文档库 最新最全的文档下载
当前位置:文档库 › 算数-几何平均值不等式及应用

算数-几何平均值不等式及应用

算数-几何平均值不等式及应用
算数-几何平均值不等式及应用

算数-几何平均值不等式几应用

1.设a >1,b >1.求证:81

12

2≥-+-a b b a . 2.设a,b,c 都是正数,求证:)(2

11222c b a b a c a b c b a ++≥++-++. 3.设a,b,c ∈R +,且abc=1.求证:2

3)(1)(1)(1333≥+++++b a c a c b c b a . 4.已知a,b,c ∈R +,求证:481)1()1()1(333≥+++++a c c b b a . 5.已知实数a >1,b >1,c >1.求证:2

39111232323≥-+-+-a c c b b a . 6.对任意正数a 1,a 2,...,a n ,记a n+1=a 1,问不等式∑∑=+=+≥n i i

i n n i i i a a a a 1111)(,是否成立? 7.设.,...,2,1,,n i R y x i i =∈+试证:)...()...(...213213232131n n n n y y y x x x y x y x y x ++++++≥+++。 8.设a,b,c ∈R +,求333)1()1()1(),,(c

c b b a a c b a f +++++=,在下列条件下的最小值: (1)a+b+c=3

(2)a+b+c=1

(3)a+b+c=6

(4)a+b+c=A (>0).

9.设x >-1,则

(1)当0<a <1时,(1+x )a ≤1+ax

(2)当a <0,或a >1时,(1+x )a ≥1+ax.

其中等号成立的充要条件是x=0.

10.已知非负实数a,b,c 满足a+b+c ≤3,求证:

c

b a

c c b b a a +++++≤≤+++++11111123111222. 11.设a,b,c 都大于1,求证:

c b a a c c og c b b og b a a og a c b ++≥??

? ??+++++91112. 12.设a,b,c 为非负实数,求证:ab c ac b bc a c b a ++≥++2)(3

1. 13.设a,b,c,d 都是正数,求证:b

a d a d c d c

b

c b a +++++++≥2

14.设a 1,a 2,...,a n 同号,记∑==n i i a s 1,求证:1

221-≥-∑=n n a s a n i i i . 15.设a 1,a 2,...,a n ,都是正数,且对任意,且对任意1≤k ≤n ,有a 1,a 2,...,a k ≥1,求证:2)

1)...(1...)1)(1(2111211<n a a n a a a ++++++++. 16.设a 1,a 2,...,a n ,为n 个非负实数,且设a 1,a 2,...,a n ,=n ,证明:

n

n n a a a a a a a a a ++++++≤++++++11...11111...11214242224121. 17.已知实数x ,y 满足x 2-xy+2y 2=1,求x 2+2y 2的最大值与最小值的和等于多少?

18.已知a,b,c ∈R +,abc=1,证明:(a+b)(b+c)(c+a)≥4(a+b+c-1).

19.已知a,b,c 为正数,求证:23≥+++++c

b a b a

c a c b . 20.给定a 1,a 2,...,a n >0,(n ∈N ,n ≥2),试证:??

? ??-+++=n n n a a a n a a a n x f ......)(2121是单调增函数。

21.x,y,z ∈R +,且x 4+y 4+z 4

=1,求83

8383111z z y y x x -+-+-的最小值。 22.x,y,z ∈R +,x+2y+3z=1,求33327188116z y x ++的最小值。

河南省:必修(5):算术平均数与几何平均数(焦作市第十一中学-郭振东)

