在CAN 协议中,所有的消息都以固定的格式发送。总线空闲时,所有与总线相连的单元都可以开始发送新消息。两个以上的单元同时开始发送消息时,根据标识符(Identifier 以下称为ID)决定优先级。ID 并不是表示发送的目的地址,而是表示访问总线的消息的优先级。两个以上的单元同时开始发送消息时,对各消息ID 的每个位进行逐个仲裁比较。仲裁获胜(被判定为优先级最高)的单元可继续发送消息,仲裁失利的单元则立刻停止发送而进行接收工作。(3) 系统的柔软性 与总线相连的单元没有类似于“地址”的信息。因此在总线上增加单元时,连接在总线上的其它单元的软硬件及应用层都不需要改变。 (4) 通信速度 根据整个网络的规模,可设定适合的通信速度。 在同一网络中,所有单元必须设定成统一的通信速度。即使有一个单元的通信速度与其它的不一样,此单元也会输出错误信号,妨碍整个网络的通信。不同网络间则可以有不同的通信速度。 (5) 远程数据请求 可通过发送“遥控帧” 请求其他单元发送数据。 (6) 错误检测功能·错误通知功能·错误恢复功能 所有的单元都可以检测错误(错误检测功能)。 检测出错误的单元会立即同时通知其他所有单元(错误通知功能)。 正在发送消息的单元一旦检测出错误,会强制结束当前的发送。强制结束发送的单元会不断反复地重新发送此消息直到成功发送为止(错误恢复功能)。 (7) 故障封闭 CAN 可以判断出错误的类型是总线上暂时的数据错误(如外部噪声等)还是持续的数据错误(如单元内部故障、驱动器故障、断线等)。由此功能,当总线上发生持续数据错误时,可将引起此故障的单元从总线上隔离出去。 (8) 连接 CAN 总线是可同时连接多个单元的总线。可连接的单元总数理论上是没有限制的。但实际上可连接的单元数受总线上的时间延迟及电气负载的限制。降低通信速度,可连接的单元数增加;提高通信速度,则可连接的单元数减少。 1.CAN的错误状态类型 单元始终处于3 种状态之一。

CAN总线特点与规范

CAN总线特点与规范 CAN 总线规范: CAN总线属于现场总线的范畴,它是一种有效支持分布式控制或实时控制的串行通信网络,位速率可高达1MBPS。可以应用在汽车控制系统,自动化电子领域中的各种部件(传感器,灯光,执行机构等)与主机连接组成CAN 网络。本章介绍通过CAN总线与液晶显示器的连接。 CAN 具有下列主要特性: 1 多主站依据优先权进行总线访问。 总线开放时,任何单元均可开始发送报文,具有最高优先权的报文的单元赢得总线访问权。利用这个特点可以用液晶显示器作为多主机的公用监视器,不用每台主机配一个监视器,从而节约系统成本。 2 无破坏性的基于优先权的仲裁。 网络上的每个主机可以同时发送,哪个主机的数据可以发送出去取决于主机所发送报文的标识符决定的优先权的大小,没有发送出去的帧可自动重发。以后将介绍数据怎样仲裁。 3 借助接收滤波的多地址帧传送 收到报文的标识符与本机的接收码寄存器与屏蔽寄存器相比较,符合的报文本机才予以接收。 4.远程数据请求。 网络上的每个接点可以发送一个远程帧给另一个接点,请求该接点的数据帧,该数据帧与对应的远程帧以相同的标识符ID命名。 5.配置灵活性 通过八个寄存器进行接点配置,每个接点可以接收,也可以发送。 6.全系统数据相容性 7.错误检测和出错信令 有五种错误类型,每个接点都设置有一个发送出错计数器和一个接收出错计数器。发送接点和接收接点在检测到错误时,出错计数器根据一定规则进行加减,并根据错误计数器数值发送错误标志(活动错误标志和认可错误标志),当错误计数器数值大于255时,该接点变为“脱离总线”状态,输出输入引脚浮空,既不发送,也不接收。 CAN 中的总线数值为两种互补逻辑数值:“显形”和“隐性”,用差分电压表示。 “显形”表示逻辑“0”,显性状态用大于最小阈值的差分电压表示。 “隐性”表示逻辑“1”,这时输出的差分电压Vdiff 近似为0,Vcanh ,Vcanl固定于平均电压电平,显性位与隐性位同时发送时,最后总线数值为显性。在总线空闲或隐性位期间, 平均电压

