文档库 最新最全的文档下载
当前位置:文档库 › 边界层的测定

边界层的测定

边界层的测定
边界层的测定

实验报告

课程名称:________过程工程原理实验____________指导老师:__叶向群____成绩:__________________ 实验名称:___空气纵掠平板时流动边界层、热边界层的测量___实验类型:__________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求

1. 了解实验装置的原理、测量系统及测试方法。

2. 掌握流动边界层内速度分布和热边界层内温度分布的规律,加深对边界层理论中各概念的理解。

3. 了解动量传递与热量传递间的类比关系。 二、实验内容和原理

图1 平板附近形成的流动边界层和热边界层示意图

如图1所示,平板表面具有恒定的热流密度0q ,当温度为∞T 的空气以均匀来流∞u 掠过平板时,在平

板附近形成流动边界层和热边界层。

记δ、T δ为平板流动边界层及热边界层厚,则δ、T δ仅为x 的函数,且T δδ/为常数。δ、T δ与x 的关系可通过测量不同x 处气流的速度分布()y u

x

、温度分布()y T x 来确定。

实验中,用热电偶可得到温差;用毕托管可测得气体流速。具体如下:

热电偶A 、B 均为铜—康铜热电偶,以空气来流作为参考温度,热端、冷端每度温差的热电偶输出可近似取为C mv ?/043.0,因此

专业:__化工1101___ 姓名:_____梁昊_____

学号:___3110000442__ 日期:________________ 地点:________________

()C T T E T T W W ?-=-∞∞043.0/ (1)

()C T T E T T ?-=-∞∞043.0/ (2)

其中E 为温差所对应的热电势。

用毕托管测得的u 按下式计算:ρ

p u ?=2 (

g KR p 0ρ=?) (3)

由此可以得到边界层内外的空气速度。 其中:u ——空气速度,s m /;

0ρ——倾斜式微压计指示液密度,3/m kg ;

ρ——空气密度,3/

m kg ;

R ——倾斜式微压计读数,mm ; g ——重力加速度,

Κ——倾斜式微压计倾斜常数。

三、主要仪器设备

本实验流程图如图2所示:

图2 实验装置流程图

实验装置由风源、试验段和测量系统构成。试验段由有机玻璃制成的风道、平板试件及提供热源的低压直流电源构成。平板纵向插入风道中,并可在风道内上、下移动,平板表面为一薄的不锈钢片(内衬有较厚的胶木板),并由低压直流电源提供恒定的电流I 进行加热,使不锈钢片表面具有恒定的热流密度0

q ,

平板表面温度W

T 的变化直接反映出表面对流传热系数的大小。

测量边界层内场的变化情况的测温探头和测速探头被一同安装在一位移机构上,并位于试验风道出口处,二探头的位移由百分表精确测量。探头接触平板壁面的初始位置由机构内的电回路上的指示灯控制,位移机构上固定探头处有一微调件,可以调节探头的伸出距离,使二探头处于对平板壁面有同样的相对位置。

本实验中,测速探头为一毕托管,外接倾斜式微压计;测温探头用热电偶。平板壁温W

T 通过热电偶、

转换开关经直流数字电压表测出,其中热电偶的热端放在不锈钢内表面与胶木板之间,冷端放在风道主气流中,热电偶反映的是温差()∞-T T W 所对应的热电势()∞-T T E W 。

四、操作方法和实验步骤

1.连接并检查所有线路和设备,将直流电源电压调节旋钮逆时针转到底,指针指在零位,往上移动平板,使平板前缘位于风道出口处。

2.打开风机调节风门,控制进风量恒定。

3.接通直流电源,并慢慢地提高输出电压,使电流为15A ,对平板进行加热。

4.调节百分表旋钮,使探头向平板靠近,然后调节测温探头和测速探头的微调旋钮,使二探头同时刚刚触及平板壁面,即二指示灯同时亮或同时暗。调好后将百分表旋至本位并记下百分表初始读数。 5.从探头触及平板壁表面处开始测量,每移动0.5mm 测量一次,读出微压计读数,同时记录热电势

()∞-T T E 及位移值y ,直至微压计、()∞-T T E 读数不变,得一组数据。

6.将平板往下调节(增大x ),固定在一个新的位置,重复实验步骤4、5。 7.重复步骤6,直至测到5组数据后,开始测量壁温W T 。

8.接热电偶A 编号旋转热电偶连接板的旋转开关(注意:用手抓住热电偶连接板以免连接板掉下),用直流数字电压表逐点读出其温差电势()∞-T T E W 。

9.实验结束时,将电压调节旋钮逆时针旋到底,指针恢复零位,关掉直流电源。然后再将风门开到最大位置,将平板试件冷却下来后再关掉风机。

五、实验数据记录和处理

实验条件:T∞=27.2℃,p0sina=0.2, p酒精=810kg/m3 (20℃)

表一热边界层、流动边界层的测定

表二平板壁温分布测定

Tw的计算(以编号1为例)

因为

()C

T

T

E

T

T

W

W

?

-

=

-

043

.0/

所以Tw=T∞+E(Tw-T∞)/0.043=27.2+0.651/0.043=42.34℃

其余的Tw均可由此法求得。

由表一可得速度边界层厚度δ、温度边界层厚度δT以及δ/δT与x的关系。其中,E值稳定后的最小y

值即是δT ,R 值稳定后的最小值y 即是δ,现他们的关系见表三

表三 δ、δT 、δ/δT 与x 的关系

注:由于在x=140mm 以及x=160mm 时温度边界层的厚度超出y 值的量程,故这两处的δT 和δ/δT 均不存在

取表一中x=120mm 作速度、温度分布,其结果见表四

表四 边界层内速度分布、温度分布 (x=120mm)

注:表四中y 、E 、R 均为实验值,Tw 、u 均为计算值

取第1组实验数据( )做计算演示,其余数据均可由此法求得: 因为()C T T E T T ?-=-∞∞043.0/, 所以()C T T E T T

?=+=-+=∞∞48.43043.0/180.02.27043.0/。

()

()()

s m K gR u /37.4165.1/2.08101000/0.781.92/25

.05

.00=????==ρρ

六、实验结果与分析

根据表三可作出δ、δT 关于x 的图像,从而得出热边界层与速度边界层的厚度变化

从图像可以看出,温度边界层和速度边界层均随着x 的增加而增大,最后趋向平缓,但是由于旋转开

mm y 000.0=

关的量程只有11.2mm,不够,所以温度边界层的曲线并没有做完整,图中为了能大致看出曲线的变化,把x=140mm和x=160mm时的δT都放进去进行曲线拟合,但是这两个数据是偏小的。