《算术平均数与几何平均数》 焦作市第十一中学 郭振东 【教学目标】 (1) 知识目标 使学生能准确表达两个重要不等式;理解它们成立的条件和意义;能正确运用算术平均数与几何平均数定理求最值. (2) 能力目标 通过对实例的分析和提炼培养学生的观察、分析和抽象、概括能力;通过师生间的合作交流提高学生的数学表达和逻辑思维能力. (3) 情感目标 让学生经历知识的发生、发展、应用的全过程,鼓励学生在学习中勤于思考,积极探索;通过去伪存真的学习过程培养学生批判质疑的理性思维和锲而不舍追求真理的精神. 【教学重点】两个正数的算术平均数与几何平均数定理及应用定理求最值. 【教学难点】在求最值时如何正确运用定理. 【教学过程】 Ⅰ.引言: 某人中秋节到超市买两斤糖果,不巧超市的电子秤坏了,但超市还有一个不等臂但刻度准确的坏天平,于是售货员先把糖果放在天平的左侧称出“一斤”,再拿出一些糖果放在天平的右侧称出“一斤”,然后把两次称出的糖果合在一起给了他,并且解释:“一边多一边少,加在一起就正好.”这种称法准确么?如果不准确,那么是称多了还是称少了? 【分析】设天平左右两侧力臂长分别为1l 、2l ,两次称得的糖果实际重量为x 、y 则:12xl l =,12l yl =,

∴2112 l l x y l l +=+ 这个数比2大还是小呢?有没有好的解决方法?请同学们阅读课本第9,10页算术平均数与几何平均数一节的正文及例1,看看能否在课本中找到答案。同时思考以下问题: 问题1.糖果给多了还是少了?你用什么知识解决了这个问题?如何解决的? 问题 2.除定理外还有一个重要不等式,内容是什么?它与定理有哪些相同点和不同点? 问题3.认真分析例1及其证明过程,你能得到什么启示? Ⅱ. 阅读课文,找寻答案 学生阅读课本后回答问题1和问题2,引出本节知识 一.两重要不等式 如果,a b R ∈那么222a b ab +≥ (当且仅当a b =时取“=”号). 定理 如果,a b 是正数,那么2 a b +(当且仅当a b =时取“=”号). 想一想:“当且仅当”的含义是什么? 介绍2 a b +叫做a 、b a 、 b 的几何平均数. 数列解释:两个正数的等差中项不小于它们的正项等比中项. Ⅲ.例题精析,去伪存真 二.定理应用 例1. 已知,x y 都是正数,求证: (1)如果积xy 是定值P ,那么当x y =时,和x y + 有最小值 (2)如果和x y +是定值S ,那么当x y =时,积xy 有最大值214 S . 回答问题3,得出:

(完整版)均值不等式及其证明

1平均值不等式及其证明 平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多种方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多竞赛的书籍中,都有专门的章节介绍和讨论,如数学归纳法、变量替换、恒等变形和分析综合方法等,这些也是证明不等式的常用方法和技巧。 1.1 平均值不等式 一般地,假设12,,...,n a a a 为n 个非负实数,它们的算术平均值记为 12...,n n a a a A n +++= 几何平均值记为 112(...)n n n G a a a == 算术平均值与几何平均值之间有如下的关系。 12...n a a a n +++≥ 即 n n A G ≥, 当且仅当12...n a a a ===时,等号成立。 上述不等式称为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和应用非常灵活、广泛,有多种不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。供大家参考学习。 1.2 平均值不等式的证明 证法一(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 1 1212...(...)k k n a a a a a a k +++≥。 那么,当1n k =+时,由于

121 1 (1) k k a a a A k +++++= +,1k G +=, 关于121,,...,k a a a +是对称的,任意对调i a 与j a ()i j ≠,1k A +和1k G +的值不改变,因此不妨设{}1121min ,,...,k a a a a +=,{}1121max ,,...,k k a a a a ++= 显然111k k a A a ++≤≤,以及1111()()0k k k a A a A +++--<可得 111111()k k k k A a a A a a +++++-≥. 所以 1111211 1(1)...k k k k k k kA k A A a a a A A k k k +++++++-+++-= == 2111...()k k k a a a a A k ++++++-=≥即12111...()k k k k k A a a a a A +++≥+- 两边乘以1k A +,得 111211112111...()...()k k k k k k k k k k A a a A a a A a a a a G ++++++++≥+-≥=。 从而,有11k k A G ++≥ 证法二(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 12...k a a a +++≥ 那么,当1n k =+时,由于