CAN总线简介及其特点

摘要:CAN总线的数据通讯具有突出的可靠性、实时性和灵活性,其总线规范已经成为国际标准,被公认为几种最有前途的总线之一。本文在总结CAN总线特点的基础上,对其通信介质访问方式进行了详细的描述,介绍了它在应用中需要解决的技术问题以及目前应用状况。 关键词:CAN总线;通信介质访问控制;实时;应用技术 1CAN总线简介及其特点 CAN网络(ControllerAreaNetwork)是现场总线技术的一种,它是一种架构开放、广播式的新一代网络通信协议,称为控制器局域网现场总线。CAN网络原本是德国Bosch公司为欧洲汽车市场所开发的。CAN推出之初是用于汽车内部测量和执行部件之间的数据通信。例如汽车刹车防抱死系统、安全气囊等。对机动车辆总线和对现场总线的需求有许多相似之处,即能够以较低的成本、较高的实时处理能力在强电磁干扰环境下可靠地工作。因此CAN总线可广泛应用于离散控制领域中的过程监测和控制,特别是工业自动化的底层监控,以解决控制与测试之间的可靠和实时数据交换。 CAN总线有如下基本特点: * CAN协议最大的特点是废除了传统的站地址编码,代之以对数据通信数据块进行编码,可以多主方式工作; * CAN采用非破坏性仲裁技术,当两个节点同时向网络上传送数据时,优先级低的节点主动停止数据发送,而优先级高的节点可不受影响地继续传输数据,有效避免了总线冲突; * CAN采用短帧结构,每一帧的有效字节数为8个(CAN技术规范2.0A),数据传输时间短,受干扰的概率低,重新发送的时间短; * CAN的每帧数据都有CRC效验及其他检错措施,保证了数据传输的高可靠性,适于在高干扰环境中使用; * CAN节点在错误严重的情况下,具有自动关闭总线的功能,切断它与总线的联系,以使总线上其它操作不受影响; * CAN可以点对点、一点对多点(成组)及全局广播集中方式传送和接受数据; * CAN总线直接通讯距离最远可达10km/5Kbps,通讯速率最高可达1Mbps/40m; * 采用不归零码(NRZ—Non-Return-to-Zero)编码/解码方式,并采用位填充(插入)技术。 详细的CAN协议可参见CAN技术规范2.0a和2.0b以及CAN国际标准ISO11898(参考文献3)。

汽车通信-CAN总线详解

CAN总线及应用实例 (1)CAN特点 ●CAN为多主方式工作,网络上任意智能节点均可在任意时刻主动向网络上其他节点发送信息,而不分主从,且无需站地址等节点信息,通信方式灵活。利用这特点可方便地构成多机备份系统。 ●CAN网络上的节点信息分成不同的优先级(报文有2032种优先权),可满足不同的实时要求,高优先级的数据最多可在134,us内得到传输。 ●CAN采用非破坏性总线仲裁技术,当多个节点同时向总线发送信息时,优先级较低的节点会主动地退出发送,大大节省了总线冲突仲裁时间。 ●CAN只需通过报文滤波即可实现点对点、一点对多点及全局广播等几种方式收发数据,无需专门“调度”。 ●CAN的直接通信距离最远可达l 0km(速率5kbp以下):通信速率最高可达Mbps(此时通信距离最长为40m) 。 ●CAN上的节点数主要取决于总线驱动电路,目前可达110个;报文标识符可达2032种(CAN2.0A),而扩展(CAN2.0B)的报文标识符几乎不受限制。 (2)CAN总线协议 CAN协议以国际标准化组织的开放性互连模型为参照,规定了物理层、传输层和对象层,实际上相当于ISO网络层次模型中的物理层和数据链路层。图3.9 为CAN总线网络层次结构,发送过程中,数据、数据标识符及数据长度,加上必要的总线控制信号形成串行的数据流,发送到串行总线上,接收方再对数据流进行分析,从中提取有效的数据。CAN协议的一个最大特点是废除了传统的站地址编码,而代之以对通信数据块进行编码,数据在网络上通过广播方式发送。其优点是可使网络内的节点个数在理论上不受限制(实际中受网络硬件的电气特性限制),还可使同一个通信数据块同时被不同的节点接收,这在分布式控制系统中非常有用。CAN 2.0A版本规定标准CAN的标识符长度为11位,同时在2.0 B版本中又补充规定了标识符长度为29位的扩展格式,因此理论上可以定义2的11次方或2的19次方种不同的数据块。遵循CAN 2.0 B协议的CAN控制器可以发送和接收标准格式报文(11位标识符)或扩展格式报文(29位标识符),如果禁止CAN 2.0B则CAN控制器只能发送和接收标准格式报文而忽略扩展格式的报文,但不会出现错误。每个报文数据段长度为0-8个字节,可满足通常工业领域中控制命令、工作状态及检测数据传送的一般要求。同时,8个字节占用总线时间不长,从而保证了通信的实时性。CAN协议采用CRC检验并提供相应的错误处理功能,保证了数据通信的可靠性。 (3)报文传送和帧结构 CAN总线以报文为单位进行信息传送。报文中包含标识符,它标志了报文的优先权。CAN总线上各个节点都可主动发送。如同时有两个或更多节点开始发送报文,采用标识符ID来进行仲裁,具有最高优先权报文节点赢得总线使用权,而其他节点自动停止发送。在总线再次空闲后,这些节点将自动重发原报文。CAN系统中,一个CAN节点不使用有关系统结构的任何信息。报文中的标识符并不指出报文的目的地址,而是描述数据的含义。网络

