文档库 最新最全的文档下载
当前位置:文档库 › 恒温槽的安装与性能测试

恒温槽的安装与性能测试

恒温槽的安装与性能测试
恒温槽的安装与性能测试

实验1 恒温槽装配和性能测试

一、目的要求

了解恒温槽的构造及恒温原理,初步掌握其装配和调试的基本技术

绘制恒温槽的灵敏度曲线(温度——时间曲线),学会分析恒温槽的性能

掌握热电阻和热电偶温度计的使用及接触温度计的调节及使用方法

二、基本原理

物质的物理化学性质,如粘度、密度、蒸气压、表面张力、折光率等都随温度而改变,要测定这些性质必须在恒温条件下进行。一些物理化学常数如平衡常数、化学反应速率常数等也与温度有关,这些常数的测定也需恒温,因此,掌握恒温技术非常必要。恒温控制可分为两类,一类是利用物质的相变点温度来获得恒温,但温度的选择受到很大限制;另外一类是利用电子调节系统进行温度控制,此方法控温范围宽、可以任意调节设定温度。

恒温槽是实验工作中常用的一种以液体为介质的恒温装置,根据温度控制范围,恒温槽是由浴槽、电接点温度计、继电器、加热器、搅拌器和温度计组成,具体装置示意图见图。继电器必须和电接点温度计、加热器配套使用。电接点温度计是一支可以导电的特殊温度计,又称为接触温度计。它有两个电极,一个固定与底部的水银球相连,另一个可调电极D是金属丝,由上部伸入毛细管内。顶端有一磁铁,可以旋转螺旋丝杆,用以调节金属丝的高低位置,从而调节设定温度。当温度升高时,毛细管中水银柱上升与一金属丝接触,两电极导通,使继电器线圈中电流断开,加热器停止加热;当温度降低时,水银柱与金属丝断开,继电器线圈通过电流,使加热器线路接通,温度又回升。如此,不断反复,使恒温槽控制在一个微小的温度区间波动,被测体系的温度也就限制在一个相应的微小区间内,从而达到恒温的目的。

恒温槽的温度控制装置属于“通”“断”类型,当加热器接通后,恒温介质温度上升,热量的传递使水银温度计中的水银柱上升。但热量的传递需要时间,因此常出现温度传递的滞后,往往是加热器附近介质的温度超过设定温度,所以恒温槽的温度超过设定温度。同理,降温时也会出现滞后现象。由此可知,恒温槽控制的温度有一个波动范围,并不是控制在某一固定不变的温度。控温效果可以用灵敏度Δt表示:

Δt = ±( t1 - t2 )/2

式中,t1为恒温过程中水浴的最高温度,t2为恒温过程中水浴的最低温度。可以看出:曲线(A)表示恒温槽灵敏度较高;(B)表示恒温槽灵敏度较差;(C)表示加热器功率太大;(D)表示加热器功率太小或散热太快。

影响恒温槽灵敏度的因素很多,大体有:

1.恒温介质流动性好,传热性能好,控温灵敏度就高;

2.加热器功率要适宜,热容量要小,控温灵敏度就高;

3.搅拌器搅拌速度要足够大,才能保证恒温槽内温度均匀;

4.继电器电磁吸引电键,后者发生机械作用的时间愈短,断电时线圈中的铁芯剩磁愈小,控温灵敏度就高;

5.电接点温度计热容小,对温度的变化敏感,则灵敏度高;

6.环境温度与设定温度的差值越小,控温效果越好。

三、仪器和试剂

玻璃浴槽数字温度计停表搅拌器加热器接触温度计常规温度计继电器

四、操作步骤

1.在初次使用前,应先将恒温器电源插头用万用表作一次安全检查,用测量电阻之一挡,量插头上相,中,地,相互之间是否有短路或绝缘不良现象。

2.按规定加入蒸馏水(水位离盖板约30-43毫米)将电源插头接通电源,开启控制箱上的电源开关及电动泵开关,使槽内的水循环对流。

3.调节恒温水浴至设定温度。假定室温为20℃,欲设定实验温度为25℃,其调节方法如下:先旋开水银接触温度计上端螺旋调节帽的锁定螺丝,再旋动磁性螺旋调节帽,使温度指示螺母位于大约低于欲设定实验温度2~3℃处(如23℃),开启加热器开关加热(为节约加热时间,最好灌入较所需恒温温度约低数度的热水),如水温与设定温度相差较大,可先用大功率加热(仪器面板上加热器开关位于“通”位置),当水温接近设定温度时,改用小功率加热(仪器面板上加热器开关位于“加热”位置)。注视温度计的读数,当达到23℃左右时,再次旋动磁性螺旋调节帽,使触点与水银柱处于刚刚接通与断开状态(恒温指示灯时明时灭)。此时要缓慢加热,直到温度达25℃为止,然后旋紧锁定螺丝。

4.如需要用低于环境室温时可用恒温器上之冷凝管致冷,可外加和恒温器相同之电动水泵一只将冷水用橡胶皮管从冷凝筒进入嘴引入至冷凝管内致冷,同时在橡皮管上加管子夹一只,以控制冷水的流量,用冷水导入致冷一般只能达到20-15℃之间并须将电加热开关关断。

5.恒温器加热最好选用蒸馏水,切勿使用井水,河水,泉水等硬水,尚用自来水必须在每次使用后将该器内外进行清洗,防止筒壁积聚水垢而影响恒温灵敏度。

6.本实验用数字式贝克曼温度计测量温度,每隔30秒记一次数值。

五、注意事项

1.为使恒温槽温度恒定,接触温度计调至某一位置应将调节帽上的固定螺钉拧紧,以免使之因振动而发生偏移。

2.当恒温槽的温度和所要求的温度相差较大时,可以适当加大加热功率,但当温度接近指定温度时,应将加热功率降到合适的功率。

时间/min 0.5 1 1.5 2 2.5 3 3.5 4

上/°C 4.819 4.823 4.829 4.819 4.812 4.797 4.792 4.786

中/°C 4.986 4.989 4.991 4.984 4.977 4.966 4.955 4.947

下/°C 4.903 4.909 4.912 4.908 4.901 4.897 4.881 4.875

4.5 5

5.5 6

6.5 7

7.5 8

4.782 4.778 4.774 4.765 4.762 4.757 4.753 4.748

4.939 4.929 4.916 4.91 4.903 4.897 4.892 4.887

4.864 4.855 4.846 4.837 4.829 4.82 4.811 4.803

8.59 9.5 10 10.5 11 11.5 12

4.743 4.747 4.753 4.758

4.884 4.881 4.879 4.876 4.879 4.883

4.796 4.787 4.777 4.769 4.752 4.739 4.741 4.748

讨论分析

1)对合理最佳布局的讨论

(a) 加热器与接点温度计距离尽量近,从而减轻温度控制中的延迟现象;