算术-几何平均值不等式

算术-几何平均值不等式 信息来源:维基百科 在数学中,算术-几何平均值不等式是一个常见而基本的不等式,表现了两类平均数:算术平均数和几何平均数之间恒定的不等关系。设为个正实 数,它们的算术平均数是,它们的几何平均数是。算术-几何平均值不等式表明,对任意的正实数,总有: 等号成立当且仅当。 算术-几何平均值不等式仅适用于正实数,是对数函数之凹性的体现,在数学、自然科学、工程科学以及经济学等其它学科都有应用。 算术-几何平均值不等式经常被简称为平均值不等式(或均值不等式),尽管后者是一组包括它的不等式的合称。 例子 在的情况,设: ,那么 .可见。 历史上的证明

历史上,算术-几何平均值不等式拥有众多证明。的情况很早就为人所知,但对于一般的,不等式并不容易证明。1729年,英国数学家麦克劳林最早给出了一般情况的证明,用的是调整法,然而这个证明并不严谨,是错误的。 柯西的证明 1821年,法国数学家柯西在他的著作《分析教程》中给出了一个使用逆向归纳法的证明[1]: 命题:对任意的个正实数, 当时,显然成立。假设成立,那么成立。证明:对于个正实数, 假设成立,那么成立。证明:对于个正实数,设,,那么由于成立,。 但是,,因此上式正好变成 也就是说

综上可以得到结论:对任意的自然数,命题都成立。这是因为由前两条可以得到:对任意的自然数,命题都成立。因此对任意的,可以先找使得,再结合第三条就可以得到命题成立了。 归纳法的证明 使用常规数学归纳法的证明则有乔治·克里斯托(George Chrystal)在其著作《代数论》(algebra)的第二卷中给出的[2]: 由对称性不妨设是中最大的,由于,设,则,并且 有。 根据二项式定理, 于是完成了从到的证明。 此外还有更简洁的归纳法证明[3]: 在的情况下有不等式和成立,于是:

均值不等式的应用(习题-标准答案)

、 均值不等式应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) } 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x ' 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42) 45 x x --不是常数,所以对42x -要进行拆、凑项, [ 5,5404x x <∴->,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+=

均值不等式应用(技巧)

均值不等式应用(技巧) Wekede 整理 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2 b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥ +2 (2)若* ,R b a ∈,则ab b a 2 ≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=” ) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则12x x +≤- (当且仅当1x =-时取 “=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a + ≥+ ≥+ ≤即 或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 ( 2 2 2 b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知54 x < ,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404 x x < ∴-> ,1 1425434554y x x x x ? ?∴=-+ =--+ + ?--? ? 231≤-+= 当且仅当15454x x -= -,即1x =时,上式等号成立,故当1x =时,m ax 1y =。

高考数学百大经典例题 算术平均数与几何平均数

典型例题一 例1 已知R c b a ∈,,,求证.2 2 2 ca bc ab c b a ++≥++ 证明:∵ ab b a 22 2 ≥+, bc c b 222 ≥+, ca a c 22 2 ≥+, 三式相加,得 )(2)(2222ca bc ab c b a ++≥++,即.222ca bc ab c b a ++≥++ 说明:这是一个重要的不等式,要熟练掌握. 典型例题二 例2 已知c b a 、、是互不相等的正数, 求证:abc b a c c a b c b a 6)()()(2 2 2 2 2 2 >+++++ 证明:∵022 2>>+a bc c b ,, ∴abc c b a 2)(22 >+ 同理可得:abc b a c abc c a b 2)(2)(2 2 2 2 >+>+,. 三个同向不等式相加,得 abc b a c c a b c b a 6)()()(222222>+++++ ① 说明:此题中c b a 、、互不相等,故应用基本不等式时,等号不成立.特别地,b a =,c b ≠时,所得不等式①仍不取等号. 典型例题三 例3 求证)(2222222c b a a c c b b a ++≥+++++. 分析:此问题的关键是“灵活运用重要基本不等式ab b a 22 2≥+,并能由) (2c b a ++这一特征,思索如何将ab b a 22 2≥+进行变形,进行创造”. 证明:∵ab b a 22 2≥+, 两边同加2 2b a +得2 2 2 )()(2b a b a +≥+. 即2 )(2 2 2 b a b a +≥+.