几种总线的总结之CAN 总线

CAN总线 CAN是控制器局域网络(Controller Area Network, CAN)的简称,是由研发和生产汽车电子产品著称的德国BOSCH公司开发了的,并最终成为国际标准(ISO118?8)。是国际上应用最广泛的现场总线之一。在北美和西欧,CAN总线协议已经成为汽车计算机控制系统和嵌入式工业控制局域网的标准总线,并且拥有以CAN为底层协议专为大型货车和重工机械车辆设计的J1939协议。近年来,其所具有的高可靠性和良好的错误检测能力受到重视,被广泛应用于汽车计算机控制系统和环境温度恶劣、电磁辐射强和振动大的工业环境 基本概念 CAN 是Controller Area Network 的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。在当前的汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种各样的电子控制系统被开发了出来。由于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,由多条总线构成的情况很多,线束的数量也随之增加。为适应“减少线束的数量”、“通过多个LAN,进行大量数据的高速通信”的需要,1986 年德国电气商博世公司开发出面向汽车的CAN 通信协议。此后,CAN 通过ISO11898 及ISO11519 进行了标准化,现在在欧洲已是汽车网络的标准协议。现在,CAN 的高性能和可靠性已被认同,并被广泛地应用于工业自动化、船舶、医疗设备、工业设备等方面。现场总线是当今自动化领域技术发展的热点之一,被誉为自动化领域的计算机局域网。它的出现为分布式控制系统实现各节点之间实时、可靠的数据通信提供了强有力的技术支持。 编辑本段CAN总线优势 CAN属于现场总线的范畴,它是一种有效支持分布式控制或实时控制的串行通信网络。较之目前许多RS-485基于R线构建的分布式控制系统而言, 基于CAN总线的分布式控制系统在以下方面具有明显的优越性: 网络各节点之间的数据通信实时性强 首先,CAN控制器工作于多主方式,网络中的各节点都可根据总线访问优先权(取决于报文标识符)采用无损结构的逐位仲裁的方式竞争向总线发送数据,且CAN协议废除了站地址编码,而代之以对通信数据进行编码,这可使不同的节点同时接收到相同的数据,这些特点使得CAN总线构成的网络各节点之间的数据通信实时性强,并且容易构成冗余结构,提高系统的可靠性和系统的灵活性。而利用RS-485只能构成主从式结构系统,通信方式也只能以主站轮询的方式进行,系统的实时性、可靠性较差; 缩短了开发周期 CAN总线通过CAN收发器接口芯片82C250的两个输出端CANH和CANL与物理总线相连,而CANH端的状态只能是高电平或悬浮状态,CANL端只能是低电平或悬浮状态。这就保证不会在出现在RS-485网络中的现象,即当系统有错误,出现多节点同时向总线发送数据时,导致总线呈现短路,从而损坏某些节点的现象。而且CAN节点在错误严重的情况下具有自动关闭输出功能,以使总线上其他节点的操作不受影响,从而保证不会出现象在网络中,因个别节点出现问题,使得总线处于“死锁”状态。而且,CAN具有的完善的通信协议可由CAN

CAN总线的特点和优点

CAN总线的特点和优点 CAN总线的特点和优点; (1)多主控制 在总线空闲时,所有的单元都可开始发送消息(多主控制)。最先访问总线的单元可获得发送权(CSMA/CA)。多个单元同时开始发送时,发送高优先级D消息的单元可获得发送权。 (2)消息的发送 在CAN协议中,所有的消息都以固定的格式发送。总线空闲时,所有与总线相连的单元都可以开始发送新消息。两个以上的单元同时开始发送消息时,根据标识符(D)决定优先级。两个以上的单元同时开始发送消息时,对各消息ID的每个位进行逐个仲裁比较。仲裁获胜(被判定为优先级最高)的单元可继续发送消息,仲裁失利的单元则立刻停止发送而进行接收工作。 (3)系统的柔软性 与总线相连的单元没有类似于“地址”的信息。因此在总线上增加单元时,连接在总线上的其它单元的软硬件及应用层都不需要改变。 (4)通信速度 根据整个网络的规模,可设定适合的通信速度。在同一网络中,所有单元必须设定成统一的通信速度。即使有一个单元的通信速度与其它的不一样,此单元也会输出错误信号,妨碍整个网络的通信。不同网络间则可以有不同的通信速度。 表1一1 CAN总线系统任意两节点间的最大距离 最大距离/m 位速率bps 10 1000 130 500 270 250 530 125 620 100 1300 50