在量程一定的情况下有如下办法把完整的曲线描绘出来,一是把位移机构往后移,并测出往后移的距离,在计算y值的时候把测量值加上距离就是实际的y值;二是减小通电电流的大小,从而整体降低壁温的温度,从而减小温度边界层的厚度。

2、壁温T w与x的关系

由表二数据绘出壁温Tw与x的关系

由图像可以看出,随着x的推移,壁温成曲线上升后趋向平缓,这是因为x小的时候,温度边界层厚度薄,对流传热比较好,所以壁温温度低;当x慢慢变大时,温度边界层厚度厚,所以壁温温度高;对比Tw-x图和δT-x图我们可以看出,他们达到稳定的状态时的x值并不相同,Tw-x图中,稳定温度时的x值大约是100mm,在δT-x图中,稳定温度的x值大约是160mm。这比较好理解,温度跟速度一样,在同一x点温度是有梯度的,而且y值越大,这个梯度就越小,也就是说,当壁温早早就稳定的时候,同一x点的温度边界层由于温度梯度比较小,还未达到稳定,需继续往后继续慢慢增大才能到达稳定状态。

3、边界层内速度分布、温度分布

根据表四速度分布和温度分布的图,得

从图中可以看出,在边界层中,温度和速度梯度都比较大。对于速度,由于受到的阻力越来越小,所以速度会增大。对于温度,由于对流传热造成热量散失,所以温度会减小,同时我们可以看出边界层是热量传递的主要区域

4、实验误差

从实验数据以及处理结果来看,本实验存在的误差主要有:

1.由于在测定速度的时候靠的是毕托管的读数经过计算转化得来的,所以在读数的时候会有读数误差;另外在测定温度的时候由于ΔE的时候读数一直在不停地变化,即温度边界层内温度梯度一直在变,所以读数也会存在误差,而且位移机构的量程不够,所以温度边界层并没有做完成。

2.由于本实验存在的不确定因数比较多,比如室温的变化(由于实验时间比较长,温度可能会发生变化)、进风量的变化(风速可能会不稳定)、测定的数据点不够多(造成拟合温度边界层和速度边界层的时候拟合得不是很好)、y值在移动的时候一般是按1mm或者0.5mm移动的(大部分是1mm),所以边界层的真是厚度就会有0.5mm~1mm的误差、测温度变化的时候是假设ΔE ΔT,而在实验条件下,可能并不是严格的成正比关系。

七、心得、讨论 思考题

1.当平板固定在某一位置上时,若加大进风量,速度边界层和热边界层将如何改变?

答:根据公式 知,当进风量变大时, 变大,δ变小,由于δ/δT 不变,所以温

度边界层和速度边界层同时变小。

2. 对平板,理论上δ/δT 为多少? 答:3/1Pr

∞=v v /x 0.5δ∞v

边界层理论

1.边界层理论概述 (1) 1.1 边界层理论的形成与发展 (1) 1.1.1 边界层理论的提出 (1) 1.1边界层理论存在的问题 (2) 1.2 边界层理论的发展 (2) 2边界层理论的引入 (3) 3 边界层基础理论 (4) 3.1 边界层理论的概念 (4) 3.2 边界层的主要特征 (6) 3.3边界层分离 (7) 3.4 层流边界层和紊流边界层 (9) 3.5 边界层厚度 (10) 3.5.1 排挤厚度 (11) 3.5.2 动量损失厚度 (11) 3.5.2 能量损失厚度 (12) 4 边界层理论的应用 (14) 4.1 边界层理论在低比转速离心泵叶片设计中的应用 (14) 4.2 边界层理论在高超声速飞行器气动热工程算法中的应用 (14) 4.3 基于边界层理论的叶轮的仿真 (15) 参考文献 (17)

1.边界层理论概述 1.1 边界层理论的形成与发展 1.1.1 边界层理论的提出 经典的流体力学是在水利建设、造船、外弹道等技术的推动下发展起来的,它的中心问题是要阐明物体在流体中运动时所受的阻力。虽然很早人们就知道,当粘性小的流体(像水、空气等)在运动,特别是速度较高时,粘性直接对阻力的贡献是不大的。但是,以无粘性假设为基础的经典流体力学,在阐述这个问题时,却得出了与事实不符的“D'Alembert之谜”。在19世纪末叶,从不连续的运动出发,Kirchhoff,Helmholtz,Rayleigh等人的尝试也都失败了。 经典流体力学在阻力问题上失败的原因,在于忽视了流体的粘性这一重要因素。诚然,在速度较高、粘性小的情况下,对一般物体来说,粘性阻力仅占一小部分;然而阻力存在的根源却是粘性。一般,根据来源的不同,阻力可分为两类:粘性阻力和压差阻力。粘性阻力是由于作用在表面切向的应力而形成的,它的大小取决于粘性系数和表面积;压差阻力是由于物体前后的压差而引起的,它的大小则取决于物体的截面积和压力的损耗。当理想流体流过物体时,它能沿物体表面滑过(物体是平滑的);这样,压力从前缘驻点的极大值,沿物体表面连续变化,到了尾部驻点便又恢复到原来的数值。这时压力就没有损失,物体自然也就不受阻力。如果流体是有粘性的,哪怕很小,在物体表面的一层内,流体的动能在流体运动过程中便不断地在消耗;因此,它就不能像理想流体一直沿表面流动,而是中途便与固体表面脱离。由于流体在固体表面上的分离,在尾部便出现了大型涡旋;涡旋演变的结果,就形成了一种新的运动“尾流”。这全部过程是一个动能损耗的过程,也是阻力产生的过程。 由于数学上的困难,粘性流体力学的全面发展受到了一定的限制。但是,在粘性系数小的情况下,粘性对运动的影响主要是在固体表面附近的区域内。 从这个概念出发,普朗特(Prandtl)在1904年提出了简化粘性运动方程的理论——边界层理论。即当流体的粘度很小或雷诺数较大的流动中,流

