文档库 最新最全的文档下载
当前位置:文档库 › 母差及失灵保护

母差及失灵保护

母差及失灵保护
母差及失灵保护

母差及失灵保护

LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

《母差及失灵保护》

一、母差保护 1、BP-2B 母差保护

大差电流:不包括母联以外的所有元件电流之和,I d =I 1+I 2+…+I n ; 小差电流:包括一条母线各元件及母联电流之和,I d =I 1+I 2+…+I n +I m 。

(大差、小差正常差流不应超过 A )

差动保护:使用大差比率差动元件作为区内故障判断元件。即由大差比率元件是否动作,区分母线区外故障还是母线区内故障。

使用小差比率差动元件作为故障母线选择元件。即由小差

比率元件是否动作,决定故障发生在哪一段母线。

跳I 母各跳母联

跳II 母各

对称性故障 不对称故障 接地故障其目的:一是防止有关人员误碰母差(失灵)保护出口继电器时,发生母差(失灵)保护出口继电器时,发生母差(失灵)保护误动作。二是为了防止电流回路断线引起差动保护误动作。

2、RCS-915母差保护

为防止母差保护在母线近端发生区外故障时CT 严重饱和的情况下发生误动作,本装置根据CT 饱和的波形特点设置了CT 饱和检测元件,用以判别差动电流是否由区外故障CT 饱和引起,如果是则闭锁差动保护出口,否则开放保护出口。由谐波制动原理构成的CT 饱和检测元件。

母差保护的工作框图(以I 母为例)

二、远传/

12母差母差(失灵)保护动作后,同时通过纵联保护跳故障母线线路的对侧开关,对于光纤差动保护,通过远跳跳对侧后对侧不重合,对于高频闭锁式保护或光纤允许式保护,对侧纵联保护动作后重合闸动作一次。 三、失灵保护

1、BP-2B 失灵保护

断路器失灵保护启动条件:保护出口持续动作未返回,同时串联一个电流继电器判断故障线路有电流,复合电压闭锁开放,失灵保护秒后跳母联及故障线路所在母线的其它支路。

大差比率差动元

I I 母电压闭锁开

II I 母比率差动元

大差谐波制动开I

失灵保护的动作时间应大于故障元件断路器跳闸时间和继电保护装置的返回时间之和。

II 屏CKJ II 屏失灵

②线路开关侧路带时:

I 屏CKJ I 屏侧路失灵

2、RCS-915失

灵保护

断路器失灵保护由各连接元件保护装置提供的跳闸接点启动,若该元件的对应相电流大于失灵相电流定值,则经失灵保护电压闭锁起动失灵保护。失灵保护起动后经跟跳延时在此动作于该线路断路器,再经母联延时动作于母联,经失灵延时切除该元件所在母线的各个连接元件。 辅助屏LJ

失灵 失灵

侧路辅助屏LJ

侧路屏CKJ 侧路屏失灵

母联开关失灵时,经300ms跳另一条母线。(双母双分主接线分段失灵具备联跳功能)。母联开关与CT之间故障时启动死区保护,经100ms后切除另一母线。

上述两个保护共同之处,故障点在母线上,跳母联开关经延时后,大差

元件不返

回且母联CT中仍有电流,跳两条母线。

控制字时,母联过流也可启动母联失灵保护。

母差跳一母(

母联过流保护动作母联

母联跳I 、

II 母

母联

二母复合电压闭锁 (2)母联死区保护:母联开关和母联TA 之间发生故障,断路器侧母线跳闸后故障依然存在,正好处于TA 侧母线小差的死区,为提高保护动作速度,专设了母联死区保护。本装置的母联死区保护在差动保护发母线跳闸令后,母联开关已跳开而母联比率差动元件及断路器侧小差比率差动 元件不返回时,经死区动作延时跳开另 I 一条母线。为防止母联在跳位时发生死区故障 将母线全部切除,当两母线都有电压且 母联在跳位时母联电流不计入小差。

母联

母联IB> 母联电流退出小差

母联IC>

母联TWJ

母联IA> 母联IB> 母联IC> 母差跳一母跳二母

一母比例差动元件

大差比例差动元件

二母比例差动元件

跳一母

母差跳二母

五、母联(分段)充电保护

1、BP-2B母联充电保护

双母线接线中,当其中一段母线检修后,可通过母联(分段)开关对检修母线充电,此时投入母联(分段)充电保护。

母联(分段)充电保护的起动需同时满足三个条件:①母联(分段)充电保护压板投入;②其中一段母线已失压,且母联(分段)开关母联(分段)开关已断开;③母联电流从无到有。

充电保护一旦投入自动展宽200ms后退出。充电保护不经复合电压闭锁。

充电闭锁母差

线变为均有压状态,则开放充电保护300ms 。同时根据控制字决定是否闭锁母差保护。在充电保护开放期间,若母联电流大于充电保护定

c

母联Ia>Ichg 母联Ib>Ichg

母联Ia> 母联Ib> 母联Ic> 母联TWJ

母线差动保护调试方法

母线差动保护调试方法 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

母线差动保护调试方法 1、区内故障模拟,不加电压,将CT断线闭锁定值抬高。 选取Ⅰ母上任意单元(将相应隔离刀强制至Ⅰ母),任选一相加电流,升至差动保护动作电流值,模拟Ⅰ母区内故障,差动保护瞬时动作,跳开母联及Ⅰ母上所有连接单元。跳开Ⅰ母、母联保护信号灯亮,信号接点接通,事件自动弹出。在Ⅱ母线上相同试验,跳开母联及Ⅱ母上所有连接单元。 将任一CT一次值不为0的单元两把隔刀同时短接,模拟倒闸操作,此时模拟上述区内故障,差动保护动作切除两段母线上所有连接单元。(自动互联)。 投入母线互联压板,重复模拟倒闸过程中区内故障,差动保护动作切除两段母线上所有连接单元。(手动互联) 任选Ⅰ母一单元,Ⅱ母一单元,同名相加大小相等,方向相反的两路电流,电流大于CT断线闭锁定值,母联无流,此时大差平衡,两小差均不平衡,保护装置强制互联,再选Ⅰ母(或Ⅱ母)任一单元加电流大于差流启动值,模拟区内故障,此时差动动作切除两段母线上所有连接单元。 任选Ⅰ母上变比相同的的两个单元,同名相加大小相等,方向相反的的两路电流,固定其中一路,升高另外一路电流至差动动作,根据公式计算比率制动系数,满足说明书条件。(大差比例高值,大差比例低值,小差比例高值,小差比例低值,当大差高值或小差高值任一动作,且同时大差和小差比例低值均动作,相应比例差动元件动作。) 2、复合电压闭锁。非互联状态,Ⅱ母无压,满足复压条件。Ⅰ母加入正常电压,单独于Ⅰ母任一支路加入电流大于差动启动电流定值,小于CT断线闭锁定值,