(b) 热敏温度计和搅拌器距离尽量远,以防止搅拌器周围的湍流导致热敏温度计处

介质温度不规则波动,防止记录出的灵敏度曲线出现不规则跃变;

(c) 使除加热器外的各元件处在搅拌器搅拌方向的下游,且搅拌器距离尽量远,否则

由于温度计周围介质温度不稳定,会而使得温度控制出现延迟,降低灵敏度。

误差分析

(a) 测得的所有灵敏度曲线有一共同的特点,即升温线较陡,而降温线较平

缓。产生这一现象的主要原因可能是:热敏电阻温度计对于高温流体(即

被测物体温度上升)的反应更加灵敏。

(b) 在布局5的测试过程中,虽然布局5是合理的最佳布局,温度波动的范

围最小,恒温槽的灵敏度最高。但是所得到的灵敏度曲线不是非常稳定,

温度控制的范围时大时小。产生这一现象的主要原因可能是:由于在布局

5中热敏温度计的位置距离搅拌器很近,所以温度计所测定区域的介质温

度不稳定,因此记录仪记录出的灵敏度曲线也就不稳定。

实验1__恒温槽的装配和性能测试_702408269

实验1 恒温槽的装配和性能测试 实验目的 1.了解恒温槽的原理,初步掌握其装配和调试的基本技术。 2.分析恒温槽的性能,找出合理的最佳布局。 3.掌握水银接点温度计、热敏电阻温度计、继电器、自动平衡记录仪的基本测量原理和使用方法。 实验原理 许多物理化学实验都需要在恒温条件下进行。欲控制被研究体系的某一温度,通常采取两种方法:一是利用物质相变时温度的恒定性来实现,叫介质浴。如:液氮(-195.9℃)、冰-水(0℃)、沸点水(100℃)、干冰-丙酮(-78.5℃)、沸点萘(218℃)等等。相变点介质浴的最大优点是装置简单、温度恒定。缺点是对温度的选择有一定限制,无法任意调节。另一种是利用电子调节系统,对加热或制冷器的工作状态进行自动调节,使被控对象处于设定的温度之下。 本实验讨论的恒温水浴就是一种常用的控温装置,它通过继电器、温度调节器(水银接点温度计)和加热器配合工作而达到恒温的目的。其简单恒温原理线路如图2-1-1所示。当水槽温度低于设定值时,线路I是通路,因此加热器工作,使水槽温度上升;当水槽温度升高到设定值时,温度调节器接通,此时线路II 为通路,因电磁作用将弹簧片D吸下,线路I断开,加热器停止加热;当水槽温度低于设定值时,温度调节器断开,线路II断路,此时电磁铁失去磁性,弹簧片回到原来的位置,使线路I又成为通路。如此反复进行,从而使恒温槽维持在所需恒定的温度。

恒温槽由浴槽、温度计、接点温度计、继电器、加热器、搅拌器等部件组成。如图2-1-2所示。为了对恒温槽的性能进行测试,图中还包括一套热敏电阻测温装置。现将恒温槽主要部件简述如下。 1.浴槽浴槽包括容器和液体介质。根据实验要求选择容器大小,一般选择10L或者20L的圆形玻璃缸做为容器。若设定温度与室温差距较大时,则应对整个缸体保温。以减少热量传递,提高恒温精度。 恒温槽液体介质根据控温范围选择,如:乙醇或乙醇水溶液(-60-30℃)、水(0-100℃)、甘油或甘油水溶液(80-160℃)、石蜡油、硅油(70-200℃)。本实验采用去离子水为工作介质,如恒温在50℃以上时,可在水面上加一层液体石蜡,避免水分蒸发。 2.温度计观察恒温浴槽的温度可选择1/10℃水银温度计,测量恒温槽灵敏度则采用热敏电阻测温装置。将热敏电阻与1/10℃温度计绑在一起,安装位置应尽量靠近被测系统。 3.接点温度计(温度调节器)接点温度计又称接触温度计或水银导电表,如图2-1-3所示。它的下半段是水银温度计,上半段是控制指示装置。温度计上部的毛细管内有一根金属丝和上半段的螺母相连,螺母套在一根长螺杆上。顶部是磁性调节冒,当转动磁性调节冒时螺杆转动,可带动螺母和金属丝上下移动,螺母在温度调节指示标尺的位置就是要控制温度的大致温度值。顶部引出的两根导线,分别接在水银温度计和上部金属丝上,这两根导线再与继电器相连。当浴

恒温槽的性能测试

精品文档 实验报告 课程名称: 大学化学实验P 指导老师:_杜志强______成绩:__________________ 实验名称: 恒温槽的性能测试 实验类型: 设计型 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 (1)了解恒温槽的构造和恒温原理 (2)学会分析恒温槽的性能 (3)掌握电接点水银温度计的调节和使用 (4)学会恒温槽温度波动曲线的绘制 二、实验内容和原理 1.恒温槽的结构: 恒温槽由于超、温度调节器、温度控制器、加热器、搅拌器和温度指示器组成 2.恒温槽的恒温原理: 恒温槽通过温度控制器对加热器进行自动调节,具体实现方式:当恒温槽的温度超过预设温度时,温度计的汞柱会与温度计中的铂丝相接触,继电器电路导通,电子继电器工作,电路断开,加热器停止加热,继而温度下降;当温度低于预设温度,温度计的汞柱会与温度计中的铂丝相分离,继电器电路断开,电子继电器停止工作,电路导通,加热器开始工作,温度上升。 3.电接点水银温度计的构造: 下半部分与普通温度计相似,有一根铂丝引出线与水银想接触;上半部分也有一根铂丝引出线,通过顶部磁钢旋转可以控制器高低。上铂丝运动在定温指示标杆上,可以通过改变上铂丝的位置来设定温度。 4.温度测定: 一般采用1/10温度计作为测温元件,同时使用紧密温差测试仪来测量温差。 三、主要仪器设备 仪器:玻璃钢;温度调节器;紧密电子测温仪;温度计;搅拌器;继电器;加热器; 试剂:蒸馏水 四、操作方法和实验步骤 1.准备 1.将蒸馏水灌入恒温水浴槽4/5处 2.连接电路 3.打开电源、搅拌器,开始升温 2.温度调节 1.调节上铂丝于25℃(略低于25℃) 2.当汞柱与上铂丝相接触时,向上旋转调节冒,使上铂丝接近25℃ 3.重复步骤1、2,直至上铂丝位于25℃位置 专业:高分子 姓名:毛俞硕 学号:3080102750 日期:2010.4 地点:化学实验楼 装 订 线