平板边界层实验报告

流体力学实验 平板边界层实验报告 班级 姓名 实验日期 指导教师 北京航空航天大学流体力学研究所

流体力学实验 平板边界层实验报告 一、实验目的 测定平板边界层内的流速分布,并比较层流边界层及紊流边界层的速度分布的差别。 二、实验设备 本实验使用的是一个二维开路闭口低速风洞,在该风洞实验段中装有两块平板,以分别测量层流及紊流边界层的速度分布。为测量速度分布,在平板板面上安装有总压排管及静压管。这些测压管分别用橡皮管连接到多管压力计上,通过测量多管压力计液柱高度推算出速度来,具体原理见后。为测出实验段风速,在实验段侧壁上装有风速管,风速管的总压孔及静压孔也分别用橡皮管连接于多管压力计上,装备情况见图1。 图1 三、实验原理 当气流流过平板时由于粘性作用使紧贴平板表面处的流速为零,离开板面速度就逐渐增大,最后达到相当于无粘时的气流速度。对平板来说,就等于来流速度了。由于空气粘性很小,只要来流速度不是很小时,流速变化大的区域只局限在靠近板面很薄的一层气流

内,这一薄层气流通常叫作边界层。人为地规定,自板面起,沿着它的法线方向,至达到99%无粘时的速度处的距离,称为边界层厚度δ。 不可压流场中,每一点处的总压P 0,等于该点处的静压和动压 1 2 2ρv 之和。 p p v 021 2=+ ρ 则 v p p = -20() ρ (1) 因此只需测出边界层内各点处的静压p ,总压p 0,就可计算出各点的速度来。但考虑到垂直平板方向的静压梯度等于零(即??p y /=0),我们只需在平板表面开一静压孔,所测的静压就等于该点所在的平板法线方向上各点的静压。要测边界层内的速度分布就只要测出沿平板法线上各点的总压即可。 p i 0──为各测点的总压。 p i ──为各测点的静压。 v i ──为各测点的速度。 γ ──为多管压力计所使用的液体重度(公斤/米3)。 ?h i ──为各测点总压管与静压管的液柱高度差。 ρ ──为空气的密度,实验时可依据当时室温及大气压强由表查出。 φ ──为多管压力计的倾斜角。 根据(1)式,边界层内各测点处的速度为 v h i i = 2 ρ γφ?sin (2) 通常边界层内的速度分布用无量纲的形式表示为 v v f y i i 1=()δ y i 为各测点至板面的高度,δ 为边界层厚度,v 1为边界层外边界上的速度,对平板 来说即为来流速度。 v 1可通过风速管的静压管和总压管在多管压力计上的液柱高度差?h 1,由下式算出: v h 112 =ρ γφ?sin (3) 由(2)式和(3)式,可得 v v h h i i 1 1 =?? (4)

边界层气象学试题库

一、名词解释 (每小题 6 分,共 30 分) 1. 雷诺数 Re ≡UL/v=特征惯性力/特征粘性力。Re 数是判断两粘性流体运动是否相似的重要判据之一。 2. 总体理查逊数 R b =g θv ????θv ????z θv ???[(?U ?)2+(?V ?)2] 3. 雷诺平均 对于任一物理量,当定义平均值后,可将湍流运动表示为 湍流运动=平均运动+脉动运动。而将任意实际物理量表示为:A =A ?+A′,则为雷诺平均。 4. 大气边界层 大气的最低部分直接受下垫面(地面)影响的层次,或者说大气与下垫面相互作用的层次。大气边界层厚度的时空差异很大,平均厚度为地面以上约1km 的范围,以湍流运动为主要特征。还可细分为近地层(大气边界层下部约1/10的厚度内)和Ekman 层。 大气边界层又称行星边界层,是指存在着连续性湍流的低层大气:(1)湍流是边界层大气的主要运动形态,对地表面与大气间的动量、热量、水汽及其他物质的输送起着重要作用; (2)地球表面热力强迫的日变化通过湍流混合扩散使得边界层中气象要素呈现日周期的循环。 5. 定常湍流 如果这些湍流统计参数不随时间变化,就称为平稳湍流或定常湍流;此时,足够长时间的平均即接近于总体平均。 6. 均匀湍流≡ 如果统计参数不随空间变化,称之为均匀湍流;此时,足够大的空间平均也接近于总体平均。 7. 普朗特混合长 湍流运动中,单位质量的流体微团含有某种特性量q ,如果① q 是被动的,即不影响流体的运动情况; ② q 是保守的,即在运行距离 之后,q 值守恒。在湍流运动过程中特性量q 保持不变(失去原有特性)前所走过的距离,称之为混合长。 8. 常值通量层 近地层较薄,可近似认为动量、热量和水汽垂直湍流输送通量几乎不随高度变化(风向也几乎不随高度改变),各种通量近似为常值,故称为常值通量层。常值通量层通常指的是动量常值通量层。 9. Monin-Obukhov 长度 L =?u ?3k g θw ′θ′??????=u ?2k g θθ? 10. 动力内边界层 上游来流为中性大气,气流从一种粗糙度表面跃变到另一种粗糙度的下垫表面,在地面的动力强制作用下,在新的下垫面上空将形成一个内边界层,即动力内边界层。 11. 热力内边界层 气流从一种温度的下垫表面过渡到另一种温度的下垫表面,在地面的热力强制作用下, /2l

matlab求解平板边界层问题

《粘性流体力学》程序 平板边界层问题求解

1.1编程思路 平面边界层问题可以归结为在已知边界层条件下解一个高阶微分方程,即解0 f。Matlab提供了解微分方程的方法,运用换+ff '''= 5.0 '' 元法将高阶微分方程降阶,然后运用“ode45”函数进行求解。函数其难点在于如何将边界条件中1 η运用好,由四阶龙格-库塔方 →f ,→ ' ∞ 法知其核心是换元试算匹配,故在运用函数时通过二分法实现 η是可行的。 ∞ →f ,→ ' 1 1.2m函数 function dy = rigid(x,y) dy = zeros(3,1); dy(1) = y(2); dy(2) = y(3); dy(3) = -0.5*y(1)*y(3); %main程序 [X, Y] = ode45('rigid',[0 5],[0 0 0]); plot(X, Y(:,1),'-',X, Y(:,2),'*',X, Y(:,3),'+') %二分法试算f’’的初始值以满足f’趋向无穷时的边界条件,图像上可以清晰看出f’无穷时的结果 >> [X, Y] = ode45('rigid',[0 5],[0 0 1]); plot(X, Y(:,1),'-',X, Y(:,2),'*',X, Y(:,3),'+') >> [X, Y] = ode45('rigid',[0 5],[0 0 0.5]); plot(X, Y(:,1),'-',X, Y(:,2),'*',X, Y(:,3),'+') >> [X, Y] = ode45('rigid',[0 5],[0 0 0.25]); plot(X, Y(:,1),'-',X, Y(:,2),'*',X, Y(:,3),'+') >> [X, Y] = ode45('rigid',[0 5],[0 0 0.375]); plot(X, Y(:,1),'-',X, Y(:,2),'*',X, Y(:,3),'+') >> grid on >> [X, Y] = ode45('rigid',[0 5],[0 0 0.3125]); plot(X, Y(:,1),'-',X, Y(:,2),'*',X, Y(:,3),'+') >> grid on >> [X, Y] = ode45('rigid',[0 5],[0 0 0.34375]); plot(X, Y(:,1),'-',X, Y(:,2),'*',X, Y(:,3),'+') grid on >> [X, Y] = ode45('rigid',[0 5],[0 0 0.328125]); plot(X, Y(:,1),'-',X, Y(:,2),'*',X, Y(:,3),'+') grid on