证明n元均值不等式

学习好资料 欢迎下载 证明n 元均值不等式 1212n n n a a a n a a a +++≥证明: 首先证明,23n 2,222当,,,,时,不等式成立。 显然,12122a a a a +≥, 又因为412341234123412342+2222=4a a a a a a a a a a a a a a a a +++≥≥?, 同理可以证明得到n 2也成立。 再证明,当k k+1n 22∈(,) 也成立。 k k n=2+i 1i 2-1≤≤不妨设 ,其中,则有k k k k 21212 222a a a a a a ++ +≥, k+1k+1k+1k+121212 222a a a a a a ++ +≥ 则k k k 121222+12+i =++ +n a a a a a a a a +++++ +(), k k k k k k k k k k k k k k k k+1212 22k 2+i 1212 22+12+i 1222+1k 2+i 12 22+1 2++1 2+i i 2+2-i =++++2-i 2i i n a a a a a a a a a a a a a a a a a a a a a a a +++++++ ?+≥? (则()()) k k k k k k k k k 2+i 12 22+1 2+i k 2+i 12 22+1 2+i 2-2i i -a a a a a a a a a a 其中可以看成是()个相()加所得。 k k k k k k k k k k k k 2+i 12 22+12+i k 2+i 1212 22+12+i 22+1 2+i 2-i ++ +2+i a a a a a a a a a a a a a a a ?++ +≥()最后,在式两边同时减去就得到了()() 1212 n n n a a a n a a a ++ +≥即:得证。

算术—几何平均不等式

江苏省郑梁梅高级中学高二数学教学案(理) 主备人:冯龙云 做题人:顾华章 审核人:曾庆亚 课题:算术—几何平均不等式 一、教学目标: 1.掌握平均不等式的基本形式和特点,体会特殊化到一般化的思考方法; 2.利用平均不等式证明相关结论; 二、教学重点、难点 重点:掌握平均不等式的基本形式和特点; 难点:利用平均不等式证明相关结论。 三、教学过程 1、问题情境 复习回顾:基本不等式 2、建构数学 算术—几何平均不等式: 3、数学运用 例1、设,,a b c 为正数,证明:2 (1)()16ab a b ab ac bc c abc ++++++≥。

例2、设12,,,n a a a L 为正数,求证:1212111n n a a a n n a a a +++≥+++L L 。 例3、证明:对于任意正整数n ,有111(1)(1)1n n n n ++<+ +。 4、课堂练习 (1)已知x 、y 都是正数,且 141x y +=,求x y +的最小值。 (2)已知x 、y 都是正数,且x y >,求证:22 12232x y x xy y + ≥+-+。 5、课堂小结 四、板书设计 五、教学后记

江苏省郑梁梅高级中学高二数学作业(理) 班级__________ 姓名________ 学号_________ 1、设,,a b c 为正实数,求证:333111abc a b c +++≥ 2、已知a 、b 为正数,求证:22 (1)(1)9a b a b ab ++++≥。 3、已知a 、b 、c 为正数,且()1abc a b c ++=,求()()a b a c ++的最小值。