主变差动保护试验指导

3.6.2.2主变差动保护 正常情况下流进流出主变的功率一致(励磁损耗忽略)。影响功率相关参数:电压(额定)、电流(变比)。由于主变两侧电压关系已定,主变差动仅引入电流参与计算,此时需要对电流增加约束条件:容量、电压。 参数:以变压器铭牌实际为准! 各侧容量S,如三圈变一般低侧容量只有高中侧一半。1MV A=1000kV A。 各侧额定电压,某侧有多档位时以中间档位(额定档)为准,如上图高侧额定电压Ueh 35kV,低侧额定电压Uel 10.5kV。 整定: 接线方式:注意因装置不同,有时整定选项无直接对应表述。此时应按照实际接线(各侧电流接入装置的位置)整定。如上图接线为YD11,某装置为三组电流接入,其接线选项有Y-Y-D1,Y-Y-D11等方式,现场接线为一、三侧,综合起来就可以选择Y-Y-D11接线。 各侧容量:如上图为2.5MV A或2500kV A. 各侧额定电压:如上图接线方式为Y-Y-D11接线时,一侧额定电压35kV,二侧空额定电压可整定最小值,三侧额定电压10.5kV。 各侧CT变比:如上图接线方式为Y-Y-D11接线时,一侧CT变比150/5,二侧空CT变比可整定最小值,三侧额CT变比300/5。 计算: 首先计算各侧二次额定电流Ie。 如上图: 高侧二次额定电流Ieh=(S/1.732/Ueh)/(150/5)=1.375A。设变比150/5。 低侧二次额定电流Iel=(S/1.732/Uel)/(300/5)=2.291A。设变比300/5。 三相平衡电流: 在两侧施加平衡电流的意义即流进流出主变功率相同,如高侧施加Ieh三相平衡电流表示流入功率Sh,低侧施加Iel三相平衡电流表示流出功率Sl,此时Sh=Sl,也即高压侧输入Ieh与低压侧输入Iel等效。

差动保护试验方法总结

数字式发电机、变压器差动保护试 验方法 关键词: 电机变压器差动保护 摘要:变压器、发电机等大型主设备价值昂贵,当他们发生故障时,变压器、发电机的主保护纵向电流差动保护应准确及时地将他们从电力系统中切除,确保设备不受损坏。模拟发电机、变压器实际故障时的电流情况来进行差动试验,验证保护动作的正确性至关重要。 关键词:数字式差动保护试验方法 我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,

然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电南京自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该大同小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

220kV母差失灵保护运行中存在问题及改进措施

220kV母差失灵保护运行中存在问题及改进措施 【摘要】由于人们对于电力的需求与依赖,需要确保用电的稳定性,而电网工作中存在着很多不确定因素影响到供电的稳定性,220kV母差失灵保护运行问题就是其中的一项,导致母差失灵保护正确率偏低,只有解决了存在的问题,才能发挥出良好的保护功能,促进配电系统的安全运行。 【关键词】220kV母差失灵保护;运行;问题;改进措施 0.引言 220kV母差保护主要分为母差保护和失灵保护,虽然这两种保护的用途不同,但是在进行动作后比较相似,更是相互依赖,通过对我国各网的统计调查分析,发现母差失灵保护动作的正确率非常低,完全发挥不出保护作用,面对这样的情况,相关部门必须给予重视,及时解决母差失灵保护正确率问题。 1.220kV母差失灵保护运行中存在的问题 1.1保护误动故障 在220kV母差失灵保护运行中,保护误动一直是较为严重的问题,由于母差失灵保护会做出动作,工作人员会通过母差失灵保护动作做出相应判断,如果出现保护误动,会给工作人员发出错误的保护动作,导致工作人员进行不正确的应对工作,进而引起不必要的麻烦,而我国各地区电网目前保护误动出现的频率非常高,通过我国相关数据显示,我国各地区在2004-2005年发生220kV母差失灵保护误动发生率达到80%,这明确的显示出保护误动问题的严重性与发生率极高的问题,如工作人员不对此问题给予高度重视并及时进行处理,无法保证220kV母差失灵保护的正常运行[1]。 1.2电压闭锁元件失压故障 在220kV母差失灵保护运行中,如果出现电压闭锁元件失压的情况,会导致失灵保护无法进行闭锁,进而起不到保护作用,达不到保护的效果,这种问题的产生对于失灵保护非常不利,而产生这种问题的主要原因是工作人员在听到故障告警回路警告时,没有及时解决,对此问题没有重视,导致技术员无法及时赶到对问题了解并解决,进而导致故障的严重化,因此,必须对电压闭锁元件失压的问题进行解决[2]。 1.3本母线故障 在220kV母差失灵保护运行中,本母线故障属于常见问题,如果出现一条母线发生故障,随即母联的开关会跳开,导致其他母线发生故障,最后发生保护系统瘫痪,无法正常完成保护工作[3]。这种障的产生是由于没有对本母线进行

TS-010 母差保护调试方案

项目名称:东方新希望220变电站调试方案 220kV母差保护调试方案 目录 1. 调试目的 (1) 2. 系统及设备概况 (1) 3. 技术标准和规程规范 (1) 4. 调试应具备的条件 (2) 5. 试验项目 (2) 6. 使用的仪器设备 (3) 7. 检查及注意事项 (3) 8. 质量检查控制 (6) 9. 环境、职业健康、安全风险因素识别和控制措施 (6) 附录2系统试运前静态检查表 (10) 附录3 220kV母差保护调试记录 (11) 220kV母差保护调试方案 1 调试目的 依据《变电站建设工程启动试运及验收规程》(2009年版,简称新启规)的规定和本工程调试技术合同的要求,通过试验对220kV升压站I母、II母母线保护装置及其交直流回路进行全面检查,确保保护装置安全、可靠投入运行,以保证工程顺利投产。 2 试验原理(构成)及系统简介 本期工程220kV升压站电气系统共有13串,每串均采用双母线断路器接线,共有两条母线,每一串一个开关。本站母差保护采用双套配置,每条母线有两套保护。

