文档库 最新最全的文档下载
当前位置:文档库 › 高考数学函数专题习题及详细答案

高考数学函数专题习题及详细答案

高考数学函数专题习题及详细答案
高考数学函数专题习题及详细答案

函数专题练习

1.函数 x y e

1

(x R)的反函数是(

)

A. y 1 In x(x 0)

B.

C. y 1 In x(x 0)

D. 2.已知

f(x)

(3a 1)x 4a, x 1

是(

7

Iog a x, x 1

1 1 1 (A ) (0,1)

( B ) (0, -)

(C )[-,-)

3 7 3

3.

在下列四个函数中,满足性质:

y 1 In x(x 0) y 1 In x(x 0)

)上的减函数,那么 a 的取值范围是 1 (D )[*1)

j ■于区间(1,2)上的任意x-i ,x 2(x 1

x 2),

I f (xj

f(X 2)| | X 2为|恒成立” 的只有

(A ) f (x) (B ) f x |x|

C )f(x) 2x

(D ) f (x)

4.已知

f (x) 期为 2

f(x)

lg x.设

6 a

f( ),b

5

b e

f

(|),则

(A ) a

(B ) b a e

(C )c

(De

5.函数 f(x)

3x 2

lg(3x 1)的定义域是 1 B.(丄,1)

3

1 5 3

6、下列函数中,在其定义域内既是奇函数又是减函数的是

A(

1,1)

1)

3

x , x R

B. y sinx , x R C

7、函数y f (x)的反函数y

1

f (x)的图像与y 轴交于点 P(0,2)(如右图所示),则方程

A.4

B.3

f (x)

0在[1,4]上的根

C

D.1

8、设

f(x)是R 上的任意函数,

则下列叙述正确的是

(A ) f(x)f( x)是奇函数 f (x) f ( x)是奇函数

(C ) f (x) f ( x)是偶函数

D ) f (x) f ( x)是偶函数

_

x

9、已知函数 y e 的图象与函数 y

f x 的图象关于直线 y x 对称,则

A. f 2x e 2x (x R)

B. f 2x In2gn x(x 0)

C. f 2x 2e x(x R)

D. f 2x Inx In2(x 0)

10、设f (x)

x 1

2e , x< 2,

Iog3(x1 2 1), x

则f( f (2))的值为

2.

(A)0 (B)1 ( C)2 ( D3

11、对a, b R,记max a, b}=a, a b

b, a< b

,函数f(x) = max i x+ 1| , |x-2|}( x R)的最

小值是

(A)0 ( B)-

2

( C) ( D)3

12、关于x的方程(x21)2 x2 1 k 0,给出下列四个命题:

①存在实数k,使得方程恰有2个不同的实根;

②存在实数k,使得方程恰有

③存在实数k,使得方程恰有

④存在实数k ,使得方程恰有其中假命题的个数是4个不同的实根; 5个不同的实根; 8个不同的实根;

A. 0

B. 1

(一) 填空题(4个)

C. 2

D. 3

1.函数f x 对于任意实数x满足条件x 2 1 卄」『1 5,则

, 若1

f x

f f 5

2 设g(x)

x

e ,x

ln x,x

0.

0.

小 1

g(g(-))-----------

2、设 f(x) = 3ax b 2bx c.若a b c 0 , f (o )>0, f (i )>o ,求证:

(I )a > 0 且—2v

a

v — 1 ;

b

(n )方程f (x ) = o 在(o , 1)内有两个实根

(I )求a, b 的值;

2 2

(t 2t) f (2t k) 0恒成立,求k 的取值范围;

2

4.

设函数f (x ) = _c ,其中a 为实数.

x ax a

(I )若f (x )的定义域为R,求a 的取值范围; (n )当f (x )的定义域为R 时,求f (x )的单减区间

1

5.已知定义在正实数集上的函数

f (x) — x 2 2ax ,

g (x) 3a 21nx b ,其中a 0 .设

2

两曲线y f (x) , y g(x)有公共点,且在该点处的切线相同. (I) 用a 表示b ,并求b 的最大值; (II )求证:f (x) > g(x) ( x 0).