均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇) 第一篇:常用均值不等式及证明证明 常用均值不等式及证明证明 这四种平均数满足hn?gn? an?qn ?、ana1、a2、 ?r?,当且仅当a1?a2?? ?an时取“=”号 仅是上述不等式的特殊情形,即d(-1)≤d(0)≤d(1)≤d(2)由以上简化,有一个简单结论,中学常用 均值不等式的变形: (1)对实数a,b,有a 2 22 ?b2?2ab (当且仅当a=b时取“=”号),a,b?0?2ab (4)对实数a,b,有 a?a-b??b?a-b? a2?b2? 2ab?0 (5)对非负实数a,b,有 (8)对实数a,b,c,有

a2? b2?c2?ab?bc?ac a?b?c?abc(10)对实数a,b,c,有 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设a≥0,b≥0,则?a?b??an?na?n-1?b n 注:引理的正确性较明显,条件a≥0,b≥0可以弱化为a≥0 ,a+b≥0 (用数学归纳法)。 当n=2时易证; 假设当n=k时命题成立,即 那么当n=k+1时,不妨设ak?1是则设 a1,a2,?,ak?1中最大者, kak?1?a1?a2???ak?1 s?a1?a2???ak 用归纳假设 下面介绍个好理解的方法琴生不等式法 琴生不等式:上凸函数f?x?,x1,x2,?,xn是函数f?x?在区间(a,b)内的任意n个点, 设f?x??lnx,f

?x?为上凸增函数所以, 在圆中用射影定理证明(半径不小于半弦) 第二篇:均值不等式证明 均值不等式证明一、 已知x,y为正实数,且x+y=1求证 xy+1/xy≥17/4 1=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥2 当且仅当xy=1/xy时取等 也就是xy=1时 画出xy+1/xy图像得 01时,单调增 而xy≤1/4 ∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4 得证 继续追问: 拜托,用单调性谁不会,让你用均值定理来证 补充回答: 我真不明白我上面的方法为什么不是用均值不等式证的法二: 证xy+1/xy≥17/4

均值不等式的应用(习题+答案)

均值不等式应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong (数学之家) 本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是n n G A ≥: 一些大家都知道的条件我就不写了 n n n x x x n x x x ......2121≥ +++ 我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出: 8444844)()(: 4422)()(abcdefgh efgh abcd h g f e d c b a abcd abcd cd ab d c b a d c b a ≥+≥+++++++=≥+≥+++=+++八维时二维已证,四维时: 这样的步骤重复n 次之后将会得到 n n n x x x x x x n 2 221221 (2) ...≥ +++ 令A n x x x x x x x x x x n n n n n n =+++= =====++......;,...,2122111 由这个不等式有 n n n n n n n n n n A x x x A x x x A n nA A 2 121 212 221)..(..2 )2(- -=≥ -+= 即得到 n n n x x x n x x x ......2121≥ +++ 这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子: 例1: 1 1 12101(1,2,...,)11(...)n i i i n n n a i n a a a a =<<=≥ --∑ 若证明 例2:

1 1 1211(1,2,...,)1 1(...)n i i i n n n r i n r r r r =≥=≥ ++∑ 若证明 这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法: 给出例1的证明: 12121 2 212 2 123 4 211(1)2(1)(1) 11,(1)(2)2(1) 22(1)2(1)2211111111n a a a a a a p a q a q p p q p q pq q p q q q p q a a a a =+ ≥ ?- --≥----=+= ?--≥-+?-+≥?+≥+?≥+ + + ≥+ ----≥ 当时设,而这是元均值不等式因此此过程进行下去 因2 1 1 2 1221 1212221 12 2 1 1 2 11(...)...(...)112 2 (2) 1111() 111n n n n n n n n i i n n n n n n n n n i i n n i i a a a a a a a a a a G n a G G G G n a G =++-==≥ --=====+-≥ = ----≥ --∑ ∑ ∑ 此令有即 例3: 1 115,,,,1(1),,111,,11( )( ) 1 1 n n i i i i i i i i i n n n i i i i i i n n i i i i i i i i i i i n r s t u v i n R r S s n n T t U u V v n n n r s t u v R ST U V r s t u v R ST U V =>≤≤== = = = ++≥--∑∑∑∑∑∏ 已知个实数都记,求证下述不等式成立: 要证明这题,其实看样子很像上面柯西的归纳使用的形式