全站母差保护装置型号为: 3 技术标准和规程规范 3.1 GB/T 7261—2008《继电保护和安全自动装置基本试验方法》; 3.2 GB/T 14285-2006《继电保护和安全自动装置技术规程》; 3.3 GB/T 15145-2008《输电线路保护装置通用技术条件》; 3.4 GB 50150-2006《电气装置安装工程电气设备交接试验标准》; 3.5 DL 5009.1-2002《电力建设安全工作规程(火力发电厂部分)》;3.6 国家电网安监[2009]664号《安全工作规程(变电部分)》; 3.7 GB/T 19001-2008《质量管理体系要求》; 3.8 GB/T 28001-2001《职业健康安全管理体系规范》; 3.9 GB/T 24001-2004《环境管理体系要求及使用指南》; 3.10公司《质量、安全健康、环境管理手册》(REV 4.1版) 3.11 设计院、制造厂有关图纸及技术资料。 4 调试条件 4.1 现场条件: 4.1.1保护室灯光照明充足、试验电源可靠稳定, 4.1.2地面有临时抑尘措施, 4.1.3安全通道无阻塞, 4.1.4消防设施完善, 4.2 安装条件: 4.2.1 盘柜安装工作已结束,设备标示清晰,经三级验收达到设计要求; 4.2.2 盘柜接地系统完善,具备上电条件; 4.2.3 所属系统的二次接线完毕,电缆挂牌清晰,并经监理检查验收;

差动保护试验

谈差动保护试验 差动保护在电力系统中被广泛采用在变压器、母线、短线路保护中。差动保护模拟试验起来比较难,主要有以下原因:第一,差动保护的电流回路比较多,两卷变压器需要高、低压两侧电流,三卷变压器需要高、中、低压三侧电流,母线保护需要更多;第二、差动保护的核心是提供给差动继电器或自动化系统差动保护单元差电流, 要求各电流回路的极性一定要正确,否则极性接错即变成和电流; 第三,差动保护的特性测试比较难。 传统的检验极性的方法是做六角图,但新投运的变压器负荷一般较小,做六角图有难度,还有,即便是六角图对也不能保证保护屏内接就正确(笔者曾发现过屏内配线错误,做六角图时,保护动作不正确)。曾经看到用人为加大变压器负荷的方法来准确地做出六角图的文章.如用投电容器来人为加大主变负荷,还有用两台变比不同的主变并列后产生环流来人为加大主变负荷。笔者认为以上方法与有关运行规程有矛盾:变压器并列变比相同,负载轻时不许投电容器都是运行规程明确规定的,就是试验没问题,在与运行人员的工作协调中也有难度。因此,以上方法不便采用。下面介绍我们的经验,我们只在二次回路上试验,不必人为加大主变负荷即可全面、系统地验证差动保护的正确性。

一、用试验箱从保护屏端子排加电流,检查保护屏内及保护单元的接线正确性 变压器的差动保护电流互感器接线,传统上都是和变压器绕组接线相对应的,即变压器绕组接成星形,相应电流互感器接成角形; 变压器绕组接成角形,相应电流互感器接成星形。这样,变压器各侧电流回路正好反相。现在的自动化系统差动保护单元有的继承了原来的接法,有的为了简化接线则要求各侧均为星形,这样对一般Y,D-11接线的变压器高压侧电流超前低压侧150°,接线系数为√3,这些差异由计算机来处理,最后差电流为零。 上面讨论了电流互感器接线类型,下面就做对保护屏加模拟电流来验证其接线是否正确的试验。如果为传统的接线方式,可以加反相的两路模拟电流(从一侧头进尾出后从另一侧尾进头出即可实现),如果各侧均是星接,则加高压侧超前低压侧150°的电流来模拟。现在的自动化系统差动保护单元都有差动电流显示,根据显示数据即可判定其接线正确性——若为两电流有效值之差则接线正确,若为两电流有效值之和电流则有极性接反,若为两电流和与差之间的数值则相位处理有错误。如果无差电流显示则只能靠动作与否来判断接线正确与否了,即不动作为正确,动作为不正确,试验时一定要吃透图纸,注意接线极性,可规定从某相(头)流入保护屏,从地(尾)流出保护屏为正方向。这样A、B、

第二章 母线及失灵保护

第二章母线及失灵保护 第一节保护的现场配置 一、500kV部分 1.保护装置概况 2.SU91A母差保护原理简介 (1)过电压继电器UT91和短路模块功能简介 1)过电压继电器UT91的电压反映高阻差交流输入回路的差流。作用为: ① UT91起动接点作为高阻差保护动作输出跳闸命令的必要条件。 ②作为高阻差保护CT回路监视当CT回路断线时,UT91起动(UT91定值远低于UZ92)经3秒延时后,起动短路控制模件将高阻差保护交流电流输入回路短接,起CT回路断线闭锁作用。 2)短路控制模件动作后短接高阻差保护的交流电流输入回路,作用为: ①在差流很大时,保护的输入元件及内部元件上会出现危险的过电压,此时短路控制模件动作,从而避免元器件损坏。 ②在保护装置内部故障或CT回路断线时,短路控制模件动作闭锁保护。 3)起动短路控制模件的条件 满足下列条件之一,短路控制模件即动作: ① UT91动作(面板上黄灯和红灯均亮,差动电流输入回路异常); ② UT92动作(面板上红灯亮,差动保护动作); ③高阻差保护装置故障(UZ92面板上绿灯熄灭); ④直流电源故障。 4)短路控制模件动作后自保持,其CT短接接触器上黄色和绿色按键吸入(CT短接接触器安装在屏后)。屏面“试验插接单元”面板上绿色按钮灯亮。短路控制模件动作后,按“试验插接单元”面板上绿色复归按钮(RESET)复归,接触器上按键弹出。 注意:保护直流电源重新投入运行时,须手动复归短路控制模件! (4)保护的跳闸输出接线:高阻差继电器的动作接点和电压继电器的起动接点串联后起动跳闸单元。 3.BP-2B母差保护原理简介 BP-2B母差保护采用带制动特性的电流差动原理,采用一次的穿越电流作为制动电流。其结合微机数字处理的特点,采用分相瞬时值复式比率差动元件为主的电流差动保护方案。BP-2B 母线保护由保护元件、闭锁元件和管理元件系统构成。保护元件主要完成各间隔模拟量、开关量的采集,各保护功能的逻辑判别并出口至TJ;闭锁元件主要完成各电压量的采集,各段母线的闭锁逻辑并出口至BJ;管理元件的工作是实现人机交互、记录管理和后台通讯。各系统独立工作,相互配合。 二、220kV部分 本站采用BP—2B型双母线微机保护装置,可实现本站220KV部分的母线差动保护、母联充