6.已知函数f(x) x 2 x 1 ,,是方程f (x ) = 0的两个根( ),f'(x)是f (x )的导数;

设 a 1 , a n 1 a n

( n = 1, 2, ......... )

f '(a n )

(1) 求,的值;

(2) 证明:对任意的正整数 n ,都有a. >a ;

(3) 记b In —(n = 1, 2,……),求数列{b n }的前n 项和$。

a n a

3.已知定义域为R 的函数f (x)

戸是奇函数。

(n )若对任意的t R ,不等式

10解:f (f (2)) = f (1) = 2,选 C 解答: 一、选择题 1 解:由 y e x 1 得:

2解:依题意,有 0 时,log a x 0,

x 1

lny,即 x=-1+lny ,所以 y

1

a 1且3a - 1 0,解得0 a —,又当

3 1 所以7a - 1 0解得x 丄故选C

7

1 In x(x 0)为所求,故选D

x 1 时,(3a - 1)x + 4a 7a — 1,

1

I —

X

1

1 |=| X 2

X 2- X 1 1 , --|= |X 1-X 2 |

Q X 1, x 1x 2

I XM I

X 2 (1,2)

x 1x 2

1

1 1

x 1x 2

丄| X 2

| X 1 - X 2I 故选 A

4解:已

知 f(x)

是周期

2的奇函数,

时,

f (x) I

g x.设

f(6) c a b ,选 D

f( 4

)

f

Q ,

f(3)

f(

1

迟),

c

1

f(2

) <

°」

,解:由1 X 0

3x 1 0

1,故选 B.

6解:B 在其定义域内是奇函数但不是减函数

其定义域内不是奇函数,是减函数;故选A

;C 在其定义域内既是奇函数又是增函数

;D 在

7解:f (x) 0的根是x 2,故选C

8 解:A 中 F(x) f (x) f( x)则 F( x)

f ( x)f(x) F(x),

即函数F(x) f (x)f( x)为偶函数,B 中 F(x) f(x)|f(x), F( x) f( x) f(x)此 时F(x)与F( x)的关系不能确定,即函数

F(x) f (x) f ( x)的奇偶性不确定,

C 中 F(x) f (x) f( x),F( x) f( x)

f(x) F(x),即函数 F(x) f (x) f( x)为 奇函数,D 中 F(x) f (x) f( x),

F( x) f( x) f (x) F(x),即函数 F(x) f(x) f( x)为偶函数,故选择答案 Db

9解:函数y e x 的图象与函数 y f x

的图象关于直线

y x 对称,所以f (x)是y e x 的反函数,即f(x) = lnx ,二f 2x

ln 2x lnx

ln 2(x 0),选 D.

11解:当 x - 1 时,|x +1| =- x -1,

|x -2| = 2-x ,

因为(一x - 1) - (2 -x ) =- 3 0,

2 2

1 +( x —1 k 0 ( — 1 x 1)

k =— 2时,方程(1)的解为.3,方程⑵ 无解,原方程恰有 2个不同的实根

6 2

—,方程(2)有两个不同的实根 —,即原

2 2

方程恰有4个不同的实根

同的实根

恰有8个不同的实根

二、填空题。

1

g(ln 2

)

所以2 — x — x — 1;当一

1 x 1 时,| x + 1| = x + 1, |x — 2| = 2— X ,因为(x + 1) — (

2 — x )

2

=2x — 1 0, x + 1 2— x ; x 2 时,x + 1 2 — x ;当 x 2 时,|x + 1| = x + 1, |x — 2| = x

故 f (x)

x +

1

x — 2 ;

2 x(x (,1)

2

x(x 1

[1,;))

2

x

1(x 1 匕,2))

2 x

1(x [2,))

12解: 关于 x 的方程x 2 1

x 2 1 k 0可化为x 2 1

(x 2—1) k 0(x 1或x —1) (1)

x 2

1

k = 时,方程(1)有两个不同的实根

4 当k = 0时,方程(1)的解为一

1, + 1,

、2,方程⑵的解为x = 0,原方程恰有5个不

2

当k = 时,方程(1)的解为

9

.15 3

三3,方程⑵的解为

3

即原方程

1解:

- f(x),所以

x 2

f(5) f (1)

5,则

5 f( 5) f( 1)

f( 1 2)

2解:

3解: 函数f (x) f (x)为奇函数,则f(0) 0,即

1

a =

2

当 —2,显然 3 据此求得最小值为-。选C 2

2

4解:由a 0,a 1,函数f(x) log a (x 2x 3)有最小值可知 a 1,所以不等式

log a (X 1)

0 可化为 X - 1 1,即 X 2.