3300 20 6700 10 10000 5 CAN总线上任意两节点之间的通信距离与其位速率有关,表2一1列举了相关数据。 (5)远程数据请求可通过发送“请求帧”请求其他单元发送数据。 (6)错误检测功能·错误通知功能·错误恢复功能 所有的单元都可以检测错误(错误检测功能)。检测出错误的单元会立即同时通知其他所有单元(错误通知功能)。正在发送消息的单元一旦检测出错误,会强制结束当前的发送。强制结束发送的单元会不断反复地重新发送此消息直到成功发送为止(错误恢复功能)。 (7)故障封闭 CAN可以判断出错误的类型是总线上暂时的数据错误(如外部噪声等)还是持续的数据错误(如单元内部故障、驱动器故障、断线等)。由此功能,当总线上发生持续数据错误时,可将引起此故障的单元从总线上隔离出去。 (8)连接 CAN总线是可同时连接多个单元的总线。可连接的单元总数理论上是没有限制的。但实际上可连接的单元数受总线上的时间延迟及电气负载的限制。降低通信速度,可连接的单元数增加;提高通信速度,则可连接的单元数减少。

rs85和can总线与以太网比较

以太网、CAN总线、RS485总线都属于现场总线范畴,用户根据不同的场合和应用需求而采用不同的现场总线方式,每种总线有不同的标准特性,通过下列描述了解各种总线的特性以及各种总线优缺点。 一、RS485接口标准 ?RS-485的电气特性:逻辑"1"以两线间的电压差为+(2-6)V表示;逻辑"0"以两线间 的电压差为-(2-6)V表示。接口信号电平比RS-232-C降低了,就不易损坏接口电路的芯片,且该电平与TTL电平兼容,可方便与TTL 电路连接。 ?RS-485的数据最高传输速率为10Mbps ?RS-485接口是采用平衡驱动器和差分接收器的组合,抗共模干能力增强,即抗噪声 干扰性好。 ?RS-485接口的最大传输距离标准值为4000英尺,实际上可达 3000米,另外RS-232-C 接口在总线上只允许连接1个收发器,即单站能力。而RS-485接口在总线上是允许连接多达128个收发器。即具有多站能力,这样用户可以利用单一的RS-485接口方便地建立起设备网络。但RS-485总线上任何时候只能有一发送器发送。 ?因RS-485接口具有良好的抗噪声干扰性,长的传输距离和多站能力等上述优点就使 其成为首选的串行接口。 ?因为RS485接口组成的半双工网络,一般只需二根连线,所以RS485接口均采用屏蔽 双绞线传输。 二、CAN总线接口标准 ?国际标准的工业级现场总线,传输可靠,实时性高; ?传输距离远(最远10Km),传输速率快(最高1MHz bps); ?单条总线最多可接110个节点,并可方便的扩充节点数; ?多主结构,各节点的地位平等,方便区域组网,总线利用率高; ?实时性高,非破坏总线仲裁技术,优先级高的节点无延时; ?出错的CAN节点会自动关闭并切断和总线的联系,不影响总线的通讯; ?报文为短帧结构并有硬件CRC校验,受干扰概率小,数据出错率极低;

CAN总线优点

CAN总线优点 CAN 总线优点及特点①组网自由,扩展性强;②自动错误界定,简化了电控单元对通信的操作;③可根据数据内容确定优先权,解决通信的实时性问题。CAN(Controller Area Network)总线,也称控制器局部网,属于现场总线的范畴,它是一种有效支持分布控制或实时控制的串行通信网络。由于采用了 许多新技术及独特的设计,CAN 总线与一般的通信总线相比,它的数据通信具有突出的可靠性、实时性和灵活性。其特点如下:CAN 为多主工作方式,网络上任何一个节点均可在任意时刻主动地向网络上其它节点发送信息,而不分主从。在报文标识符上,CAN 上的节点分成不同的优先级,可满足不同的实时要求,优先级高的数据最多可在134us 内得到传输。CAN 采用非破坏总线仲裁技术。当多个节点同时向总线发送信息出现冲突时,优先级低的节点会主动地 退出发送,而优先级高的节点可以不受影响的继续传输数据,从而大大节省了 总线冲突的仲裁时间。尤其是网络负载很重的情况下,也不会出现网络瘫痪情 况(以太网则可能)。CAN 节点只需通过报文的标识符滤波即可实现点对点、一 点对多点及全局广播等几种方式传送接收数据。CAN 的直接通信距离最远可达10km(速率5kbps 以下);通信速率最高可达1Mbps(此时通信距离最长为40m)。CAN 上的节点数主要取决于总线驱动电路,目前可达110 个。在标准帧的报文标识符有11 位,而在扩展帧的报文标识符(29 位)个数几乎不受限制。报文采用短帧格式,传输时间短,受干扰概率低,保证了数据出错率极低。CAN 的每帧信息都有CRC 校验及其他检错措施,具有极好的检错效果。CAN 的通讯介质 可以为双绞线、同轴电缆或光纤,选择灵活。CAN 节点在错误帧的情况下具有自动关闭输出功能,而总线上其它节点的操作不受影响。CAN 总线具有较高的性能价格比。它结构简单,器件容易购置,每个节点的价格较低,而且开发技