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则 2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈ ,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正 所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。 当 ,即 时,4 21)591 y x x ≥+? =+((当且仅当x =1时取“=”号)。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++) 当,即t=时,4 259y t t ≥?=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ()(0,0)() A y mg x B A B g x =+ +>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。 例:求函数22 4 y x = +的值域。 24(2)x t t +=≥,则2 24 y x = +221 4(2)4 x t t t x =+=+≥+

三个正数的算术-几何平均不等式优秀教学设计

三个正数的算术-几何平均不等式 【教学目标】 1.能利用三个正数的算术-几何平均不等式证明一些简单的不等式,解决最值问题; 2.了解基本不等式的推广形式。 【教学重难点】 1.三个正数的算术-几何平均不等式 2.利用三个正数的算术-几何平均不等式证明一些简单的不等式,解决最值问题 【教学过程】 一、知识学习: 定理3:如果+∈R c b a ,,,那么 33abc c b a ≥++。当且仅当c b a ==时,等号成立。 推广: n a a a n +++ 21≥n n a a a 21 。当且仅当n a a a === 21时,等号成立。 语言表述:n 个正数的算术平均数不小于它们的几何平均数。 思考:类比基本不等式,是否存在:如果+∈R c b a ,,,那么abc c b a 3333≥++(当且仅当c b a ==时,等号成立)呢?试证明。 二、例题分析: 例1:求函数)0(322>+=x x x y 的最小值。 解一: 3322243212311232=??≥++=+=x x x x x x x x y ∴3min 43=y 解二:x x x x x y 623223222 =?≥+=当x x 322=即2123=x 时 ∴633min 324212322 1262==?=y 上述两种做法哪种是错的?错误的原因是什么? 变式训练1 b b a a b a R b a )(1,,-+>∈+求且若的最小值。

由此题,你觉得在利用不等式解决这类题目时关键是要_____________________ 例2 :如下图,把一块边长是a 的正方形铁片的各角切去大小相同的小正方形,再把它的边沿名着虚线折转成一个无盖方底的盒子,问切去的正方形边长是多少时,才能使盒子的容积最大? 变式训练2 已知:长方体的全面积为定值S,试问这个长方体的长、宽、高各是多少时,它的体积最大,求出这个最大值。 由例题,我们应该更牢记 一 ____ 二 _____ 三 ________,三者缺一不可。另外,由不等号的方向也可以知道:积定____________,和定______________。 三、巩固练习 1.函数)0(1232>+=x x x y 的最小值是 ( ) A .6 B .66 C .9 D .12 2.函数2 22)1(164++=x x y 的最小值是____________ 3.函数)20)(2(24<<-=x x x y 的最大值是( ) A .0 B .1 C .2716 D . 2732 4.(2009浙江自选)已知正数z y x ,,满足1=++z y x ,求2 444z y x ++的最小值。 5.(2008,江苏,21)设c b a ,,为正实数,求证:32111333≥+++abc c b a 四、课堂小结: 通过本节学习,要求大家掌握三个正数的算术平均数不小于它们的几何平均数的定理,并会应用它证明一些不等式及求函数的最值,,但是在应用时,应注意定理的适用条件。

(完整版)常用均值不等式及证明证明

2 常用均值不等式及证明证明 Hn n 概念: 1、调和平均数: 1 1 1 a 1 a 2 a n 2、几何平均数: Gn a 1 a 2 1 a n n 3 、算术平均数: An a 〔 a ? a n n 4 、平方平均数: Qn 2 2 a 1 a 2 2 a n n 这四种平均数满足 Hn Gn An Qn 1 r 0 时); D x a i a ; a n n (当 r 0 时)(即 i D 0 a i a ; a n n 则有:当 r=-1、1、0、2 注意到 Hn w Gn< An w Qn 仅是上述不等式的特殊情 形,即 D(-1) w D(0) w D(1) w D(2) 由以上简化,有一个简单结论,中学常用 2 、ab 1 1 a b 均值不等式的变形: (1)对实数a,b ,有a 2 b 2 2ab (当且仅当a=b 时取“=”号),a 2,b 2 0 2ab 对非负实数a,b ,有a a 1> a 2、 、a n R ,当且仅当 a 1 a 2 a n 时取“=”号 均值不等式的一般形式:设函数 D x a i r a ; a n a b a 2 b 2 2 \ 2