什么是边界层

什么是边界层?广义讲:在流体介质中,受边界相对运动以及热量和物质交换影响最明显的那一层流体。具体到大气边界层,是指受地球表面摩擦以及热过程和蒸发显著影响的大气层。大气边界层厚度,一般白天约为1.0km,夜间大约在0.2km左右,地表提供的物质和能量主要消耗和扩散在大气边界层内。大气边界层是地球-大气之间物质和能量交换的桥梁。全球变化的区域响应以及地表变化和人类活动对气候的影响均是通过大气边界层过程来实现的。 什么是湍流?英文湍流为“turbulence”,日文为“乱流”,湍流简单定义:流体微团进行的有别于一般宏观运动的不规则的随机运动,从宏观上看,它没有稳定的运动方向,但它能够象分子运动一样通过其随机运动过程有规律地传递物质和能量。从1915年由Taylor[1]提出大气中的湍流现象到1959年Priestley[2]提出自由对流大气湍流理论,可以说,到20世纪50年代以前经典的湍流理论基本上已经形成。以后,湍流理论基本上再没有出现大的突破。1905年Ekman[3]从地球流体力学角度提出了著称于世的Ekman螺线,在此基础上形成了行星边界层的概念,他的基本观点仍沿用至今。1961年,Blackadar[4]引入混合长假定,用数值模式成功地得到了中性时大气边界层具体的风矢端的螺旋图象。行星边界层的提出使人们认识到了大气边界层在大气中的特殊性和一些奇妙的规律。从20世纪50年代开始,由于农业、航空、大气污染和军事科学的需要,掀起了大气边界层研究的高潮。1954年, Monin和Obukhov[5]提出了具有划时代意义的Monin—Obukhov相似性理论,建立了近地层湍流统计量和平均量之间的联系。1982年,Dyer[6]等利用1976年澳大利亚国际湍流对比实验ITCE对其进行完善使得该理论有了极大的应用价值。1971年Wyngaard[7]提出了局地自由对流近似,补充了近地面层相似理论在局地自由对流时的空白。从20世纪70年代开始,随着大气探测技术和研究方法的发展,特别是雷达技术,飞机机载观测, 系留气球和小球探空观测以及卫星遥感和数值模拟等手段的出现,大气边界层的研究开始从近地层向整个边界层发展。简洁地概括,对大气边界层物理结构研究贡献最突出的是两大野外实验和一个数值实验,即澳大利亚实验的Wanggara和美国的Min-nesota实验以及Deardorff的大涡模拟实验。相似性理论是大气边界层气象学中最主要的分析和研究手段之一,在建立了比较成熟的用于描述大气近地面层的Monin—Obukhov相似性理论以后,人们开始寻求类似的全边界层的相似性理论。国际上,除Neuwstadt[8]、Shao[9]等做了大量工作外,我国胡隐樵等以野外实验验证了局地相似性 理论,并建立了各种局地相似性理论之间的关系。张强等还对局地相似性理论在非均匀下垫面近地面层的适应性做了一些研究。自1895年雷诺平均方程建立以来,该方程组的湍流闭合问题是至今未解决的一个跨两个世纪的科学难题。人们发展湍流闭合理论,以达到能够数值求解大气运动方程,实现对大气的数值模拟。闭合理论有一阶局地闭合理论即K闭合。1990年HoIt-sIag[12]在1972年理论框架的基础上,用大涡模拟资料对K理论做了负梯度输送的重大修正。为更精确地求解大气运动方程,也为了满足中小尺度模式,特别是大气边界层模式刻画边界层湍流通量和其它高阶矩量的目的,高阶湍流闭合技术也开始被模式要求。由于大气边界层研究是以野外探测实验为基础的实验性很强的科学,我国以往由于经济落后,无法得到第一手的实验资料,研究相对落后,与国外相比,总体上差距在20a左右,但我国学者在大气边界层的研究中也有其特殊贡献:1940年周培源先生[13]提出的湍流应力方程模式理论,被认为是湍流模式理论开始的标志,这一工作奠定了他在国际湍流研究领域的崇高地位。苏从先等在上世纪50年代给出的近地面层通量廓线与当时国外同类研究同步,被国外学者称为“苏氏定律”,在上世纪80年代苏从先等首次发现了干旱区边界层的绿洲“冷岛效应”结构。上世纪70年代周秀骥[16]提出的湍流分子动力学理论也很有独特的见解。1981年周 明煜[17]提出的大气边界层湍流场团块结构是对湍流结构的新认识。上世纪80~90年代赵鸣[18]对边界层顶抽吸作用的研究是对Charney—Eiassen公式的很好发展。在20世纪90年代的“黑河实验”中,胡隐樵等和张强[19]首次发现了邻近绿洲的荒漠大气逆湿,并总结提出了绿洲与荒漠相互作用下热力内边界层的特征等等。国内外有关大气边界层和大气湍流的专著