恒温槽装配、性能测试及恒温操作 (1)

恒温槽装配、性能测试及恒温操作 预习题: 1.玻璃恒温水浴槽包括哪些部件?它们的作用? 2.如何操作温度控制仪调节温度?如何确定水浴温度已恒温于某一温度? 3.电加热器加热过程中,加热电压如何调节? 4.如何防止水浴温度超过所需要的恒温温度? 5.一个优良的恒温水浴槽应具备哪些基本条件? 6.绘制恒温槽灵敏度曲线的温度如何读取? 7.恒温槽灵敏度θE的意义是什么?如何求得? 8.实验结束,感温元件(热敏电阻)应如何处理? 9.实验中三个测量温度的元件(水银温度计、温度指示控制仪、贝克曼温度计)的作用分别 是什么?哪一个温度显示值是水浴的准确温度? 一.实验目的 1.了解恒温槽的构造及恒温原理,初步掌握其装配和调试的基本操作技术。 2.绘制恒温槽的灵敏度曲线。 3.掌握贝克曼温度计的使用方法。 二.实验原理 在许多物理化学实验中,由于欲测的数据,如折射率、蒸汽压、电导、粘度、化学反应速率等都随温度而变化,因此,这些实验都必须在恒温条件下进行。一般常用恒温槽达到热平衡条件。当恒温槽的温度低于所需的恒定温度时,恒温控制器通过继电器的作用,使加热器工作,对恒温槽加热,待温度升高至所需的恒定温度时,加热器停止加热,从而使恒温槽的温度仅在一微小的区间内波动,本实验所用恒温槽的装置如图 现将恒温槽各部分的设备分别介 绍于下: 1.浴槽。通常有金属槽和玻璃槽 两种,槽的容量及形状视需要而定。 槽内盛有为热容较大的液体作为工作 物质,一般所需恒定温度1~100℃之 间时,多采用蒸馏水;所需恒定温度 在100℃以上时,常采用石蜡油,甘 油等。 图1-1 恒温槽装置图 1-浴槽;2-加热器;3-搅拌器;4-水银温度计;5-温度控制仪传感器(感 温元件);6-恒温控制仪;7-贝克曼温度计传感器

恒温槽的装配与性能测定

恒温槽的装配与性能测定 中科大地空学院地化专业 郭继业pb10007203 摘要:本实验测定在不同电压、控温方式、有无水冷条件下恒温槽的温度波动大小,并借此分析恒温槽的性能及最佳适用范围。 关键字:恒温槽温度波动 The Assembly and Capability Test of Thermostatic Bath Abstract: The experiment determined temperature fluctuation in such condition that is in different voltage and temperature-controlling method and condition whether there is water-cooling machines. The result shows the property of the thermostatic bath and grasps the range the bath can be well used of. Key words: thermostatic bath, temperature fluctuation 序言 在许多物理化学实验中,由于待测的数据如折射率、粘度、电导、蒸汽压、电动势、化学反应的速度常数‘电力平衡常数等都与温度有关。因此,这些实验都必须在恒温的条件下进行,这就需要各种恒温的设备。通常用恒温槽来控制温度,维持恒温。一般恒温槽的温度都相对稳定,多少总有一定的波动,大约在±0.1℃,如果稍加改进也可达到0.01℃。要使恒温设备维持在高于室温的某一温度,就必须不断补充一定的热量,石油与散热等原因引起的热损失得到补偿。恒温槽之所以能够恒温,主要是依靠恒温控制起来控制恒温槽的热平衡。当恒温槽的热量由于对外散失而使其温度降低时,恒温控制器就能驱使恒温槽中的电加热器工作,待加热到所需要的温度时,它又会使其停止加热,是恒温槽温度保持恒定。 因此,这种加热——散热的恒温方法由于温度的变化、测量具有一定的滞后性,即使搅拌器具有适宜的转速,也必然导致温度在一定程度上的波动。以下,将分别测试在加热方式不同、恒温温度与环境温度温差不同(采用冷却水方式)两种情况下的恒温槽恒温性能。

恒温槽的装配和性能测试

恒温槽的装配和性能测试 丛乐2005011007 生51班 实验日期:2007年10月27日星期六提交报告日期:2007年11月3日星期六 助教老师:刘马林同组实验同学:韩益平 1 引言 1.1实验目的 1.了解恒温槽的原理,初步掌握其装配和调试的基本技术。 2.分析恒温槽的性能,找出合理的最佳布局。 3.掌握水银接点温度计、热敏电阻温度计、继电器、自动平衡记录仪的基本测量原理和使用方法。 1.2 实验原理 许多物理化学实验都需要在恒温条件下进行。欲控制被研究体系的某一温度,通常采取两种方法:一是利用物质相变时温度的恒定性来实现,叫介质浴。如:液氮(-195.9℃)、冰-水(0℃)、沸点水(100℃)、干冰-丙酮(-78。5℃)、沸点萘(218℃)等等。相变点介质浴的最大优点是装置简单、温度恒定。缺点是对温度的选择有一定限制,无法任意调节。另一种是利用电子调节系统,对加热或制冷器的工作状态进行自动调节,使被控对象处于设定的温度之下。 本实验讨论的恒温水浴就是一种常用的控温装置,它通过继电器、温度调节器(水银接点温度计)和加热器配合工作而达到恒温的目的。其简单恒温原理线路如图2-1-1所示。当水槽温度低于设定值时,线路I是通路,因此加热器工作,使水槽温度上升;当水槽温度升高到设定值时,温度调节器接通,此时线路II为通路,因电磁作用将弹簧片D吸下,线路I断开,加热器停止加热;当水槽温度低于设定值时,温度调节器断开,线路II断路,此时电磁铁失去磁性,弹簧片回到原来的位置,使线路I又成为通路。如此反复进行,从而使恒温槽维持在所需恒定的温度。 恒温槽由浴槽、温度计、接点温度计、继电器、加热器、搅拌器等部 件组成。如图2-1-2所示。为了对恒温槽的性能进行测试,图中还包括一 套热敏电阻测温装置。现将恒温槽主要部件简述如下。 1.浴槽浴槽包括容器和液体介质。根据实验要求选择容器大小,一 般选择10L或者20L的圆形玻璃缸做为容器。若设定温度与室温差距较 大时,则应对整个缸体保温。以减少热量传递,提高恒温精度。 恒温槽液体介质根据控温范围选择,如:乙醇或乙醇水溶液(-60-30℃)、水(0-100℃)、甘油或甘油水溶液(80-160℃)、石蜡油、硅油(70-200℃)。本实验采用去离子水为工作介质,如恒温在50℃以上时,可在水面上加一层液体石蜡,避免水分蒸发。 2.温度计观察恒温浴槽的温度可选择 1/10℃水银温度计,测量恒温槽灵敏度则 采用热敏电阻测温装置。将热敏电阻与 1/10温度计绑在一起,安装位置应尽量靠 近被测系统。 3.接点温度计(温度调节器)接点 温度计又称接触温度计或水银导电表,如 图2-1-3所示。它的下半段是水银温度计, 上半段是控制指示装置。温度计上部的毛 细管内有一根金属丝和上半段的螺母相 连,螺母套在一根长螺杆上。顶部是磁性 调节冒,当转动磁性调节冒时螺杆转动, 可带动螺母和金属丝上下移动,螺母在温 度调节指示标尺的位置就是要控制温度的 大致温度值。顶部引出的两根导线,分别图1恒温槽工作原理图 图2恒温槽装置图