变压器差动保护试验方法

我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电XX自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该XX小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

下面我们先来分析一下微机差动保护的算法原理(三相变压器)。这里以Y/△-11主变接线为例,传统继电器差动保护是通过把主变高压侧的二次CT接成△,把低压侧的二次CT接成Y型,来平衡主变高压侧与低压侧的30度相位差的,然后再通过二次CT变比的不同来平衡电流大小的,接线时要求接入差动继电器的电流要相差180度,即是逆极性接入。具体接线见图1: 图1

南瑞主变差动保护调试篇

经验总结-主变差动保护部分 一、从工程角度出发所理解的主变差动保护 关于接线组别和变比的归算思路 1、影响主变差动保护的几个因素 差动保护因为其具有的选择性好、灵敏度高等一系列优点成为变压器、电动机、母线及短线路等元件的主保护。这几种差动保护原理是基本相同的,但主变差动保护还要考虑到变压器接线组别、各侧电压等级、CT变比等因素的影响。所以同其它差动保护相比,主变差动保护实现起来要更复杂一些。 变压器变比的影响:因为变压器变比不同,造成正常情况下,主变高低压侧一次电流不相同。比如:假设变压器变比为110KV/10KV,不考虑变压器本身励磁损耗的理想情况下,流进高压侧电流为1A,则流出低压侧为11A。这很好理解,三相视在功率S= √3UI。不考虑损耗,高低压侧流过功率不变,各侧电压不同,自然一次电流也不同。 CT变比的影响:还是用上面的举例,如果变压器低压侧保护CT的变比是高压侧CT 变比的11倍,就可以恰好抵消变压器变比的影响,从而做到正常情况下,流入保护装置(CT二次侧)的电流大小相同。但现实情况是,CT变比是根据变压器容量来选择,况且CT变比都是标准的,同样变压器变比也是标准化的,这三者的关系根本无法保证上述的理想比例。假设变压器容量为20MKVA,110KV侧CT变比为200/5,低压侧CT变比如果为2200/5即可保证一致。但实际上低压侧CT变比只能选2000/5或2500/5,这自然造成了主变高低压侧CT二次电流不同。 变压器接线组别的影响:变压器不同的接线组别,除Y/Y或△/△外,都会导致变压器高低压侧电流相位不同。以工程中常见的Y/△-11而言,低压侧电流将超前高压侧电流30度。另外如果Y侧为中性点接地运行方式,当高压侧线路发生单相接地故障时,主变Y 侧绕组将流过零序故障电流,该电流将流过主变高压侧CT,相应地会传变到CT二次,而主变△侧绕组中感应出的零序电流仅能在其绕组内部流过,而无法流经低压侧开关CT。 2、为消除上述因素的影响而采取的基本方法 主变差动保护要考虑的一个基本原则是要保证正常情况和区外故障时,用以比较的主变高低压侧电流幅值是相等,相位相反或相同(由差流计算采取的是矢量加和矢量减决定,不过一般是让其相位相反),从而在理论上保证差流为0。不管是电磁式或集成电路及现在的微机保护,都要考虑上述三个因素的影响。(以下的讨论,都以工程中最常见的Y/△-11而言) 电磁式保护(比如工程中常见的LCD-4差动继电器),对于接线组别带来的影响(即相位误差)通过外部CT接线方式来解决。主变为Y/△接线,高压侧CT二次采用△接

差动保护试验方法

差动保护试验方法 国测GCT-100/102差动保护装置采用的是减极性判据,即规定各侧均已流出母线侧为正方向,从而构成180度接线形式。 1. 用继保测试仪差动动作门槛实验: 投入“比率差动”软压板,其他压板退出,依次在装置的高压侧,低压侧的A ,B ,C 相加入单相电流0.90A ,步长+0.01A ,观察差流,缓慢加至差动保护动作,记录动作值。 说明: 注意CT 接线形式对试验的影响。 若CT 接为“Y-△,△-Y 型”,则在系统信息——变压器参数项目下选择“Y/D-11”,此时高侧动作值为:定值×√3,即1.73动作,低测动作值为定值,即1.00动作 若CT 接为“Y-Y 型”,则在系统信息——变压器参数项目下选择“无校正”,此时高低侧动作值均为定值,即1.00动作 2. 用继保测试仪做比率差动试验: 分别作A ,B ,C 相比率差动,其他相查动方法与此类似。 以A 相为例,做比率差动试验的方法:在高,低两侧A 相同时加电流(测试仪的A 相电流接装置的高压侧A 相,B 相电流接装置的低压侧A 相),高压侧假如固定电流,角度为0度,低压侧幅值初值设为x ,角度为180度,以0.02A 为步长增减,找到保护动作的临界点,然后将x 代入下列公式进行验证。 0Ir Ir Id Id k --= 其中: Id :差动电流,等于高侧电流减低侧电流 Id0:差动电流定值 Ir :制动电流,等于各侧电流中最大值 Ir0:制动电流定值 K :制动系数 例如: 定值:Id0=1(A ); Ir0=1(A ); K =0.15 接线:测试仪的Ia 接装置的高压侧A 相,Ib 接装置的低压侧A 相 输入:Ia =∠0 o5A Ib =∠180 o5A 步长Ib =0.02A 试验:逐步减小Ib 电流,当Ib=3.4A 时装置动作。 验证:Id =5-3.4=1.6A Id0=1A Ir =5A Ir0=1A 15.04 6.0151)4.35(==---=k 3. 用继保测试仪做差动速断试验 投入“差动速断”压板,其他压板退出。依次在装置的高压侧,低压侧的A ,B ,C 相加入单相电流9.8A ,每次以0.01A 为步长缓慢增加电流值至动作,记录动作值。 例如:

母线保护及失灵保护

母线保护及失灵保护 辛伟 母线保护: 母线是发电厂和变电站重要组成部分之一。母线又称汇流排,是汇集电能及分配电能的重要设备。运行实践表明:在众多的连接元件中,由于绝缘子的老化,污秽引起的闪路接地故障和雷击造成的短路故障次数甚多。另外,运行人员带地线合刀闸造成的母线短路故障,也有发生。母线的故障类型主要有单相接地故障,两相接地短路故障及三相短路故障。两相短路故障的几率较少。 当发电厂和变电站母线发生故障时,如不及时切除故障,将会损坏众多电力设备及破坏系统的稳定性,从而造成全厂或全变电站大停电,乃至全电力系统瓦解。因此,设置动作可靠、性能良好的母线保护,使之能迅速检测出母线故障所在并及时有选择性的切除故障是非常必要的。 对母线保护的要求: 与其他主设备保护相比,对母线保护的要求更苛刻。 (1)高度的安全性和可靠性 母线保护的拒动及误动将造成严重的后果。母线保护误动将造成大面积停电;母线保护的拒动更为严重,可能造成电力设备的损坏及系统的瓦解。 (2)选择性强、动作速度快 母线保护不但要能很好地区分区内故障和外部故障,还要确定哪条或哪段母线故障。由于母线影响到系统的稳定性,尽早发现并切除故障尤为重要。 母差保护的分类: 母线差动保护按母线各元件的电流互感器接线不同可分为母线不完全差动保护和母线完全差动保护;母线不完全差动保护只需将连接于母线的各有电源元件上的电流互感器接入差动回路,在无电源元件上的电流互感器不接入差动回路。母线完全差动保护是将母线上所有的各连接元件的电流互感器连接到差动回路。母线完全差动保护又包括固定连接方式母差保护、电流相位比较式母差保护、比率制动式母差保护(阻抗母线差动保护)、带速饱和电流互感器的电流式母线保护等。 莲花厂的WMH-800微机型母线保护装置为比率制动式母差保护。 固定连接系指一次元件的运行方式下二次回路结线固定,且一一对应。双母线同时运行方式,按照一定的要求,将引出线和有电源的支路分配固定连接于两条母线上,这种母线称为固定连接母线。这种母线的差动保护称为固定连接方式的母线完全差动保护。 对它的要求是一母线故障时,只切除接于该母线的元件,另一母线可以继续运行,即母线差动保护有选择故障母线的能力。当运行的双母线的固定连接方式被破坏时,该保护将无选择故障母线的能力,而将双母线上所有连接的元件切除。 母联电流相位比较式母线差动保护主要是在母联开关上使用比较两电流相量的方向元件,引入的一个电流量是母线上各连接元件电流的相量和即差电流,引入的另一个电流量是流过母联开关的电流。在正常运行和区外短路时差电流很小,方向元件不动作;当母线故障不仅差电流很大且母联开关的故障电流由非故障母线流向故障母线,具有方向性,因此方向元件动作且具有选择故障母线的能力。 集成电路型母线保护根据差动回路中阻抗的大小,可分为低阻抗型母线保护(一般为几欧姆),中阻抗型母线保护(一般为几百欧姆),高阻抗型母线保护(一般为几千欧姆)。 低阻抗型母线保护(一般为几欧姆):低阻抗母线差动保护装置比较简单,一般采用久

35kV 母线差动保护的调试

35kV母线差动保护的调试 周剑平(镇海炼化检安公司) 摘要: 对BUS1000母线差动保护继电器的原理进行分析,介绍了镇海炼化公司第二热电站35kV母线差动保护的调试方法。通过合理的调试,减少由于35kV母线差动保护出现误动而引起故障。关键词:继电器差动保护调试 1概述 镇海炼化公司第二热电站35kV及110kV母线的差动保护采用美国通用电气公司(GE)生产的BUS1000保护装置,BUS1000保护装置是一种高速静态保护系统,动作时间可达到10毫秒,灵敏度高,防误动性能好,运行中如出现电流回路断线,经10秒延时即闭锁继电器出口,防止误动作。BUS1000保护装置对电流互感器的要求不高,允许各回路的电流互感器具有不同的变比,但变比差异不能超过10倍,互感器的最小饱和电压应大于100V。 2000年8月,发生炼油303线电缆炸裂事故,二电站的35kV母差保护出现误动,至使部分装置失电,影响到生产。因此,搞清BUS1000保护装置误动的原因及采取何种方法解决,如何通过合理的调试来验证保护装置的完好显得尤为重要。 2BUS1000保护装置的动作原理 图1和图2分别为BUS1000保护装置内部故障及外部故障的原理图。

图1内部故障时BUS1000原理图 图2外部故障时BUS1000原理图

被保护母线上各线路的电流互感器(即主电流互感器)二次电流经BUS1000装置中的辅助电流互感器转换为统一的0~1A的电流,再经电流/电压转换板变成0~1V交流电压信号,经整流后成为直流电压信号。由图中可以看出,整流后的直流电压VF与各线路的电流之和成正比,V D 与各线路的电流之差成正比。BUS1000保护装置是一个比率制动差动保护,用VF作制 动量,反应制动电流I F ,V D 作动作量,反应差动电流I D ,V D 和V F 经加法器和电平比较器后获得 以下动作特性: I D -KI F ≥0.1 式中:I D -差动回路电流; I F -制动回路电流; K-比率制动系数。 电平比较器是一个固定门槛的比较器,当输入差流大于0.1安培时输出信号,继电器动作。比率制动系数K可在0.5~0.9之间调节,它决定了继电器的动作特性和灵敏度。图3为继电器的动作特性曲线(图中电流值为辅助电流互感器二次值)。 图3BUS1000的比率差动特性曲线图