CAN总线简介及其特点

《计算机控制技术》期末考查论文 题目:CAN总线简介及其特点 摘要:CAN总线的数据通讯具有突出的可靠性、实时性和灵活性,其总线规范已经成为国际标准,被公认为几种最有前途的总线之一。本文在总结CAN总线特点的基础上,对其通信介质访问方式进行了详细的描述,介绍了它在应用中需要解决的技术问题以及目前应用状况。 关键词:CAN总线;通信介质访问控制;实时;应用技术 1.CAN总线简介及其特点 控制器局域网总线(CAN,Controller Area Network)是一种用于实时应用的串行通讯协议总线,它可以使用双绞线来传输信号,是世界上应用最广泛的现场总线之一。CAN协议由德国的Robert Bosch公司开发,用于汽车中各种不同元件之间的通信,以此取代昂贵而笨重的配电线束。该协议的健壮性使其用途延伸到其他自动化和工业应用。CAN协议的特性包括完整性的串行数据通讯、提供实时支持、传输速率高达1Mb/s、同时具有11位的寻址以及检错能力。 CAN总线是一种多主方式的串行通讯总线,基本设计规范要求有高的位速率,高抗电子干扰性,并且能够检测出产生的任何错误。CAN总线可以应用于汽车电控制系统、电梯控制系统、安全监测系统、医疗仪器、纺织机械、船舶运输等领域。 CAN总线的特点 具有实时性强、传输距离较远、抗电磁干扰能力强、成本低等优点; 采用双线串行通信方式,检错能力强,可在高噪声干扰环境中工作; 具有优先权和仲裁功能,多个控制模块通过CAN 控制器挂到CAN-bus 上,形成多主机局部网络; 可根据报文的ID决定接收或屏蔽该报文; 可靠的错误处理和检错机制; 发送的信息遭到破坏后,可自动重发; 节点在错误严重的情况下具有自动退出总线的功能; 报文不包含源地址或目标地址,仅用标志符来指示功能信息、优先级信息。 2.CAN总线通信介质访问控制方式 CAN采用了的3层模型:物理层、数据链路层和应用层。CAN支

CAN总线网络的技术特点

CAN总线网络的技术特点 1 CAN总线网络的技术特点 用通讯数据块编码,可实现多主工作方式,数据收发方式灵活,可实现点对点、一点对多点及全局广播等多种传输方式;可将DCS结构中主机的常规测试与控制功能分散到各个智能节点,节点控制器把采集到的数据通过CAN适配器发送到总线,或者向总线申请数据,主机便从原来繁重的底层设备监控任务中解放出来,进行更高层次的控制和管理功能,比如故障诊断、优化协调等; 采用非破坏性基于优先权的总线仲裁技术,具有暂时错误和永久性故障节点的判别及故障节点的自动脱离功能,使系统其它节点的通信不受影响;同时,CAN具有出错帧自动重发功能,可靠性高; 信号传输用短帧结构(8字节),实时性好; 不关闭总线即可任意挂接或拆除节点,增强了系统的灵活性和可扩展性; 采用统一的标准和规范,使各设备之间具有较好的互操作性和互换性,系统的通用性好; 通讯介质可采用双绞线,无特殊要求;现场布线和安装简单,易于维护,经济性好。 总之,CAN总线具有实时性强、可靠性高、结构简单、互操作性好、价格低廉等优点,克服了传统的工业总线的缺陷,是构建分布式测控系统的一种有效的解决方案。 2 系统总体硬件设计方案 首先,定义各节点的功能,确定各节点检测或控制量的数目、类型、信号特征。这是进行微机测控系统网络化的第一步。原则是尽量避免重复测试。智能节点模块绝大部分是输入输出模块,调节回路可以跨模块构成回路。但考虑到调节回路的安全性,为了保证在上位机或整个通信线路出现重大故障时回路调节不受到影响,设计了隔离型、自整定PID、隔离型温度调节器等带有调节功能的模块。它们的输入输出通道都在同一模块中,其底层软件的功能很强,所有的输入处理、输出增量的计算(多种调节算法可通过组态选择,包括串级调节)、输出,包括自整定模块的过程参数的自动识别都在本模块实现,保证了调节回路的安全性、可靠性。 其次,选择各节点控制器和相应的CAN适配元件。由于各测控节点功能相对单一,数据量少,因此对CPU的要求大大降低,采用8051系列单片机即可满足要求。CAN 总线适配器件主要有:控制器接口、总线收发器和I/O器件。采用Philips公司生产的82C200CAN控制器和与其配套的82C250CAN收发器。82C200具有完成高性能通信协议所要求的全部必要特性。具有简单总线连接的82C200可完成物理层和数据链路层的所有功能。 最后,按照CAN总线物理层协议选择总线介质,设计布线方案,连接成CAN总线分布式测