恒温槽的性能测定

恒温槽的性能测定 【摘要】本实验先了解恒温槽的构造及恒温原理,掌握其装配和调试的基本技术,然后测量恒温槽在不同情况下的灵敏度曲线:使用智能调压继电器的灵敏度曲线和有接触式温度计的超级恒温水浴下的灵敏度曲线;在一般的散热速率的灵敏度曲线和通入冷凝水加速散热的灵敏度曲线。最后得到六条曲线,并且对这些曲线进行分析讨论。 【关键字】恒温槽;灵敏度曲线;电子继电器;接触温度计;超级恒温水浴Measurement and Analysis of the Thermostat Xinghao Zhou (Department of Materials Science & Engineering, USTC) Abstract:It is required that the structure and the working principle of the thermostat be understood and that the basic skills of assembling and adjustment be mastered. Then the sensitivity curves of the thermostat should be measured under different conditions. At last, 6 sensitivity curves are obtained and they will be discussed and compared between automatic voltage regulation and super thermostatic water bath with contact thermometer and between accelerated heat dissipation with condensate water and normal heat dissipation rate. Key Words: Thermostat; Sensitivity curve; Electronic relay; Contact thermometer; Super thermostatic water bath 1.前言: 在许多物理化学实验中,由于待测的数据如折射率、粘度、电导、蒸汽压、电动势、化学反应的速度常数、电离平衡常数等都与温度有关。因此,这些实验都必须在恒温的条件下进行,这就需要各种恒温的设备。通常用恒温槽来控制温度,维持恒温。本次实验测定,比较不同条件下恒温槽的灵敏度曲线(温度—时间曲线),自动调压系统与恒压加热系统,不同电压的恒压加热系统以及正常散热与加速散热系统,对不同的环境对灵敏度曲线的影响进行详细的解释和讨论。 2.实验部分 ①实验原理: 恒温槽主要包括下面的几个部件:1敏感元件,也称感温元件;2 控制元件; 3 加热元件。感温元件将温度转化为电信号而输送给控制元件,然后由控制元件发出指令让电加热元件加热或停止加热。 图1-1即是一恒温装置。它由浴槽、加热器、搅拌器、温度计、感温元件、

恒温槽的装配与性能测定

恒温槽的装配与性能测定 摘要:本实验在掌握恒温槽的装配及恒温原理基础上,通过对比电子自动控温与机械自动化控温以及它们在不同的散热情况下得到的温度-时间曲线,分析出各种方法的优劣。 关键词:恒温槽灵敏度温度控制 The setting up of the thermostatic bath and the measure of its feature Chen Yimeng PB08206231 University of Science and Technology of China, Department of Material Science Engineering Abstract: In this experiment, we assemble the thermostatic in order to know its theory and the method to operate the equipment. We measure the temperature and analyze the T-t curve to get its performance. Keywords:thermostatic, sensitivity, temperature control 引言: 在许多物理化学实验中,由于待测的数据如折射率、粘度、电导、蒸汽压、电动势、化学反应的速度常数、电离平衡常数等都与温度有关。因此,这些实验都必须在恒温的条件下进行,这就需要各种恒温的设备,最常用的恒温设备就是恒温槽。本实验就来探讨一下恒温槽的构造、基本原理以及影响控制灵敏度的因素。了解恒温槽的控温原理可以实现对其的进一步了解及更合理的应用。 实验部分: 1. 实验原理 恒温槽之所以能够恒温,主要是依靠恒温控制器来控制恒温槽的热平衡。当恒温槽的热量由于对外散失而使其温度降低时,恒温控制器就驱使恒温槽中的电

恒温槽调节及液体粘度的测定

实验1 恒温槽调节及液体粘度的测定 一、实验目的 1.了解恒温槽的构造、控温原理,掌握恒温槽的调节和使用。 2.掌握一种测量粘度的方法。 二、实验原理 1. 恒温槽 许多化学实验中的待测数据如粘度、蒸气压、电导率、反应速率常数等都与温度密切相关,这就要求实验在恒定温度下进行,常用的恒温槽有玻璃恒温水浴和超级水浴两种,其基本结构相同,主要由槽体、加热器、搅拌器、温度计、感温元件和温度控制器组成,如图1所示。 恒温槽恒温原理是由感温元件将温度转化为电信号输送给温度控制器,再由控制器发出指令,让加热器工作或停止工作。 水银定温计是温度的触感器,是决定恒温程度的关键元件,它与水银温度计的不同之处是毛细管中悬有一根可上下移动的金属丝,从水银球也 引出一根金属丝,两根金属丝温度控制器相联接。调节温度时,先松开固定螺丝,再转动调节帽,使指示铁上端与辅助温度标尺相切的温度示值较欲控温度低1~2℃。当加热到下部的水银柱与铂丝接触时,定温计导线成通路,给出停止加热的信号(可从指示灯辨出),此时观察水浴槽中的精密温度计,根据其与欲控温度的差值大小进一步调节铂丝的位置。如此反复调节,直至指定温度为止。 恒温槽恒温的精确度可用其灵敏度衡量,灵敏度是指水浴温度随时间变化曲线的振幅大小。即 灵敏度 = 2 ()(最低温度)最高温度t t 灵敏度与水银定温计、电子继电器的灵敏度以及加热器的功率、搅拌器的效率、各元件的布局等因素有关。搅拌效率越高,温度越容易达到均匀,恒温效果越好。加热器功率大,则到指定温度停止加热后释放余热也大。一个好的恒温槽应具有以下条件:①定温灵敏度高;②搅拌强烈而均匀;③加热器导热良好且功率适当。各元件的布局原则:加热器、搅拌器和定温计的位置应接近,使被加热的液体能立即搅拌均匀,并流经定温计及时进行温度控制。 图1 恒温槽装置示意图 1— 浴槽;2—加热器;3搅拌器;4—温度计; 5—水银定温计;6—恒温控制器;7—贝克曼温度计