母线差动保护动作跳闸原因分析

母线差动保护动作跳闸原因分析 【摘要】母线差动保护是电力系统的重要保护,当系统发生故障其应当正确迅速切除母线故障元件,它的拒动和误动都将给电力系统带来严重危害。本文分析了母线差动保护动作跳闸原因,提出了相应的处理措施。 【关键词】电力系统;母线差动保护;跳闸;处理措施 0 前言 母线差动保护基本原理.用通俗的比喻,就是按照收、支平衡的原理进行判断和动作的。因为母线上只有进出线路,正常运行情况,进出电流的大小相等,相位相同。如果母线发生故障,这一平衡就会破坏。有的保护采用比较电流是否平衡,有的保护采用比较电流相位是否一致,有的二者兼有,一旦判别出母线故障,立即启动保护动作元件,跳开母线上的所有断路器。如果是双母线并列运行,有的保护会有选择地跳开母联开关和有故障母线的所有进出线路断路器,以缩小停电范围。 1 母线差动保护动作跳闸的分析及处理 1.1 母线差动保护动作跳闸的原因 母线差动保护动作跳闸有以下十项原因:母线上设备引线接头松动造成接地;母线绝缘子及断路器靠母线侧套管绝缘损坏或发生闪络;母线上所连接的电压互感器故障:连接在母线上的隔离开关支持绝缘子损坏或发生闪络故障;母线上的避雷器、及支持绝缘子等设备损坏;各出线(主变压器断路器)电流互感器之间的断路器绝缘子发生闪络故障:二次回路故障;误拉、误合、带负荷拉、合隔离开关或带地线合隔离开关引起的母线故障;母线差动保护误动;保护误整定。 1.2 母线故障跳闸的处理 1.2.1 母线故障时,故障电流很大。在母差保护动作的同时,相邻线路/元件都会启动或发信,故障录波器因其具有更高的灵敏度必然启动;如果相邻线路/元件保护不启动或很少启动,故障录波图上没有明显的故障波形,则可认为母差保护有误动可能或因其他原因造成非故障跳闸。此时,值班人员可在停用母差保护、排除非故障原因并确认该母线上所有断路器均已跳闸后,要求调度选择合适的电源并提高其保护灵敏度后对停电母线进行试送,试送成功后-逐一送出停电线路。 1.2.2 利用备用电源或合上母线分段(或母联)断路器,先对失压的中、低压侧母线及分路恢复供电,并优先恢复站用电。 1.2.3 对跳闸母线的母差保护范围内的设备,认真地进行外部检查。检查有

差动保护试验方法

变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电南京自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该大同小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

下面我们先来分析一下微机差动保护的算法原理(三相变压器)。这里以Y/△-11主变接线为例,传统继电器差动保护是通过把主变高压侧的二次CT接成△,把低压侧的二次CT接成Y型,来平衡主变高压侧与低压侧的30度相位差的,然后再通过二次CT 变比的不同来平衡电流大小的,接线时要求接入差动继电器的电流要相差180度,即是逆极性接入。具体接线见图1: 图1 而微机保护要求接入保护装置的各侧CT均为Y型接线,显而易见移相是通过软件来完成的,下面来分析一下微机软件移相原理。ND300系列变压器差动保护软件移相均是移

母差及失灵保护

《母差及失灵保护》 一、母差保护 1、BP-2B 母差保护 大差电流:不包括母联以外的所有元件电流之和,I d =I 1+I 2+…+I n ; 小差电流:包括一条母线各元件及母联电流之和,I d =I 1+I 2+…+I n +I m 。 (大差、小差正常差流不应超过0.1 A ) 差动保护:使用大差比率差动元件作为区内故障判断元件。即由大差比率元件是否动作,区分母线区外故障还是母线区内故障。 使用小差比率差动元件作为故障母线选择元件。即由小差比率元件 是否动作,决定故障发生在哪一段母线。 跳I 母各单元 跳母联 跳II 母各单元 母差及失灵保护的电压闭锁回路: 对称性故障 不对称故障 接地故障 其目的:一是防止有关人员误碰母差(失灵)保护出口继电器时,发生母差(失灵)保护出口继电器时,发生母差(失灵)保护误动作。二是为了防止电流回路断线引起差动保护误动作。 2、RCS-915母差保护 为防止母差保护在母线近端发生区外故障时CT 严重饱和的情况下发生误动作,本装置根据CT 饱和的波形特点设置了CT 饱和检测元件,用以判别差动电流是否由区外故障CT 饱和引起,如果是则闭锁差动保护出口,否则开放保护出

口。由谐波制动原理构成的CT 饱和检测元件。 母差保护的工作框图(以I 母为例) 二、远传/ 1、远传:线路T 接高抗器、3/2接线开关失灵(或死区故障)时启动远传。 (远传的本质是通过本侧保护利用通道将开入接点状态反映到对侧对应的开出接点上)。 2、远跳:一般母差(失灵)保护动作时,通过光纤差动保护远跳对侧。(远 跳在整定时要经对侧保护启动控制)。 母差(失灵)保护将线路跳闸的同时,向线路对侧发出允许跳闸、解除闭锁脉冲 或远跳脉冲,将对侧开关跳闸。(目的是防止在线路开关与CT 之间发生短路时,对侧的保护以Ⅱ段时限跳闸。) N 大差比率差动元件 I I 母电压闭锁开放II I 母比率差动元件 大差谐波制动开放I 母