一文读懂can总线的特点和优缺点

一文读懂can总线的特点和优缺点 什么是CAN总线CAN是控制器局域网络(ControllerAreaNetwork,CAN)的简称,是由以研发和生产汽车电子产品著称的德国BOSCH公司开发的,并最终成为国际标准(ISO11898),是国际上应用最广泛的现场总线之一。在北美和西欧,CAN总线协议已经成为汽车计算机控制系统和嵌入式工业控制局域网的标准总线,并且拥有以CAN 为底层协议专为大型货车和重工机械车辆设计的J1939协议。 CAN总线的特点(1)它是一种多主总线,即每个节点机均可成为主机,且节点机之间也可进行通信。 (2)通信介质可以是双绞线、同轴电缆或光导纤维,通信速率可达1mb/s。 (3)can总线通信接口中集成了can协议的物理层和数据链路层功能,可完成对通信数据的成帧处理,包括位填充、数据块编码、循环冗余校验、优先级判别等项工作。 (4)can协议的一个最大特点是废除了传统的站地址编码,雨代之以对通信数据块进行编码。采用这种方法的优点是可使网络内的节点个数在理论上不受限制,数据块的标识码可由11位或29位二进制数组成,因此可以定义211或229个不同的数据块,这种数据块编码方式,还可使不同的节点同时接收到相同的数据,这一点在分步式控制中非常重要。(5)数据段长度最多为8个字节,可满足通常工业领域中控制命令、工作状态及测试数据的一般要求。同时,8个字节不会占用总线时间过长,从而倮证了通信的实时性。(6)can协议采用crc检验并可提供相应的错误处理功能,保证了数据通信的可靠性。can 总线所具有的卓越性能、极高的可靠性和独特设计,特别适合工业设各测控单元互连。因此备受工业界的重视,并已公认为最有前途的现场总线之一。 CAN总线的工作原理CAN总线使用串行数据传输方式,可以1Mb/s的速率在40m的双绞线上运行,也可以使用光缆连接,而且在这种总线上总线协议支持多主控制器。CAN 与I2C总线的许多细节很类似,但也有一些明显的区别。 当CAN总线上的一个节点(站)发送数据时,它以报文形式广播给网络中所有节点。对每个节点来说,无论数据是否是发给自己的,都对其进行接收。每组报文开头的11位字

spi、can等总线的区别

一、SPI总线说明 串行外围设备接口SPI(serial peripheral interface)总线技术是Motorola公司推出的一种同步串行接口,Motorola公司生产的绝大多数MCU(微控制器)都配有SPI硬件接口,如68系列MCU。SPI 用于CPU与各种外围器件进行全双工、同步串行通讯。SPI可以同时发出和接收串行数据。它只需四条线就可以完成MCU与各种外围器件的通讯,这四条线是:串行时钟线(CSK)、主机输入/从机输出数据线(MISO)、主机输出/从机输入数据线(MOSI)、低电平有效从机选择线CS。这些外围器件可以是简单的TTL移位寄存器,复杂的LCD显示驱动器,A/D、D/A转换子系统或其他的MCU。当SPI工作时,在移位寄存器中的数据逐位从输出引脚(MOSI)输出(高位在前),同时从输入引脚(MISO)接收的数据逐位移到移位寄存器(高位在前)。发送一个字节后,从另一个外围器件接收的字节数据进入移位寄存器中。主SPI的时钟信号(SCK)使传输同步。其典型系统框图如下图所示。 SPI主要特点有: 可以同时发出和接收串行数据; * 可以当作主机或从机工作; * 提供频率可编程时钟; * 发送结束中断标志; * 写冲突保护; * 总线竞争保护等。 图2示出SPI总线工作的四种方式,其中使用的最为广泛的是SPI0和SPI3方式(实线表示): SPI 模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,时钟极性(CPOL)对传输协议没有重大的影响。如果CPOL="0",串行同步时钟的空闲状态为低电平;如果CPOL=1,串行同步时钟的空闲状态为高电平。时钟相位(CPHA)能够配置用于选择两种不同的传输协议之一进行数据传输。如果CPHA=0,在串行同步时钟的第一个跳变沿(上升或下降)数据被采样;如果CPHA=1,在串行同步时钟的第二个跳变沿(上升或下降)数据被采样。SPI主模块和与之通信的外设音时钟相位和极性应该一致。SPI总线接口时序如图所示。 什么是CAN总线? =========================== CAN 全称为Controller Area Network,即控制器局域网,由德国Bosch 公司最先提出,是国际上应用最广泛的现场总线之一。CAN 是一种多主方式的串行通讯总线,基本设计规范要求有高的位速率、高抗电磁干扰性,而且要能够检测出总线的任何错误。当信号传输距离达10Km 时CAN 仍可提供高达50Kbit/s 的数据传输速率。CAN 具有十分优越的特点: A、较低的成本与极高的总线利用率; B、数据传输距离可长达10Km,传输速率可高达1Mbit/s; C、可靠的错误处理和检错机制,发送的信息遭到破坏后可自动重发;