实验1 恒温槽的装配与性能的测定

恒温槽的装配与性能的测定 【摘要】 本实验通过测定恒温槽恒在不同条件下(不同加热电压)温度随时间的波动情况,分析影响恒温槽灵敏度的因素,并在实验过程中初步掌握恒温槽的装配及恒温原理。【Abstract】 In this experiment, we choose different conditions (difference in heat voltage) to examine the fluctuate of the temperature of the thermostat , in order to analyzed the factors taking effect on the sensitivity of the thermostat and grasp its theory and the method to operate this equipment. 【关键词】 恒温槽加热电压灵敏度 【Keywords】 thermostat heat voltage sensitivity 【前言】 在许多物理化学实验中,待测数据如折射率、粘度、电导、蒸汽压等都与温度有关,这些实验都要在恒温条件下进行,通常用恒温槽设备来控制温度,目前恒温槽主要靠恒温控制器控制电加热器工作,温度都是相对的稳定,多少总有一定的波动。所以在实验过程中,恒温槽的灵敏度很重要,测量恒温槽的灵敏度对分析实验结果,以及对恒温槽的改进都有着重要的意义。本实验就是通过电磁继电器控恒温槽灵敏度的测量,并进行讨论,来研究恒温槽的改进。 【实验过程】 一、实验原理

恒温槽通过电子及电器对加热器自动调节,当恒温槽因热量向外扩散等原因使体系温度低于设定值时,继电器控制加热器工作,到体系再次达到设定值时,又自动停止加热。加热过程中通过搅拌器使热量均匀。恒温控制器在控温的同时,精确地反映了被控温部位的温度值。图1-1即是一恒温装置。它由浴槽、加热器、搅拌器、温度计、感温元件、恒温控制器等组成。 图1-1 恒温槽装置图 1-浴槽2-加热器3-搅拌器4-温度计5-感温元件(热敏电阻探头)6-恒温控制器7-贝克曼温度计 二、实验仪器 仪器名称型号产地 电子继电器6402型(220V 50~ 10A) 通州市沪通实验仪器厂精密电子温差测量仪JDW-3F 南京大学应用物理研究所增力电动搅拌器JJ-1(40W) 江苏金坛市环宇科学仪器厂 调压变压器TDGC-1/0.5 天津市东风电器厂 恒温槽装置 三、实验步骤

物化实验报告_恒温槽的装配和性能测试

恒温槽的装配和性能测试 张鹏翔30 材33 实验日期:2015年5月14日提交报告日期:2015年5月20日 1 引言 实验目的 1.了解恒温槽的原理,初步掌握其装配和调试的基本技术。 2.分析恒温槽的性能,找出合理的最佳布局。 3.掌握水银接点温度计、热敏电阻温度计、继电器、自动平衡记录仪的基本测量原理和使用方法。 实验原理 许多物理化学实验都需要在恒温条件下进行。欲控制被研究体系的某 一温度,通常采取两种方法:一是利用物质相变时温度的恒定性来实现, 叫介质浴。如:液氮(℃)、冰-水(0℃)、沸点水(100℃)、干冰-丙酮 (-78。5℃)、沸点萘(218℃)等等。相变点介质浴的最大优点是装置简 单、温度恒定。缺点是对温度的选择有一定限制,无法任意调节。另一种 是利用电子调节系统,对加热或制冷器的工作状态进行自动调节,使被控 图1恒温槽工作原理图 对象处于设定的温度之下。 本实验讨论的恒温水浴就是一种常用的控温装置,它通过继电器、温 度调节器(水银接点温度计)和加热器配合工作而达到恒温的目的。其简 单恒温原理线路如图2-1-1所示。当水槽温度低于设定值时,线路I是通路,因此加热器工作,使水槽温度上升;当水槽温度升高到设定值时,温度调节器接通,此时线路II为通路,因电磁作用将弹簧片D吸下,线路I断开,加热器停止加热;当水槽温度低于设定值时,温度调节器断开,线路II断路,此时电磁铁失去磁性,弹簧片回到原来的位置,使线路I又成为通路。如此反复进行,从而使恒温槽维持在所需恒定的温度。 恒温槽由浴槽、温度计、接点温度计、继电器、加热器、搅拌器等部件组成。如图2-1-2所示。为了对恒温槽的性能进行测试,图中还包括一套热敏电阻测温装置。现将恒温槽主要部件简述如下。 1.浴槽浴槽包括容器和液体介质。根据实验要求选择容器大小,一般选择10L或者20L的圆形玻璃缸做为容器。若设定温度与室温差距较大时,则应对整个缸体保温。以减少热量传递,提高恒温精度。 恒温槽液体介质根据控温范围选择,如:乙醇或乙醇水溶液(-60-30℃)、水(0-100℃)、甘油或甘油水溶液(80-160℃)、石蜡油、硅油(70-200℃)。本实验采用去离子水为工作介质,如恒温在50℃以上时,可在水面上加一层液体石蜡,避免水分蒸发。 2.温度计观察恒温浴槽的温度可选择1/10℃水银温度计,测量恒温槽灵敏度则采用热敏电阻测温装置。将热敏电阻与1/10温度计绑在一起,安装位置应尽量靠近被测系统。 3.接点温度计(温度调节器)接点温度计又称接触温度计或水银导电表,如图2-1-3所示。它的下半段是水银温度计,上半段是控制指示装置。温度计上部的毛细管内有一根金属丝和上半段的螺母相连,