⑶ 对负实数a,b ,有 a b -^ ab 0 ⑷ 对实数a,b ,有 a a - b b a - b 2 2 ⑸ 对非负实数a,b ,有 a b 2ab 0 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳) 、拉格朗日乘数 法、琴生不等式 法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设 A >0, B >0,则 A B n A n nA n-i B 注:引理的正确性较明显,条件 A > 0, B > 0可以弱化为 A > 0, A+B> 0 (用数学归纳法)。 当n=2时易证; 假设当n=k 时命题成立,即 ⑹ 2 . 2 对实数a,b ,有a b a b 2 2 ⑺ 2 对实数a,b,c ,有a b 2 2 c (8) 2 对实数a,b,c ,有 a b 2 c 2 (9) 2 对非负数a,b ,有a ab b 2 a b c (i0) 对实数a,b,c ,有 3 2ab abc 2 ab bc ac 3a b 2 3 abc 原题等价于: n a n a i a 2 a n k a k a i a 2 a k 那么当n=k+i 时,不妨设 a k i 是a i , a 2, ,a k i 中最大者, 则 ka k i a k 1 设 s a i a 2 a k

《三个正数的算术—几何平均不等式》教案

《三个正数的算术—几何平均不等式》教案 教学目标 1.能利用三个正数的算术-几何平均不等式证明一些简单的不等式,解决最值问题; 2.了解基本不等式的推广形式. 教学重、难点 重点:三个正数的算术-几何平均不等式 难点:利用三个正数的算术-几何平均不等式证明一些简单的不等式,解决最值问题 教学过程 一、引入: 思考:类比基本不等式的形式,猜想对于3个正数a ,b ,c ,可能有怎样的不等式成立? 类比基本不等式的形式,猜想对于3个正数a ,b ,c ,可能有:若+∈R c b a ,,,那么33 abc c b a ≥++,当且仅当a =b =c 时,等号成立. 二、给出定理 .,,3,,,:333等号成立时当且仅当则若证明c b a abc c b a R c b a ==≥++∈+ 和的立方公式:3223333)(y xy y x x y x +++=+ 立方和公式:))((2233y xy x y x y x +-+=+ 定理3 如果+∈R c b a ,,,那么33 abc c b a ≥++当且仅当a =b =c 时,等号成立. (三个正数的算术平均不小于它们的几何平均) 说明:(1)若三个正数的积是一个常数,那么当且仅当这三个正数相等时,它们的和有最小值. (2)若三个正数的和是一个常数,那么当且仅当这三个正数相等时,它们的积有最大值. 定理推广:n 个正数的算术—几何平均不等式: . ,,,,,,,321322321131等号成立时当且仅当则若n n n n a a a a a a a a n a a a a R a a a a n ====≥++++∈+ 三、例题解析 例5 已知,,x y z R +∈,求证3 ()27.x y z xyz ++≥ 例6如图1.1-5(课本第9页),把一块边长是a 的正方形铁片的各角切去大小相同的小正方形,再把它的边沿着虚线折转成一个无盖方底的盒子,问切去的正方形边长是多少时,才能使盒子的容积最大?