CAN总线原理及应用

CAN总线原理及应用 摘要介绍了CAN总线的特点、工作原理和应用领域,并且对每个应用领域进行了描述和举例讲解。 关键字 CAN总线,汽车,现场控制系统,通信 1 引言 控制器局域网总线(CAN,Controller Area Network)是一种用于实时应用的串行通讯协议总线,它可以使用双绞线来传输信号,是世界上应用最广泛的现场总线之一。CAN协议由德国的Robert Bosch公司开发,用于汽车中各种不同元件之间的通信,以此取代昂贵而笨重的配电线束。该协议的健壮性使其用途延伸到其他自动化和工业应用。CAN协议的特性包括完整性的串行数据通讯、提供实时支持、传输速率高达1Mb/s、同时具有11位的寻址以及检错能力。 CAN总线是一种多主方式的串行通讯总线,基本设计规范要求有高的位速率,高抗电子干扰性,并且能够检测出产生的任何错误。CAN总线可以应用于汽车电控制系统、电梯控制系统、安全监测系统、医疗仪器、纺织机械、船舶运输等领域。 2 CAN总线的特点 ●具有实时性强、传输距离较远、抗电磁干扰能力强、成本低等优点; ●采用双线串行通信方式,检错能力强,可在高噪声干扰环境中工作; ●具有优先权和仲裁功能,多个控制模块通过CAN 控制器挂到CAN-bus 上,形成多主机局部网络; ●可根据报文的ID决定接收或屏蔽该报文; ●可靠的错误处理和检错机制; ●发送的信息遭到破坏后,可自动重发; ●节点在错误严重的情况下具有自动退出总线的功能; ●报文不包含源地址或目标地址,仅用标志符来指示功能信息、优先级信息。 3 CAN总线的工作原理 CAN总线使用串行数据传输方式,可以1Mb/s的速率在40m的双绞线上运行,也可以使用光缆连接,而且在这种总线上总线协议支持多主控制器。CAN与I2C总线的许多细节很类似,但也有一些明显的区别。 当CAN总线上的一个节点(站)发送数据时,它以报文形式广播给网络中所有节点。对每个节点来说,无论数据是否是发给自己的,都对其进行接收。每组报文开头的11位字符为标识符,定义了报文的优先级,这种报文格式称为面向内容的编址方案。在同一系统中标识符是唯一的,不可能有两个站发送具有相同标识符的报文。当几个站同时竞争总线读取时,这种配置十分重要。 当一个站要向其它站发送数据时,该站的CPU将要发送的数据和自己的标识符传送给本站的CAN芯片,并处于准备状态;当它收到总线分配时,转为发送报文状态。CAN芯片将数据根据协议组织成一定的报文格式发出,这时网上的其它站处于接收状态。每个处于接收状态的站对接收到的报文进行检测,判断这些报文是否是发给自己的

CAN总线综述

CAN总线综述 1. CAN总线的产生与发展 控制器局部网(CAN-CONTROLLER AREA NETWORK)是BOSCH公司为现代汽车应用领先推出的一种多主机局部网,由于其卓越性能现已广泛应用于工业自动化、多种控制设备、交通工具、医疗仪器以及建筑、环境控制等众多部门。控制器局部网将在我国迅速普及推广。 随着计算机硬件、软件技术及集成电路技术的迅速发展,工业控制系统已成为计算机技术应用领域中最具活力的一个分支,并取得了巨大进步。由于对系统可靠性和灵活性的高要求,工业控制系统的发展主要表现为:控制面向多元化,系统面向分散化,即负载分散、功能分散、危险分散和地域分散。 分散式工业控制系统就是为适应这种需要而发展起来的。这类系统是以微型机为核心,将 5C技术--COMPUTER(计算机技术)、CONTROL(自动控制技术)、COMMUNICATION(通信技术)、CRT(显示技术)和 CHANGE(转换技术)紧密结合的产物。它在适应范围、可扩展性、可维护性以及抗故障能力等方面,较之分散型仪表控制系统和集中型计算机控制系统都具有明显的优越性。 典型的分散式控制系统由现场设备、接口与计算设备以及通信设备组成。现场总线(FIELDBUS)能同时满足过程控制和制造业自动化的需要,因而现场总线已成为工业数据总线领域中最为活跃的一个领域。现场总线的研究与应用已成为工业数据总线领域的热点。尽管目前对现场总线的研究尚未能提出一个完善的标准,但现场总线的高性能价格比将吸引众多工业控制系统采用。同时,正由于现场总线的标准尚未统一,也使得现场总线的应用得以不拘一格地发挥,并将为现场总线的完善提供更加丰富的依据。控制器局部网 CAN (CONTROLLER AERANETWORK)正是在这种背景下应运而生的。 由于CAN为愈来愈多不同领域采用和推广,导致要求各种应用领域通信报文的标准化。为此,1991年 9月 PHILIPS SEMICONDUCTORS制订并发布了 CAN技术规范(VERSION 2.0)。该技术规范包括A和B两部分。2.0A给出了曾在CAN技术规范版本1.2中定义的CAN报文格式,而2.0B给出了标准的和扩展的两种报文格式。此后,1993年11月ISO正式颁布了道路交通运载工具--数字信息交换--高速通信控制器局部网(CAN)国际标准(ISO11898),为控制器局部网标准化、规范化推广铺平了道路。 2. CAN总线特点 CAN总线是德国BOSCH公司从80年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通信协议,它是一种多主总线,通信介质可以是双绞线、同轴电缆或光导纤维。通信速率可达1MBPS。CAN总线通信接口中集成了CAN协议的物理层和数据链路层功能,可完成对通信数据的成帧处理,包括位填充、数据块编码、循环冗余检验、优先级判别等项工作。 CAN协议的一个最大特点是废除了传统的站地址编码,而代之以对通信数据块进行编码。采用这种方法的优点可使网络内的节点个数在理论上不受限制,数据块的标识码可由11位或29位二进制数组成,因此可以定义211或229个不同的数据块,这种按数据块编码的方式,还可使不同的节点同时接收到相同的数据,这一点在分布式控制系统中非常有用。数据段长度最多为8个字节,可满足通常工业领域中控制命令、工作状态及测试数据的一般要求。同时,8个字节不会占用总线时间过长,从而保证了通信的实时性。CAN协议采用CRC 检验并可提供相应的错误处理功能,保证了数据通信的可靠性。CAN卓越的特性、极高的可靠性和独特的设计,特别适合工业过程监控设备的互连,因此,越来越受到工业界的重视,并已公认为最有前途的现场总线之一。 3. CAN总线技术介绍