恒温水浴的组装及其性能测试 实验报告

姓名: 班级: 学号: 实验日期: 课程名称:物理化学实验 实验题目:恒温水浴的组装及其性能测试 一、目的要求 1.了解恒温水浴的构造及其工作原理,学会恒温水浴的装配技术。 2.测绘恒温水浴的灵敏度曲线。 3.掌握数字贝克曼温度计的使用方法。 二、实验原理 在许多物理化学实验中,由于待测的数据如折射率、粘度、电导、蒸气压、电动势、化学反应的速率常数、电离平衡常数等都与温度有关。因此,这些实验都必须在恒温的条件下进行.这就需要各种恒温的设备。通常用恒温槽来控制温度,维持恒温。一般恒温槽的温度都是相对的稳定.多少总有一定的波动,大约在±0.1℃,如果稍加改进也可达到0.01℃,要使恒温设备维持在高于室温的某一温度,就必须不断补充一定的热量,使由于散热等原因引起的热损失得到补偿。恒温槽之所以能够恒温,主要是依靠恒温控制器来控制恒温槽的热平衡。当恒温槽的热量由于对外散失而使其温度降低时,恒温控制器就驱使恒温槽中的电加热器工作。待加热到所需要的温度时,它又会使其停止加热,使恒温槽温度保持恒定。 恒温槽的装置是多种多样的。它主要包括下面的几个部件:敏感元件,也称感温元件;控制元件;加热元件。感温元件将温度转化为电信号而输送给控制元件,然后由控制元件发出指令,让电加热元件加热或停止加热。 图l.1即是一恒温装置。它由浴槽、加热器、搅拌器、温度计、感温元件、恒温控制器等组成。现分别介绍如下: 1.浴槽: 通常用的是10dm 3的圆柱形玻璃容器。槽内一般放蒸馏水,如恒温的温度超过了100℃可采用液体石蜡或甘油。温度控制的范围不同,水浴槽中介质也不同,一般来说: -60℃~30℃时用乙醇或乙醇水溶液; 0℃~90℃时用水; 80℃~160℃时用甘油或甘油水溶液; 70℃~200℃时用液体石蜡、硅油等。 图1.1 恒温槽装置图 2.加热器 常用的是电热器、把电阻丝放人环形的玻璃管中,根据浴槽的直径大小,弯曲成圆环制成。它可以把加热丝放出的热量均匀地分布在圆形恒温槽的周围。电加热器由电子继电器进行自动调节,以实现恒温。电加热器的功率是根据恒温槽的容量、恒温控制的温度以及环境的温差大小来决定的。最好能使加热和停止加热的时间各占一半。 200V 弹簧片 恒温控制器1/10刻度温度计温差传感器接触温度计搅拌器 加热器 浴槽

恒温槽的性能测试

实验一恒温槽的性能测试 【实验目的】 1.了解恒温槽的构造及恒温原理,初步掌握其调试的基本技术。 2.绘制恒温槽灵敏度曲线,学会分析恒温槽的性能。 【实验原理】 恒温槽装置示意图 1. 浴槽 2. 加热器 3. 搅拌器 4. 温度计 5. 电接点温度计 6. 继电器 7. 贝克曼温度计 恒温槽的部分构件简介: 1.浴槽 如果控制的温度同室温相差不是太大,则用敞口大玻璃缸作为浴槽是比较合适的,对于较高和较低温度,则应考虑保温问题。具有循环泵的超级恒温槽,有时仅作供给恒温液体之用,而实验则在另一工作槽中进行。 2.加热器 如果要求恒温的温度高于室温,则需不断向槽中供给热量以补偿其向四周散失的热量,如恒温的温度低于室温,则需不断从恒温槽取走热量,以抵偿环境向槽中的传热。在前一种情况下,通常采用电加热器间隙加热来实现恒温控制。对电加热器的要求是热容量小、导热性好、功率适当。选择加热器的功率最好能使加热和停止的时间约各占一半。 3.搅拌器 加强液体介质的搅拌,对保证恒温槽温度均匀起着非常重要的作用。

设计一个优良的恒温槽应满足的基本条件:(1)测量探头灵敏度高;(2)搅拌强烈而均匀;(3)加热器导热良好而且功率适当;(4)搅拌器、测量探头和加热器相互接近,使被加热的液体能立即搅拌均匀并流经测温探头及时进行温度控制。恒温槽控制的温度是有一个波动范围的,控制的温度波动范围越小,灵敏度越高,灵敏度是恒温槽性能的主要标志。它除与感温元件、电子继电器有关外,还受搅拌器的效率、加热器的功率等因素影响。恒温槽灵敏度的测定,是在指定温度下用贝克曼温度计记录温度波动范围,即T—t曲线。最高温度为T2,最低温度为T1,则灵敏度 te=(T2—T1)/2 由图2—2可以看出:曲线A表示恒温槽灵敏度较高;B表示恒温槽灵敏度较差;C表示加热器功率太大;D表示加热器功率太小或散热太快。 图1—1 恒温槽控温灵敏度曲线图 【仪器和试剂】 SYP—ⅡC玻璃恒温水浴1台; SWC—ⅡD精密数字温度温差仪1台 【实验步骤】 1.根据所给元件和仪器,安装恒温槽,并接好线路,接通电源。 2.槽体中放入约2/3容积的蒸馏水。 3.接通电源,打开搅拌器开关加热,并将继电器上的温度调到所需控制的温度。 4.将恒温槽分别两次设定在30℃和40℃。 5.调节贝克曼温度计,并插入恒温槽中进行测量。 6.待恒温槽达到指定温度后,观察贝克曼温度计的读数,利用秒表每隔2min记录一次读数,共测定60min。 7.实验完毕后,关闭电源,整理实验台。 【数据记录与处理】 1.记录:

恒温槽的装配和性能测试.

实验一恒温槽的装配和性能测试 一.实验目的: 1.了解恒温槽的构造及恒温原理,初步掌握其装配和调试的基本技术。 2.绘制恒温槽灵敏度曲线。 3.掌握水银接点温度计,继电器的基本测量原理和使用方法。 二.实验原理: 恒温槽使实验工作中常用的一种以液体为介质的恒温装置。用液体作介质的优点是热容量大和导热性好,从而使温度控制的稳定性和灵敏度大为提高。 根据温度控制的范围,可采用下列液体介质: -60℃~30℃—乙醇或乙醇水溶液;0℃~90℃—水;80℃~160℃—甘油或甘油水溶液;70℃~200℃—液体石蜡、汽缸润滑油、硅油。 恒温槽通常由下列构件组成: 1. 槽体:如果控制的温度同室温相差不是太大,则用敞口大玻璃缸作为槽体是比较满意的。对于较高和较低温度,则应考虑保温问题。具有循环泵的超级恒温槽,有时仅作供给恒温液体之用,而实验则在另一工作槽中进行。 2. 加热器及冷却器:如果要求恒温的温度高于室温,则须不断向槽中供给热量以补偿其向四周散失的热量;如恒温的温度低于室温,则须不断从恒温槽取走热量,以抵偿环境向槽中的传热。在前一种情况下,通常采用电加热器间歇加热来实现恒温控制。对电加热器的要求是热容量小、导热性好,功率适当。选择加热器的功率最好能使加热和停止的时间约各占一半。 3. 温度调节器:温度调节器的作用是当恒温槽的温度被加热或冷却到指定值时发出信号,命令执行机构停止加热或冷却;离开指定温度时则发出信号,命令执行机构继续工作。 目前普遍使用的温度调节器是汞定温计(接点温度计)。它与汞温度计不同之处在于毛细管中悬有一根可上下移动的金属丝,金属丝再与温度控制系统连接。 4. 温度控制器温度控制器常由继电器和控制电路组成,故又称电子继电器。从汞定温计传来的信号,经控制电路放大后,推动继电器去开关电热器。 5. 搅拌器:加强液体介质的搅拌,对保证恒温槽温度均匀起着非常重要的作用。 设计一个优良的恒温槽应满足的基本条件是:(1)定温计灵敏度高,(2)搅拌强烈而均匀,(3)加热器导热良好而且功率适当,(4)搅拌器、汞定温计和加热器相互接近,使被加热的液体能立即搅拌均匀并流经定温计及时进行温度控制。