算术平均数与几何平均数——基本不等式

算术平均数与几何平均数——基本不等式 知识要点: 1.如果,a b ∈ ,那么2 2 a b + 2ab (当且仅当 时取“=”号);反之, ab 22 2 a b +也成立。 2.如果,a b ∈ ,那么 2 a b +≥ (当且仅当a b =时取“=”号);反之,ab ≤ 也成立。 3.把2 a b +称,a b 的 ;把,a b 的 ;不等式,)2a b a b R *+≥∈可叙述为 ; 疑误知识辨析: 例1. 若,a b R ∈,求证:222||a b ab +≥; 例2.x R * ∈,求证:1 2x x +≥; 经典名题: 例3.已知0a b >>,全集,{|}2 a b U R M x b x +==<< , {},{|N x x a P x b x =<<=<≤,则 A .U P M C N =?; B .U P N C M =?;C .P N M =?; D .P N M =?; 例4.已知,,{|0}a b c x x ∈>,证明:(1)1 1 ()()4a b c a b c +++≥+; (2 2 21()2 a b c ++。 同步训练: 一、选择题 1.“a 是正数,b 是正数”是“a b +≥ 的 A .充分不必要条件; B .必要不充分条件; C .充要条件; D .既不充分也不必要条件。 2.若a 、b 都是正实数,则在不等式2 2 2,a b ab a b +≥+≥22,2a b a b a b b a b a +≥++≥ 中不正确的个数是 A .0; B .1; C .2; D .3 3.,x y R * ∈,则下列不等式中等号不成立的是 A .11 21 x x x x + +≥+; B .11()()4x y x y ++≥; C .11 ()()4x y x y ++≥; D .222lg lg lg lg ()22x y x y ++≤ 二、填空题 4.已知2 211(3),()22 x P a a Q a -=+ >=-,则P 、Q 的大小关系是 ; 5.若a 、b 、c >0,则b c c a a b a b c +++++≥ ; 6.下列不等式的证明过程 ①若,a b R ∈、 则 2b a a b ≥=+;②若0x >, 则1cos 2cos x x +≥=;③若0x < ,则44x x + ≤;④若a b R ∈、且0ab <, 则 [()()]2a b a b b a b a +=--+-≤--。证明过程正确的是 。 三、解答题: 7.证明222a b ab +≥下面的几种变形:(1)222||2a b ab ab +≥≥±;(2)2 2 21 ()2 a b a b +≥ +;(3)2 ()4a b ab +≥;(4)(0)a b a b ab b a --≥>;(5)222 ()22 a b a b ++≥ 8.(1)已知a b c R ∈、、,求证:222 ac ab bc a b c ++≤++; (2)已知实数a b x y 、、、满足2 2 2 2 1,1a b x y +=+=,求证:1ax by +≤。 9.设a 、b 、c )a b c >++。 10.设a 、b 、c 为正数,证明:222 a b c a b c b c a ++≥++

均值不等式的证明

平均值不等式及其证明 平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多 竞赛的书籍中,都有专门的章节和讨论,如数学归纳法、变量替换、恒等变形和分析 综合方法等,这些也是证明不等式的常用方法和技巧。 1.1平均值不等式 一般地,假设,,,为n个非负实数,他们的算术平均值记为 几何平均值记为 算术平均值和几何平均值之间有如下的关系。 即, 当且仅当时,等号成立。 上述不等式成为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和使用非常灵活、广泛,有多 重不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。 供大家参考学习。 1.2平均值不等式的证明 证法一(归纳法) (1)当n=2时,已知结论成立。 (2)假设对n=k(正整数k)时命题成立,即对 ,,,,有 。 那么,当n=k+1时,由于

, 关于,,,是对称的,任意对调和,和的值不改变,因此不妨设,,,,,,,显然,以及()()可得 () 所以 () () 即()两边乘以,得 从而,有 证法二(归纳法) (1)当n=2时,已知结论成立。 (2)假设对n=k(正整数k)时命题成立,即对,,,,有 。 那么,当n=k+1时,由于 从而,有 证法三(利用排序不等式)

设两个实数组,,,和,,,满足 ;, 则(同序乘积之和) (乱序乘积之和) (反序乘积之和) 其中,,,是,,的一个排列,并且等号同时成立的充分必要条件是或成立。 证明: 切比雪夫不等式(利用排序不等式证明) 杨森不等式(Young)设,,,则对 ,有等号成立的充分必要条件是。 琴生不等式(Jensen) 设,(,)为上凸(或下凸)函数,则对任意,(,,),我们都有 或 其中,, 习题一 1.设,求证:对一切正整数n,有 () 2.设,,,求证 ()()()( 3.设,,为正实数,证明:

相关文档
相关文档 最新文档