流体力学平板边界层内的流速分布实验报告电子版

平板边界层内的流速分布实验 实验日期 2011-5-21 小组成员:李超,郭静文(93班)等 报告人 周楠 能动95 09031125 实验目的 1) 测量离平板前缘任意截面边界层内的速度分布; 2) 根据速度分布确定边界层厚度; 3) 了解风洞结构及测量仪器。 仪器设备 吸入式风洞、大气压强计、温度计、微压计、U 型测压管、平板模型、总压探针及三维坐标架。 其中仪器的重要参数包括: (1)吸入式低速风洞P max =P a , 工作截面尺寸300mm ×300mm; (2)风洞的气体流速u max <25m/s, M<0.3,所以风洞内气体流动可以看成二维不可压缩流动即ρ=ρa (3)平板尺寸325mm ×200mm (4)总压探针头部直径:d=0.9mm 实验原理 1 流体在大雷诺数下绕物体流动时,由于流体粘性的作用,与物体表面接触的流体速度为零,然后沿法向很快增至主流速度,这层贴近物体表面,沿着法向有很大速度梯度的流动薄层,称为边界层; 2 在边界层内,速度梯度很大,不能忽略流体的粘性,因此流动作实际流动u x 和p o 都在变化且u x

8第八章-边界层理论基础和绕流运动

第八章 边界层理论基础和绕流运动 8—1 设有一静止光滑平板宽b =1m ,长L =1m ,顺流放置在均匀流u =1m/s 的水流中,如图所示,平板长边与水流方向一致,水温t =20℃。试按层流边界层求边界层厚度的最大值δmax 和平板两侧所受的总摩擦阻力F f 。 解:20℃水的运动粘度ν=1.003?10-6 m 2/s 密度3 998.2/kg m ρ= 6 11 9970091.00310ν-?= = =?L uL Re 因为 56 310997009310?<=

平板边界层速度剖面的测定讲义2

2009年04月20~22日平板附面层速度剖面与厚度的测定 一、实验目的: 1.熟悉附面层速度分布和厚度的测量方法。 2.具体测定平板附面层层流与湍流附面层的速度分布及其厚度。 3.把实验结果与理论计算结果进行比较,分析其差异产生的原因。 二、实验原理: 粘性匀质不可压缩流体,测量边界层内的速度,仍利用风速管(皮托管)测风速的原理,即测出某点的总压P0和静压P后再换算成该点的速度,因为边界层很薄,其厚度往往只有几mm到十几mm,因而只能用极细的探针去探测边界层内的压力。 由于在边界层内部满足?(P)/?(Y)=0,即静压P沿着平板的法线方向不变,因此,可以用壁面上的静压P来表示边界层内法线上所有不同高度的静压。于是,本实验将一根微总压管装在一标架上,使微总压管以很小的间距上下移动,测出不同高度处的总压P0(y)后,即可算出法线上离壁面y处的速度。 实验时,把总压管由壁面逐步往上移动,则测出的总压越来越大。当移动到某一高度以后,再继续往上移动几个间距,这时所测到的总压已不再随高度的变化而变化。记录下数据,经软件分析后可得速度边界层厚度和速度剖面,并与理论曲线对照。 理论分析中总是假定从平板(或物体)的前缘(或驻点)就开始形成层流或湍流边界层。实际上绕流体的运动常常是组合边界层问题,即在物体的前部分首先形成层流边界层,在它的后部分形成湍流边界层,在它们之间还有一个过渡段。 过渡段从层流的失稳点(层流不稳定点)开始直到流动成为完全湍流之点(湍流过渡点)结束。性质介于两者之间。 为了读出压力的微小变化,本实验采用压力传感器,采用总压和静压之差,将其采集的压力信号转换成电信号,再通过放大器进行信号放大后,输入A/D转换器,由计算机直接计算出速度值。 由于速度剖面是以无量纲形式画成的,因此,不需要计算一点的速度,只要计算出速度的相对值就可以了。计算各高度上的u y/v和y/δ的值,以y/δ为纵

流体力学——平板边界层编程

对于本次编程编程作业,小组运用matlab 和c++两种程序对平板边界层问题和绕过楔形体边界层流动问题进行分析研究。以下是运用matlab 解决问题的过程。 一、 平板边界层问题 该问题可以归结为在已知边界层条件下解一个高阶微分方程,即解0''5.0'''=+ff f 。Matlab 提供了解微分方程的方法,运用换元法将高阶微分方程降阶,然后运用“ode45”函数进行求解。函数其难点在于如何将边界条件中1',→∞→f η运用好,由四阶龙格-库塔方法知其核心是换元试算匹配,故在运用函数时通过二分法实现1',→∞→f η是可行的。程序如下: 第一问m 函数 function dy = rigid(t,y) dy = zeros(3,1); dy(1) = y(2); dy(2) = y(3); dy(3) = -0.5*y(1)*y(3); %第一问main 程序 [T,Y] = ode45('rigid',[0 5],[0 0 0]); plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+') %二分法试算f ’’的初始值以满足f ’趋向无穷时的边界条件,图像上可以清晰看出f ’无穷时的结果 >> [T,Y] = ode45('rigid',[0 5],[0 0 1]); plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+') >> [T,Y] = ode45('rigid',[0 5],[0 0 0.5]); plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+') >> [T,Y] = ode45('rigid',[0 5],[0 0 0.25]); plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+') >> [T,Y] = ode45('rigid',[0 5],[0 0 0.375]); plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+') >> grid on >> [T,Y] = ode45('rigid',[0 5],[0 0 0.3125]); plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+') >> grid on >> [T,Y] = ode45('rigid',[0 5],[0 0 0.34375]); plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+') grid on >> [T,Y] = ode45('rigid',[0 5],[0 0 0.328125]); plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+') grid on >> [T,Y] = ode45('rigid',[0 10],[0 0 0.328125]);%当f ’’为0.328125时,逼近结果已经很好,在0到5的变化范围内已经非常接近精确解 plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+') grid on >> [T,Y] = ode45('rigid',[0 5],[0 0 0.335975]); plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+') grid on