物化实验报告_恒温槽的装配和性能测试

恒温槽的装配和性能测试 张鹏翔2013012030 材33 实验日期:2015年5月14日提交报告日期:2015年5月20日 1 引言 1.1实验目的 1.了解恒温槽的原理,初步掌握其装配和调试的基本技术。 2.分析恒温槽的性能,找出合理的最佳布局。 3.掌握水银接点温度计、热敏电阻温度计、继电器、自动平衡记录仪的基本测量原理和使用方法。 1.2 实验原理 许多物理化学实验都需要在恒温条件下进行。欲控制被研究体系的某 一温度,通常采取两种方法:一是利用物质相变时温度的恒定性来实现, 叫介质浴。如:液氮(-195.9℃)、冰-水(0℃)、沸点水(100℃)、干冰 -丙酮(-78。5℃)、沸点萘(218℃)等等。相变点介质浴的最大优点是 装置简单、温度恒定。缺点是对温度的选择有一定限制,无法任意调节。 另一种是利用电子调节系统,对加热或制冷器的工作状态进行自动调节, 图1恒温槽工作原理图 使被控对象处于设定的温度之下。 本实验讨论的恒温水浴就是一种常用的控温装置,它通过继电器、温 度调节器(水银接点温度计)和加热器配合工作而达到恒温的目的。其简 单恒温原理线路如图2-1-1所示。当水槽温度低于设定值时,线路I是通路,因此加热器工作,使水槽温度上升;当水槽温度升高到设定值时,温度调节器接通,此时线路II为通路,因电磁作用将弹簧片D吸下,线路I断开,加热器停止加热;当水槽温度低于设定值时,温度调节器断开,线路II断路,此时电磁铁失去磁性,弹簧片回到原来的位置,使线路I又成为通路。如此反复进行,从而使恒温槽维持在所需恒定的温度。 恒温槽由浴槽、温度计、接点温度计、继电器、加热器、搅拌器等部件组成。如图2-1-2所示。为了对恒温槽的性能进行测试,图中还包括一套热敏电阻测温装置。现将恒温槽主要部件简述如下。 1.浴槽浴槽包括容器和液体介质。根据实验要求选择容器大小,一般选择10L或者20L的圆形玻璃缸做为容器。若设定温度与室温差距较大时,则应对整个缸体保温。以减少热量传递,提高恒温精度。 恒温槽液体介质根据控温范围选择,如:乙醇或乙醇水溶液(-60-30℃)、水(0-100℃)、甘油或甘油水溶液(80-160℃)、石蜡油、硅油(70-200℃)。本实验采用去离子水为工作介质,如恒温在50℃以上时,可在水面上加一层液体石蜡,避免水分蒸发。 2.温度计观察恒温浴槽的温度可选择1/10℃水银温度计,测量恒温槽灵敏度则采用热敏电阻测温装置。将热敏电阻与1/10温度计绑在一起,安装位置应尽量靠近被测系统。 3.接点温度计(温度调节器)接点温度计又称接触温度计或水银导电表,如图2-1-3所示。它的下半段是水银温度计,上半段是控制指示装置。温度计上部的毛细管内有一根金属丝和上半段的螺母相连,

《恒温槽调节及影响恒温槽灵敏度》实验报告

中国石油大学(华东)现代远程教育 实验报告 课程名称:物理化学 实验名称:恒温槽调节及影响恒温槽灵敏度 因素考察 实验形式:在线模拟+现场实践 提交形式:在线提交实验报告 学生姓名:李展雄学号: 年级专业层次:高起专 : 学习中心:广东梅州梅江奥鹏学习中心[15]

提交时间: 2013 年 11 月 1 日 一、实验目的 1.了解恒温槽的构造及恒温原理,考察恒温槽灵敏度的影响因素,掌握恒温槽的使用方法。2.学习使用热敏电阻及自动平衡记录仪测定温差的方法。 二、实验原理 恒温槽装置示意图如图1所示,由槽体、恒温介质、加热器(或冷却器)、温度指示器、搅拌器和温度控制器等部分组成。继电器必须和接触温度计、加热器配套使用。接触温度计是一支可以导电的特殊温度计,又称为导电表或水银控制器,如图2所示。它有两个电极,一个固定与底部的水银球相连,另一个可调电极是金属丝,由上部伸入毛细管内。顶端有一磁铁,可以旋转螺旋丝杆,用以调节金属丝的高低位置,从而调节设定温度。当温度升高时,毛细管中水银柱上升与一金属丝接触,两电极导通,使继电器线圈中电流断开,加热器停止加热; 当温度降低时,水银柱与金属丝断开,继电器线圈通过电流,使加热器线路接通,温度又回升。如此,不断反复,使恒温槽控制在一个微小的温度区间波动,被测体系的温度也就限制在一个相应的微小区间内,从而达到恒温的目的。 恒温槽的温度控制装置属于“通”“断”类型,当加热器接通后,恒温介质温度上升,热量的传递使水银温度计中的水银柱上升。但热量的传递需要时间,因此常出现温度传递的滞后,往往是加热器附近介质的温度超过设定温度,所以恒温槽的温度超过设定温度。同理,降温时也会出现滞后现象。由此可知,恒温槽控制的温度有一个波动范围,并不是控制在某一固定不变的温度。 为了考察诸因素对恒温槽灵敏度的影响,需要用热敏电阻测量恒温槽内介质温度的涨落,一般要配用不平衡电桥和自动记录仪。 影响恒温槽灵敏度的因素很多,大体有:(1)加热器功率;(2)搅拌器的转速;(3)恒温介质的流动性;(4)各部件的位置;(5)环境温度与设定温度的差值。 《

实验一 恒温槽的装配与性能测试

实验一恒温槽的装配与性能测试 一.实验目的: 1.了解恒温槽的构造及恒温原理,初步掌握其装配和调试的基本技术。 2.绘制恒温槽灵敏度曲线。 3.掌握水银接点温度计,继电器的基本测量原理和使用方法。 二.实验原理: 恒温控制可分为两类,一类是利用物质的相变点温度来获得恒温,如冰水混合物(0℃)、 液氮(77.3℃)、沸点丙酮(56.5℃)、沸点萘(56.5℃)等。另一类是利用电子调节器加 以自动调节。在近代实验技术中普遍应用后者。其优点是温度可以任意选定,控温精度高。 恒温槽是实验工作中常用的一种以液体为介质的恒温装置。用液体作介质的优点是热容 量大和导热性好,从而使温度控制的稳定性和灵敏度大为提高。根据温度控制的范围,可采 用下列液体介质: -60℃~30℃——乙醇或乙醇水溶液; 0℃~90℃——水; 80℃~160℃——甘油或甘油水溶液; 70℃~200℃——液体石蜡、汽缸润滑油、硅油。 恒温槽通常由下列构件组成: 1、浴槽 2、加热器 3、搅拌器 4、水银温度计 5、电接触温度计(导电表) 6、继电器(控制器) 7、贝克曼温度计