CAN总线发展简史及六大优势

CAN总线发展简史及六大优势 随着计算机硬件、软件及集成电路技术的迅速发展,消费类电子产品、嵌入式主板、汽车和工业应用等也发展迅速,从而对高速、高可靠和低成本的通信介质的要求也随之提高。 现场总线是当今自动化领域技术发展的热点之一,它为分布式控制系统实现各节点之间实时、可靠的数据通信提供了强有力的技术支持。 在嵌入式硬件系统传输领域内,长期以来使用的通信标准,尽管被广泛使用,但是无法在需要使用大量的传感器和控制器的复杂或大规模的环境中使用。CAN总线就是为适应这种需要而发展起来的。 CAN是Controller Area Network的缩写,即“局域网控制器”的意思,可以归属于工业现场总线的范畴,通常称为CAN BUS,即CAN总线,是目前国际上应用最为广泛的开放式现场总线之一。 CAN总线最早用在汽车电子领域,世界上一些著名的汽车制造厂商都采用CAN总线来实现汽车内部控制系统与各检测和执行机构间的数据通信。 CAN总线规范从CAN1.2规范发展为兼容CAN1.2规范的CAN2.0规范(CAN2.0A为标准格式,CAN2.0B为扩展格式),目前应用的CAN器件大多符合CAN2.0规范。 ?CAN总线发展简史 1986年,Bosch在SAE(汽车工程人员协会)大会上提出CAN总线概念; 1987年,Intel推出第一片CAN控制芯片82526,随后Philips半导体也推出82C200; 1993年,CAN的国际标准ISO11898/ISO11519公布。ISO11898为高速应用,ISO11519为低速应用; 1994年开始有了国际CAN学术年会ICC。同年,美国汽车工程师协会以CAN为基础制定了SAEJ1939标准,用于卡车和巴士控制和通信网络。 ?CAN总线六大特点 1)CAN控制器工作于多主站方式,网络中的各节点都可根据总线访问优先权(取决于报文标识符)采用无损结构的逐位仲裁的方式竞争向总线发送数据。而利用RS-485只能构成主从式结构系统,通信方式也只能以主站轮询的方式进行,系统的实时性、可靠性较差。 2)CAN协议废除了传统的站地址编码,而代之以对通信数据进行编码,其优点是可使网络内的节点个数在理论上不受限制,加入或减少设备都不影响系统的工作。同时可使不同的节点同时接收到相同的数据,这些特点使得CAN总线构成的网络各节点之间的数据通信实时性强,并且容易构成冗余结构,提高系统的可靠性和系统的灵活性。 3)CAN总线通过CAN控制器接口芯片的两个输出端CANH和CANL与物理总线相连,而CANH端的状态只能是高电平或悬浮状态,CANL端只能是低电平或悬浮状态。这样就保证不会出现类似在RS-485网络中系统有错误时会导致出现多节点同时向总线发送数据而导致总线呈现短路从而损坏某些节点的现象。而且CAN节点在错误严重的情况下具有自动关闭输出功能,以使总线上其他节点的操作不受影响,从而保证不会出现象在网络中,因个

相关文档