城市边界层气象 第2章 城市辐射特征汇总

第2章 城市辐射特征 辐射是影响区域气候最重要的因子。一个地区由于所处的地理纬度已经决 定了其太阳辐射的天文总量。在城市区域,由于受地表特征和大气污染城市效应的影响,接收的太阳直接辐射有别于同纬度的其它地区。因此,了解城市区域辐射特征,建立城市太阳直接辐射的理论和模式,对城市区域气候和大气边界层的研究具有重要的意义。 2.1 太阳直接辐射基本原理 地表和大气中接收到的太阳直接辐射能量,与地球大气上界的太阳直接辐射 能及随时间的变化密切相关,这是地球上形成气候差异的基本因素。 2.1.1太阳高度的概念 对于在地球上一个地点来说,太阳高度就是太阳入射光方向与地平线之间的夹角,用h 表示。同一束阳光,直射地面时所照射的面积比斜射时小,并且,太阳直射时透过大气的路程较短,被大气吸收和散射程度较小。因此,地面单位面积上所获得的辐射能量必定大于太阳光斜射的地方。太阳直射与斜射的程度可以用太阳高度角来表示。 太阳高度很大程度上决定着地球表面获得太阳能量数量的多少,也是地球上形成四季和五带的重要因素,并且是大气运动和地球上一切生物能量的来源。在大气科学、生命科学和环境科学等多学科中计算太阳辐射能量时,太阳高度是必须考虑的重要因素。 由天文学公式得太阳高度角h 与测点所在的纬度?、太阳赤纬δ和当时的太阳时角0t 的关系式为 0cos cos cos sin sin sinh t δ?δ?+= (2.1) 或 0cos cos cos sin sin sinh cos t Z δ?δ?+== (2.2) Z 为天顶角。观测时的太阳时角0t ,为观测点经圈与太阳重合后,即当地正午,地球自转的角度,正午时刻时角为0,(当太阳在子午面时),此时太阳高度角记

边界层理论

3 强制对流流过平板形成的速度边界层和浓度边界层 速度边界层 假设流体为不可压缩,流体内部速度为u b ,流体与板面交界处速率u x =0。靠近板面处, 存在一个速度逐渐降低的区域,定义从0.99x b u u =到u x = 0的板面之间的区域为速度边界层,用u δ表示。如图4-1-3和4-1-4所示。其厚度b u 64.4u x νδ=, 由于b e u x R ν = 所以 x u Re 64 .4= x δ 浓度边界层 若扩散组元在流体内部的浓度为c b ,而在板面上的浓度为c 0,则在流体内部和板面之间存在一个浓度逐渐变化的区域,物质的浓度由界面浓度c 0变化到流体内部浓度c b 的99%时的厚度δc ,即 00.01b b c c c c -=-所对应的厚度称为浓度边界层,或称为扩散边界层。 层流状态时, δu 与δc 有如下关系 δc /δu =(ν/D )-1/3 = Sc -1/3 Sc=ν/D 为施密特数。 δc /x = 4.64Re x -1/2 Sc x -1/3 在界面处(即y =0)沿着直线对浓度分布曲线引一切线,此切线与浓度边界层外流体内部的浓度c b 的延长线相交,通过交点作一条与界面平行的平面,此平面与界面之间的区域叫做有效边界层,用δc ’来表示。在界面处的浓度梯度即为直线的斜率 's b 0)( c y c c y c δ??-== 瓦格纳(C. Wagner )定义' c δ

速度边界层、浓度边界层及有效边界层 4 数学模型 在界面处(y =0),液体流速u y = 0=0, 假设在浓度边界层内传质是以分子扩散一种方式进行,稳态下,服从菲克第一定律,则垂直于界面方向上的物质流密度即为扩散流密度J : J = -D (c y )y=0?? 而 's b 0)( c y c c y c δ??-== -----多相反应动力学基本方程 k d 叫传质系数。 有效边界层的厚度约为浓度边界层(即扩散边界层)厚度的2/3,即δc ’=0.667δc 。 对层流强制对流传质,δc ’ =3.09 Re 2/1-x Sc -1/3 x Sh x = D x k d 或 Sh x = x /δc ’ 所以 Sh x = 0.324 Re 2 /1x Sc 1/3 ()(.Re )'//k D D x x x d c Sc = = δ 03241213 若平板长为L ,在x =0 ~ L 范围内(k d )x 的平均值(注意到:c S D ν= ,b e u x R ν = ,Sh x = D x k d )

边界层理论1

边界层(Boundary Layer)是高雷诺数绕流中紧贴物面的粘性力不可忽略的流动薄层,又称流动边界层、附面层。这个概念由近代流体力学的奠基人,德国人Ludwig Prandtl(普朗特)于1904年首先提出。从那时起,边界层研究就成为流体力学中的一个重要课题和领域。在边界层内,紧贴物面的流体由于分子引力的作用,完全粘附于物面上,与物体的相对速度为零。 边界层又称附面层,它是指流体流经固体表面时,靠近表面总会形成那么一个薄层,在此薄层中紧贴表面的流体流速为零,但在垂直固体表面的方向(法向)上速度增加的很快,即具有很大的速度梯度,甚至对粘性很小的流体,也不能忽略它表现出来的粘性力。而在此边界层外,流体的速度梯度很小,甚至对粘度很大的流体而言,其粘性力的影响也可以忽略,流体的流速与绕流固体表面前的流速V0一样。这样就可把边界层外流动的流体运动视为理想流体运动,不考虑粘性力的影响。边界层内、外区域间没有明显的分界面,而把边界层边缘上的流体流速V x视为V x=0.99 V0,因此从固体表面至V x=0.99 V0处的垂直距离视为边界层的厚度δ。这样大雷诺数下绕过固体的流动便简化为研究边界层中的流动问题。 边界层内的流动可以是层流,也可以是带有层流底层的紊流,还可以是层流、紊流混合的过渡流。 图1 边界层结构 综上所述,边界层的特征可归结为: (1)与固体长度相比,边界层厚度很小; (2)边界层内沿边界层厚度方向上的速度梯度很大; (3)边界层沿流动方向逐渐增厚; (4)由于边界层很薄,故可近似地认为,边界层截面上的压力等于同一截面上边界层外边界上的压力; (5)边界层内粘性力和惯性力士同一数量级的; (6)如在整个长度上边界层内都是层流,称层流边界层;仅在起始长度上的是层流,而在其他部分为紊流的称混合边界层。 以上定义的边界层为速度边界层,另外在其他学科领域中对于边界层的应用还是十分广泛的,主要有温度边界层和浓度边界层。 1.温度边界层 流体在平壁上流过时,流体和壁面间将进行换热,引起壁面法向方向上温度分布的变化,