图1-1 恒温水浴的控温示意图 1. 槽体:如果控制的温度同室温相差不是太大,用敞口大玻璃缸作为槽体是比较满意的。对于较高和较低温度,则应考虑保温问题。具有循环泵的超级恒温槽,有时仅作供给恒温液体之用,而实验则在另一工作槽中进行。 2. 加热器及冷却器:如果要求恒温的温度高于室温,则须不断向槽中供给热量以补偿其向四周散失的热量;如恒温的温度低于室温,则须不断从恒温槽取走热量,以抵偿环境向槽中的传热。在前一种情况下,通常采用电加热器间歇加热来实现恒温控制。对电加热器的要求是热容量小、导热性好,功率适当。选择加热器的功率最好能使加热和停止的时间约各占一半。 3. 温度调节器:温度调节器的作用是当恒温槽的温度被加热或冷却到指定值时发出信号,命令执行机构停止加热或冷却;离开指定温度时则发出信号,命令执行机构继续工作。 目前普遍使用的温度调节器是汞定温计(接点温度计)。它与汞温度计不同之处在于毛细管中悬有一根可上下移动的金属丝,金属丝再与温度控制系统连接。 4.温度控制器:温度控制器常由继电器和控制电路组成,故又称电子继电器。从汞定温计传来的信号,经控制电路放大后,推动继电器去开关电热器。 5. 搅拌器:加强液体介质的搅拌,对保证恒温槽温度均匀起着非常重要的作用。 设计一个优良的恒温槽应满足的基本条件是:(1)定温计灵敏度高,(2)搅拌强烈而均匀,(3)加热器导热良好而且功率适当,(4)搅拌器、汞定温计和加热器相互接近,使被加热的液体能立即搅拌均匀并流经定温计及时进行温度控制。 本实验是应用电子继电器和电接点温度计共同完成控温目的的。如图1-1所示,电接点

物化实验资料报告材料_恒温槽地装配和性能测试

恒温槽的装配和性能测试 鹏翔2013012030 材33 实验日期:2015年5月14日提交报告日期:2015年5月20日 1 引言 1.1实验目的 1.了解恒温槽的原理,初步掌握其装配和调试的基本技术。 2.分析恒温槽的性能,找出合理的最佳布局。 3.掌握水银接点温度计、热敏电阻温度计、继电器、自动平衡记录仪的基本测量原理和使用方法。 1.2 实验原理 许多物理化学实验都需要在恒温条件下进行。欲控制被研究体系的某 一温度,通常采取两种方法:一是利用物质相变时温度的恒定性来实现, 叫介质浴。如:液氮(-195.9℃)、冰-水(0℃)、沸点水(100℃)、干冰 -丙酮(-78。5℃)、沸点萘(218℃)等等。相变点介质浴的最大优点是 装置简单、温度恒定。缺点是对温度的选择有一定限制,无法任意调节。 另一种是利用电子调节系统,对加热或制冷器的工作状态进行自动调节, 图1恒温槽工作原理图 使被控对象处于设定的温度之下。 本实验讨论的恒温水浴就是一种常用的控温装置,它通过继电器、温 度调节器(水银接点温度计)和加热器配合工作而达到恒温的目的。其简 单恒温原理线路如图2-1-1所示。当水槽温度低于设定值时,线路I是通路,因此加热器工作,使水槽温度上升;当水槽温度升高到设定值时,温度调节器接通,此时线路II为通路,因电磁作用将弹簧片D吸下,线路I断开,加热器停止加热;当水槽温度低于设定值时,温度调节器断开,线路II断路,此时电磁铁失去磁性,弹簧片回到原来的位置,使线路I又成为通路。如此反复进行,从而使恒温槽维持在所需恒定的温度。 恒温槽由浴槽、温度计、接点温度计、继电器、加热器、搅拌器等部件组成。如图2-1-2所示。为了对恒温槽的性能进行测试,图中还包括一套热敏电阻测温装置。现将恒温槽主要部件简述如下。 1.浴槽浴槽包括容器和液体介质。根据实验要求选择容器大小,一般选择10L或者20L的圆形玻璃缸做为容器。若设定温度与室温差距较大时,则应对整个缸体保温。以减少热量传递,提高恒温精度。 恒温槽液体介质根据控温围选择,如:乙醇或乙醇水溶液(-60-30℃)、水(0-100℃)、甘油或甘油水溶液(80-160℃)、石蜡油、硅油(70-200℃)。本实验采用去离子水为工作介质,如恒温在50℃以上时,可在水面上加一层液体石蜡,避免水分蒸发。 2.温度计观察恒温浴槽的温度可选择1/10℃水银温度计,测量恒温槽灵敏度则采用热敏电阻测温装置。将热敏电阻与1/10温度计绑在一起,安装位置应尽量靠近被测系统。 3.接点温度计(温度调节器)接点温度计又称接触温度计或水银导电表,如图2-1-3所示。它的下半段是水银温度计,上半段是控制指示装置。温度计上部的毛细管有一根金属丝和上半段的螺母相连,螺

实验1 恒温槽的装配与性能测定

恒温槽的装配与性能测定 摘要:恒温槽是化学实验中常用的用于维持温度恒定的装置之一。恒温槽主要依靠恒温控制器来控制恒温槽的热平衡,但会出现一定程度的波动。该波动可以反映恒温槽的性能。本实用通过改变恒温槽的种类、加热电压、冷却条件,借助电子温差测量仪,绘制不同温度波动曲线,从而对恒温槽的性能进行研究和评估。 关键词:恒温槽温差加热电压冷却条件灵敏度 Measurement and Analysis of the thermostatic bath Abstract:Thermostatic bath is one of devices that can maintain stable temperature. Thermostatic baths depend on temperature controller to keep thermal balance but the fluctuation can still appear. The fluctuation can reflect the properties of the thermostatic bath. W e use the electronic temperature difference measuring instrument to draw a temperature fluctuation curve bychanging kinds, heating voltages, cooling conditions to assess its performance. Keywords:Thermostatic bathT emperature DifferenceHeatingV oltageCooling Conditions Sensitivity

相关文档
相关文档 最新文档