母线差动保护调试新方法

母线差动保护调试新方法 摘要:比率制动原理的母线差动保护因其接线简单,有效识别母线区内故障,在电网中得到广泛应用。本文提出母差保护定期检验通过读取运行间隔电气量,实现无需隔离运行电流回路的母差保护比率制动系数校验方法。 关键词:继电保护,母差保护,定期检验,调试方法 1引言 母线差动保护接入母线上的全部连接元件的电流,通过计算母线的差动电流及制动电流,判断母线运行情况,在故障时切除故障母线。由于涉及间隔较多,在母差保护开展定期检验时,母线上连接的元件一般不停运,需要在端子排处短接各元件的电流回路,并断开端子连接片,对母差保护加试验量调试。操作过程中,电流回路开路的风险较高,影响设备与人身安全。0因此,本文提出一种通过网口读取运行间隔电气量,通过备用间隔加入试验电流量,校验母差保护比率制动系数的方法。 2软件功能 本调试方法以昂立继保试验仪为平台,搭建母差保护专用测试系统。软件支持IEC61850-MMS、南瑞继保网络103、长园深瑞网络103通讯规约,从网口读取运行间隔电气量,自动计算当前制动电流及差动电流,输出六路电流,分别加入两个备用间隔,自动调整输出电流,将母差跳闸接点接入试验仪,以跳闸接点状态翻转判断母差动作,使用二分法搜索动作边界并计算出比率系数定值。目前支持PCS-915和BP-2C两种型号的母线保护调试。 3调试原理 3.1BP-2C型母差保护比率系数校验 BP-2C型母差保护的复式差动判据: 差电流,为母线所有支路电流和的绝对值。和电流,为母线所有支路电流的绝对值之和。母线并列运行时,大差比率系数使用高值1;母线分裂运行时,大差比率系数采用低值0.3,小差比率系数固定采用高值1。 3.1.1BP-2C母线大差比率系数高值校验 BP-2C母差保护在母联合位时大差比率系数采用高值 =1。 此时大差差动判据可简化如下: 3.1.2BP-2C母线大差比率系数低值校验 BP-2C母差保护在母联分位时,大差比率系数采用高值 =0.3。 此时大差差动判据可简化如下: 3.1.3BP-2C母线小差比率系数校验 3.2PCS-915母线比率系数校验 PCS-915型母差保护的复式差动判据: 3.2.1PCS-915母线大差比率系数低值校验 3.2.2PCS-915母线大差比率系数高值校验 3.2.3PCS-915母线小差比率系数高值校验

主变差动保护调试

变压器各侧电流互感器采用星形接线,二次电流直接接入本装置。电流互感器各侧的极 性参见前图,都以母线侧为极性端。 变压器各侧TA 二次电流相位由软件调整,装置采用Δ->Y 变化调整差流平衡,这样可 明确区分涌流和故障的特征,大大加快保护的动作速度。对于Y 0/Δ-11 的接线,其校正方 法如下: Y 0侧: I 'A=I A-I 0 I 'B=I B-I 0 I 'C=I C-I 0 △侧: I 'A=(I A-I C )/√3 I 'B=(I B-I A )/√3 I 'C=(I C-I B )/√3 Y 0侧A 相加1Ie 电流,调整后三相电流为2/3Ie 、-1/3Ie 、-1/3Ie △侧A 相加1Ie 电流,调整后三相电流为√3/3Ie 、-√3/3Ie 、-√3/3Ie Ir=||211 ∑=m i i I Id=|| 1 ∑=m i i I

220kV实训变电站#1主变第一套保护 I、II、III侧Ie分别2.62A、2.62A、2.995A 差动启动电流0.2Ie 比例制动系数0.5 I1、I2(A)I1、I2(Ie)I'1、I'2(Ie)Ir Id 动作情况 3.48A 1.76A 1.328 0.672 0.885333 0.448 0.6660.437动作 3.46A 1.78A 1.321 0.679 0.880667 0.452667 0.6660.428动作 3.4A 1.84A 1.298 0.702 0.865333 0.468 0.6660.397不动作 3.42A 1.82A 1.305 0.695 0.87 0.463333 0.6660.406不动作 3.43A 1.81A 1.309 0.690 0.872667 0.46 0.6660.412不动作 3.45A 1.79A 1.317 0.683 0.878 0.455333 0.6660.422不动作 3.98A 1.519 1.0126670.763 3330.498 667 2.02A 0.771 0.514 0.5*(0.666-0.5)+0.1+0.2=0.383 0.5*(0.763-0.5)+0.1+0.2=0.4315 斜率又不对

10、一起主变、母差保护相继动作原因分析

一起主变、母差保护相继动作原因分析 叶远波陈实 (安徽电力调度通信中心,安徽省合肥市 230022) 摘要: 本文从系统内发生的一起实际复杂故障出发,对母差、主变保护相继动作的动作行为进行了详细的分析。并从继电保护设计的角度出发,对提高继电保护动作可靠性展开了思考。 关键词:复杂故障母差、主变保护相继动作 0引言 某220kV变电站110kV母差保护动作,跳开运行于I母线的所有开关,随即220kV#1主变保护动作跳闸,跳开主变三侧开关,这是一起较为罕见的主变、母差保护相继跳闸事件,本文对此进行了原因分析。 1 故障前运行方式 图1 一次方式简图 1.1 220kV部分运行方式 220kV#1主变2801开关、2791、2821运行于220kV #Ⅰ母线,220kV#2主变2802开关、2792、2822开关运行于220kV #Ⅱ母线。2800开关并列双母线运行,2810开关及旁

母在冷备用。 1.2 110kV部分运行方式 220kV#1主变110kV侧101开关、131、137开关运行于110kV #Ⅰ母线,102开关代132、130、138开关及运行于110kV #Ⅱ母线,135、139开关热备用于110kV#Ⅰ母线、136开关在110kV#Ⅱ母线热备用、100开关热备用。110开关在冷备用。 1.3 35kV部分运行方式 301开关代 305、306、307、309开关运行于35kV #Ⅰ母线,300开关热备用,302开关代311、312、314、316开关运行于35kV #Ⅱ母线。 2 设备故障和继电保护动作情况 2.1 现场一次设备故障检查情况 现场设备检查发现在LH变220kV #1主变101开关B相流变靠开关侧、B相流变靠1013闸刀侧、B相流变靠导线侧有多处放电痕迹,造成多点不同时故障。其他设备无异常。 2.2 现场继电保护动作检查情况 110kV I母线差动保护首先动作出口,跳开110kV #1母线上所有开关。随后约1100MS 后220kV #1主变保护A柜差动保护动作;#1主变保护B柜差动保护没有动作,B柜110kV过流段Ⅱ时限保护动作出口,跳开主变三侧开关。 2.3 保护动作情况疑问 (1)正常情况下母差和主变保护的差动保护范围是有着公共重叠区的,在非重叠区外发生故障,主变、母差动作是应具有明确的选择性的;在重叠区发生故障,主变、母差保护将同时动作切除故障,而本例却是母差保护动作1100MS之后,主变保护才相继动作,这是一个应该深入研究的问题。 (2)按照国网设计规范要求,本站主变两套保护是双重化配置的微机差动保护,通常情况下是两套差动同时动作,本次故障中LH变的主变A柜差动保护动作,主变B柜差动保护没有动作,而是B柜110kV延时复合电压过流II段保护动作,这是一个值得研究的问题。 3 保护动作行为分析 通过对现场SOE以及故障录波器的分析,发现本次故障是复合故障,在不同时间和设备的不同的部位发生了多次故障。