边缘检测实验报告

图像边缘提取实验报告 一、实验目的 通过课堂的学习,已经对图像分割的相关理论知识已经有了全面的了解,知道了许多图像分割的算法及算子,了解到不同的算子算法有着不同的优缺点,为了更好更直观地对图像分割进行深入理解,达到理论联系实际的目的,特制定如下的实验。 二、实验原理 检测图像边缘信息,可以把图像看做曲面,边缘就是图像的变化最剧烈的位置。这里所讲的边缘信息包含两个方面:一是边缘的具体位置,即像素的坐标;而是边缘的方向。微分算子有两个重要性质:定域性(或局部性)、敏感性(或无界性)。敏感性就是说,它对局部的函数值变化很敏感,但是因其对变化过于敏感又有了天然的缺陷——不能抵抗噪声。局部性意思是指,每一点的导数只与函数在该点邻近的信息有关。 主要有两大类基于微分算子的边缘检测技术:一阶微分算子边缘检测与二阶微分算子边缘检测。这些检测技术采用以下的基本步骤: (1) 将相应的微分算子简化为离散的差分格式,进而简化为模板(记为 T)。 (2) 利用模板对图像f(m,n)进行运算,获得模板作用后的结果Tf(m,n)。 (3) 提出阈值h,在采用一阶微分算子情形记录下高于某个阈值h 的位置 坐标 }),(|),{(h n m Tf n m S h ≥= (而采用二阶微分算子情形,一般是对某个阈值0>ε确立

}),(|),{(ε≥=n m Tf n m S h ) (4) 对集合h S 进行整理,同时调整阈值h 。 Roberts 算子 Roberts 算子是一种利用局部差分算子寻找边缘的算子,两个模板分别为 ??????-=1001x R ?? ? ???-=0110y R 则,),(j i f R x =)1,1(),(++-j i f j i f ),(j i f R y =)1,(),1(+-+j i f j i f 算法的步骤为: (1) 首先用两个模板分别对图像作用得到f R x 和f R y ; (2) 对2 2 ),(y x R R j i Tf +=,进行阈值判决,若),(j i Tf 大于阈值则相应的点 位于便于边缘处。 对于阈值选取的说明:由于微分算子的检测性能受阈值的影响较大,为此,针对具体图像我们采用以下阈值的选取方法,对处理后的图像统计大于某一阈值的点,对这些数据求平均值,以下每个程序均采用此方法,不再做说明。 Sobel 算子 Sobel 算子采用中心差分,但对中间水平线和垂直线上的四个邻近点赋予略高的权重。两个模板分别如下: ????? ??---=101202101x S ???? ? ??---=121000121 y S

平板边界层速度分布测量

平板边界层速度分布测量实验指导书 实验目的: 通过零迎角平板流动的流速测量,获取流速沿物面法向分布。 学习总压管测速。 实验装置和仪器: (1)风洞:回流开口小型风洞,试验段见 右图,矩形有机玻璃管道中夹放一 金属板,来流沿管道被该板分开, 从出口流出。出口截面的静压为大气 压。 (2)偏平总压探针头:偏平总压探针头顶可 在出口截面内水平移动,移动量由微分尺控制。 (3)酒精斜管压力计:斜角θ=30o,系数K=1.0, 一头通大气,另一头接总压探头。 实验原理: 测量原理,就是伯努利定理:不计重力,气流的动压和静压之和为总压。 设总压为P 0,则 )(])()([2 1)(220y P y v y u y P ++=ρ (1) y 为探头中心距平板的距离,u 、v 分别为平行于平板的流速和平板法向的流速, p 为当地静压,ρ为气流的密度。 因为 a P y P ≡)( , u v << 由(1)可得 ρ])([2)(0a P y P y u -= (2) 实验步骤 : 图 风洞试验段示意图

(1)实验室大气参数读取和记录; (2)探头零位确定; (3)压力计底座水平调解,测压管液面零刻度调节; (4)风洞开车; (5)调节好探头距平板的距离y ,从压力计读取并记录相应的压力值Po-Pa 实验要求: 测压时,每移动探头至新位置,应等待几秒钟,在压力平衡后再读取数据。测量中,观察随探头离开平板距离的增大,压力的变化趋势。 实验报告要求: (1)实验参数:大气压P a (毫米汞柱) ,大气温度t (?C ) , 大气密度 ) (15.273)(464.0C t mmHg P o a +?=ρ (公斤/米3) 。 测量为之举平板前缘的距离X ; (2)测压原始数据,及由(2)是换算成流速,给出曲线y y u -)(; (3)找出不随距离y 而变的速度值,记为U 1,并找出满足u(y)= U 1的最小的y 值作为δ,给出曲线δ//)(1y U y u -。并给出雷诺数Re=ρU 1X/μ。

平板边界层测量

二、平板边界层速度剖面测量 1实验目的: 了解平板边界层特性,学习测量平板边界层速度剖面的方法。 在离平板前缘不同位置处,测量平板边界层内速度分布,确定边界层厚度,并和理论值进行比较。 2实验装置: 图 1 实验装置示意图 图 2 平板边界层测量原理 (1)平板:在三维小风洞中安装一块宽240毫米、长750毫米的尖前缘平板。平板表面光滑,零攻角安装。沿平板中线有若干静压孔(见上图)。 (2)总压管:头部直径1毫米的总压管,用于测量边界层内总压分布。总压管安装在坐标架上,总压管前端与静压孔齐平,小孔对准气流轴线且与平板平行。 (3)坐标架:安装在风洞上方,用于调节总压管位置。 (4)压力扫描测试仪:用于测量压差。使用时需注意仪表初始读数,以便对测量值进行修正。仪表拨盘位置与平板上测点相对应。 3实验步骤:

(1)安装好平板,并使其表面与风洞轴线平行。安装好总压管,使其对准气流方向并与平板平行。 (2)将总压管、静压孔分别与压力扫描测试仪相连。 (3)记录当天大气压和温度和仪表初读数。 (4)将总压管降到刚好与平板表面接触(必须反复调整总压管数次,以求找到最佳位置)。 这时总压管中心离平板表面的高度为y1=h/2 (h为总压管,外径=1mm),此时坐标架的位置高度应为0.5毫米。 (5)启动风洞,调整到设定风速(变频器频率植)。记录仪表读数。 (6)上下移动坐标架,改变总压管位置,重复测量边界层内压力分布和总压管高度。由于总压管较细、管道较长,压力平衡需要一定时间。实验中要等到压力平衡后再读数。 总压管上下移动步长为1mm。 (7)重复步骤(6),直到压力计读数不再随总压管位置不同而改变为止。这时表明总压管已经到达边界层外面。由于接近边界层外边界时速度变化很小,所以必须再要往上移动总压管若干次,确认总压管已经到达边界层外部。 (8)改变总压管水平位置,同时转动压力扫描测试仪拨盘,使指针指向对应静压孔位置。 重复上述步骤,测量3-5个边界层速度剖面。 (9)风洞停车。 (10)整理实验数据,按照要求完成实验报告。 注:将总压管处于边界层外均匀区时测得的P0-P对应的气流速度作为来流速度。 4数据处理: (1)计算边界层内速度分布,速度边界层厚度。 由于边界层速度剖面是以无量纲形式画出的,不需要计算出每一点的速度,只要计算出相对速度就可以了。设y处的速度u y为 边界层外缘的速度U为 其中p0为总压管测得的压力,p为静压孔测得的压力,(p0一p)y是边界层内测得的读数。(p0一p)表示气流均匀区测得的读数,ρ为气体密度。相对速度为 当u y / U =0.99 时, 总压管的高度就是该处平板边界层的厚度。 (2) 计算边界层位移厚度及动量厚度.

平板边界层内的流速分布实验

平板边界层内的流速分布实验 (一).实验目的 测定平板上离前缘某一定点处边界层内的流速分布及其厚度。 (二)仪器设备 吸入式风洞~大气压强计~温度计~微压计~U形测压管~平板模型~总压探针及三维坐标架。 (三)实验原理 1.边界层外为理想流体(总压P0=P a和速度V无穷不变)。 2.边界层内为实际流体(P0和u x都在变化,Po

5.任一点的速度:ux=(2*g*⊿h(ρ水-ρ)/ρ)^0.5 6.边界层厚度δ的定义:在外边界上的速度ux与来流速度V无穷相差1%的点,该点据平板壁面的垂直距离为边界层厚度) (四)数据处理 (1)当x=150mm时,Re=2.031*10^5,可以认为是层流,当X=250mm时,Re=3.38*10^5,为紊流 (2)在图一和图二中,X=150mm,实际曲线与紊流理论曲线更接近,因此为紊流在图二和图三中,X=250mm,实际曲线与紊流理论曲线更接近,因此为紊流 (3)计算得X=150mm时,层流边界层为14.35mm,紊流边界层为2.125mm 根据实验数据分析得实际边界层厚度约5.15mm,接近紊流 X=250mm时,层流边界层厚度为18.527mm,紊流边界层为3.92mm,实验得实际边界层厚度约6.80mm,接近紊流。 (4)数据记录及分析如下 表一. X为150mm的速度分布记录表 N O 坐 标 读 数 L( mm ) 边 界 层 内 距 离 y ( mm ) 微 压 计 读 数 Pa 边 界 层 内 流 速 u(m /s) 速度 比 u1/V U形 管读 数 ⊿ h/0.3 (mmH2 O) 边界 层内 流 速 u2(m /s) 速度 比 u2/V 理论 层流 速度 u(m/ s) 层 流 速 度 比 理论 紊流 速 度 u(m/ s) 紊流速 度 比 1 0 0. 45 164 .32 14. 789 0.692 50 15.7 80 0.732 1.44 0. 06 7 13.7 18 0.642 2 1 1. 45 118 .36 17. 238 0.807 36 17.8 62 0.829 4.61 1 0. 21 6 16.2 14 0.759 3 2 2. 45 82. 24 18. 941 0.887 25 19.3 41 0.898 7.68 9 0. 36 17.4 76 0.818 4 3 3. 45 54. 68 20. 145 0.943 16 20.4 71 0.950 10.6 10 0. 49 7 18.3 52 0.859 5 4 4. 45 37. 80 20. 847 0.976 10 21.1 92 0.984 13.3 10 0. 62 3 19.0 31 0.891 6 5 5. 45 28. 24 21. 235 0.994 8 21.4 27 0.995 15.7 26 0. 73 6 19.5 90 0.917

第7章节层流边界层理论

第7章层流边界层理论 7.1 大雷诺数下物体绕流的特性 我们知道,流动雷诺数是度量惯性力和粘性内摩擦切力的相互关系的准则数,大雷诺数下的运动就意味着惯性力的作用远大于粘性力。所以早年发展起来的非粘性流体力学理论对解决很多实际问题获得了成功。但是后来的实验和理论分析均发现,无论雷诺数如何大,壁面附近的流动与非粘性流体的流动都有本质上的差别,而且从数学的观点来看,忽略粘性项的非粘性流体远动方程的解并不能满足粘性流体在壁面上无滑移的边界条件,所以不能应用非粘性流体力学理论来解决贴近物面的区域中流体的运动问题。 1904年普朗特第一次提出边界层流动的概念。他认为对于如水和空气等具有普通粘性的流体绕流物体时,粘性的影晌仅限于贴近物面的薄层中,在这一薄层以外,粘性影响可以忽略,应用经典的非拈性流体力学方程来求解这里的流动是可行的。普朗特把边界上受到粘性影响的这一薄层称之为边界层,并且根据在大雷诺数下边界层非常薄这一前提,对粘性强体运动方程作了简化,得到了后人称之为普朗特方程的边界层微分方程。过了四年,他的学生布拉修斯首先运用这一方程成功地求解了零压力梯度平板的边界层问题,得到了计算摩擦阻力的公式。从此,边界层理论正式成为流体力学的新兴分支而迅速地发展起来。 图7-1 沿薄平板的水流 简单的实验就可以证实普朗特的思想。例如沿薄平板的水流照片(见图7-1)和直接测量的机翼表面附近的速度分布(见图7-2),即可以看到边界层的存在。观察图7-2示中的流动图景,整个流场可以划分为边界层、尾迹流和外部势流三个区域。 在边界层内,流速由壁面上的零值急速地增加到与自由来流速度同数量级的值。因此沿物面法线方向的速度梯度很大,即使流体的粘性系数较小表现出来的粘性力也较大。同时,由于速度梯度很大,使得通过边界层的流体具有相当的涡旋强度,流动是有旋的。 当边界层内的粘性有旋流离开物体流入下游时,在物体后面形成尾迹流。在尾迹流中,初始阶段还带有一定强度的涡旋,速度梯度也还相当显著,但是由于没有了固体壁面的阻滞作用,不能再产生新的涡旋,随着远离物体,原有的涡旋将逐渐扩散和衰减,速度分布渐趋均匀,直至在远下游处尾迹完全消失。 在边界层和尾迹以外的区域,流动的速度梯度很小,即使粘性系数较大的流体粘性力的影响也很小,可以把它忽略,流动可以看成是非粘性的和无旋的。

相关文档