浅谈差动保护的试验

龙源期刊网 https://www.wendangku.net/doc/b511069959.html, 浅谈差动保护的试验 作者:王娟平 来源:《科学与财富》2016年第13期 摘要:牵引变压器的主保护是瓦斯保护和差动保护,瓦斯保护是非电量保护,直观易懂 且出错可能性不大;差动保护是电量保护,且涉及3到5个电流互感器,对极性要求很严,二次接线复杂难懂,很容易出错。对于新牵引变电所、综合自动化改造、更换110KV电流互感器后的差动保护试验非常重要,本文主要讨论通过差动保护试验确保其运行的正确性。 关键词:牵引变压器;差动保护;比率差动;差动速断;试验 引言:对保护装置进行试验就是人为的加电流、电压量,使得保护装置动作,从而看装置动作值与整定值之间存在哪些误差,根据此误差可以对保护装置进行改进或将整定值进行重新核定,这样可使用保护装置满足可靠供电的要求。试验方法过简会使一些参数未能得到验证,试验方法过于复杂,又大大增加了工作量,因此科学的办法才是既能准确的了解装置性能又大大地节省人力物力。 一、牵引变电所差动保护 定义:差动保护(包括差动速断和比率差动)是一种依据被保护电气设备进出线两端电流差值的变化构成的对电气设备的保护装置,一般分为纵联差动保护和横联差动保护。变压器的差动保护属纵联差动保护,横联差动保护则常用于变电所母线等设备的保护。 动作原理:差动保护是由变压器两侧的电流互感器二次绕组串联形成环路,差动继电器并接在环路上,因此,根据基尔霍夫电流定律,流入差动继电器的电流等于两侧电流互感器二次绕组电流之差。在正常情况或差动保护范围外发生故障时,两侧电流互感器二次绕组电流大小相等,相位相同,因此流经继电器的差动电流为零,但如果在差动保护区内发生短路故障,流经继电器的差动电流大于零,继电器动作,使断路器跳闸,从而起到保护作用。 差动保护接线方式:差动保护的接线是根据牵引变压器的不同接线方式和保护装置的厂家不同而变化,综合目前在牵引变电所中使用的差动保护接线方式主要有以下六种: 二、差动保护流互极性试验 1.电流互感器 电流互感器按精度要求不同,分为不同的等级:①0.2 级:指一次电流在额定电流附近时,二次绕组电流误差不超过2%,用于计量;②0.5 级:指一次电流在额定电流附近时,二次绕组电流误差不超过5%,用于测量;③P级:指一次电流为额定电流的30倍时,二次绕组的电流误差不超过5% 用于保护。

主变差动保护调试宝典

主变差动保护调试方法 主变差动保护是我们平时调试频率最高,难度最大,过程最复杂的一种保护类型,在调试过程中经常会遇到各种各样的问题,这里介绍一个主变差动保护的调试方法,以武汉豪迈电力继保之星6000C(传统保护用继保之星1600)为调试工具来做南瑞继保RCS-978和国电南自PST-1200主变差动保护试验,相信大家看了之后会觉得差动保护其实很简单很明了,将那些繁杂的公式转换都抛之脑后。 一、加采样 来到现场第一步别急着开始做试验,首先我们要看保护装置的采样信息。 数字保护我们要先导取模型文件,一般后台厂家会给我们全站SCD文件,在继保之星6000C上按照步骤导入配置文件,配置通道时最好按照高中低通道1、2、3,通道映射为ABC、abc、UVW的顺序,以免弄错弄糊涂了,正确设置三侧变比信息。然后按照通道接好光纤,在接光纤的时候可以先接保护装置侧,然后接继保仪RX光口,如果指示灯点亮表示接的正确,如果没有亮表示接反了换另一根光纤接RX。南瑞继保RCS-978用的是方口(LC口),国电南自PST-1200用的是圆口(ST口)。 准备工作做好之后可以按照图1所示设置参数: 图1 传统继保可以先接线接线时按照黄绿红ABC相的顺序,只有六路电流先接上高中侧(或者高低侧)电流,接好线后开机可以按照图2所示设置参数:

图2 每相设置不同的电压电流量方便检查采样值。在加采样值时以防保护动作产生报文不方便看采样信息最后先将主保护功能退掉。 在加采样值时如果不正确可检查以下情况。 数字继保:确保模型文件导入正确;通道设置与所用的实际光口通道一致;通道映射与交流试验所用的相别对应;CT 、PT 变比设置与保护装置内部变比一致;高中低三侧SMV 接受压板均打开状态;波形监测是否有实时波形输出状态。 传统继保:电流开路指示灯是否处于点亮状态;两根电流测试线是否接反;测试线是否接对位置;CT 二次侧划片是否与保护侧断开以防产生分流。 二、 看差流 采样值信息无误后第二步可以看差流信息,在此以江西鹰潭洪桥220kV 变电站两套保护装置配置信息为例来完成下面的操作。 PST-1200保护定值如下:高中低压侧额定容量为100MV A ,电压等级为220kV/110kV/10kV ,CT 变比分别为300/1、600/1、3000/1,差动电流0.2Ie ,速断电流2Ie ,拐点1制动电流Ie ,拐点2制动电流3Ie ,斜率分别为0.5、0.7,(Ie 为高压侧二次额定电流)制动公式为Ir = ( | Ih | + | Il | ) / 2,主变接线方式为Y/Y0-△11。 以上参数在“差动保护试验模块设备参数设置”项目里输入可自动计算出各侧二次额定电流。计算结果为高压侧Ihn=0.875A ,中压侧Imn=0.875A ,低压侧Iln=1.925A 。其中Ie=0.875A 。也可手动计算,以高压侧为基准,则各侧流入差动保护某相的电流分别为 m l m m l l 333N N N h h h I I I U n U n U n ===

相关文档