⑵ 方程f(x) 5的解分别是2

、、14, 0,

4和2 , 14,由于f(x)在(

[2, 5]上单调递减,

在[

1,2]和[5, )上单调递增,因此 A

,2 、.14 [0, 4] 2 .14, .

由于2

.14 6, 2

J4

2,

B A .

(3)[ 解法一 ]当x

[1, 5]时, f (x) x 2 4x 5

三、解答题

1 解:(1)

1]和

2

x (k 4

)x (3k

4 k

2

k 2 x

2

k 2,

4 k

1

. .又

2

①当1

4 k

1 , 即

2 k 2

k 2 20k

36

1 g(x)min

4

4

16 (k

10

)

2

64,

(k

则 g (X )min 0.

②当4

k 1,即 k 6

时, 2

5)

5)

20k 36

4

1 x

5,

卄 4 k

6

取x 4

2,

k 10 2 64 .

10)2 64 0 ,

取x

1 ,

g(x

)min = 2k 0

g(x) k(x 3) ( X 2 4x

由①、②可知,当 k 2时,g(x) 0, x [ 1,5].

因此,在区间[1,5]上,y k(x 3)的图像位于函数f (x)图像的上方? [解法二]当 x [ 1, 5]时,f(x) x 2 4x 5.

y

3),

得 x 2 (k 4)x

(3k 5) 0,

y x 4x 5,

2

令 (k 4)

4(3k 5) 0,解得 k 2 或 k 18,

在区间[1, 5]上,当k 2时,y 2(x 3)的图像与函数 f (x)的图像只交于一点

所以方程f (x)

0在区间(0,

—)与( 3a

18时,y 18(x 3)的图像与函数f(x)的图像没有交点.

k 2时,直线y k(x 在区间[1, (1, 8); 如图可知, 线y 2(x 3)绕点(3,0)逆时针方向旋转得到.因此, 图像位于函数f(x)图像的上方. 由于直线 y k(x 3)过点(3, 0),当

5]上,y

3)是由直 k(x 3)的

2(I )证明: 因为f(0) 0, f(1) 0 , 所以 c 0,3a 2b 由条件

由条件 消去b ,得a 消去c ,得a c 0; b 0, 2a b 0. 1. (II )抛物线 2

f(x) 3ax 2bx c 的顶点坐标为 ( 在2

-

1

1的两边乘以 -, 得

1

b 2

a 3 3

3a 3

又因为

f (0) 0, f(1) 0,而 f (

2

a

2

c 故 a

ac

b 3a 3a

c b 2) 3a ,

0,

故方程 f (x) 0在(0,1)内有两个实根 3 解: (I )因为f(x)是奇函数,所以 f(0) = 0,

1 f(x)

1 2x a 2x 1

又由 f (1) = — f ( — 1)知

2.

n )解法一:由(I )知f(x) 丄二

2 2

,易知f (x)在(

K

,1)内分别有一实

根。

3a

高考数学函数专题习题集复习资料

函数专题练习 (一) 选择题(12个) 1.函数1 ()x y e x R +=∈的反函数是( ) A .1ln (0)y x x =+> B .1ln (0)y x x =-> C .1ln (0)y x x =--> D .1ln (0)y x x =-+> 2.已知(31)4,1 ()log ,1 a a x a x f x x x -+?是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1(0,)3 (C )11[,)73 (D )1 [,1)7 3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠, 1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x = (B )()||f x x = (C )()2x f x = (D )2 ()f x x = 4.已知()f x 是周期为2 的奇函数,当01x <<时,()lg .f x x =设 63(),(),52a f b f ==5(),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 5. 函数2 ()lg(31)f x x = ++的定义域是 A .1(,)3-+∞ B . 1(,1)3- C . 11(,)33- D . 1(,)3 -∞- 6、下列函数中,在其定义域内既是奇函数又是减函数的是 A .3 ,y x x R =-∈ B . sin ,y x x R =∈ C . ,y x x R =∈ D 7、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点 (0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x = A .4 B .3 C . 2 D .1 8、设()f x 是R 上的任意函数,则下列叙述正确的是 (A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数 9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 )

[高考数学]高考数学函数典型例题

?0x时,总有 00 ?01}的四组函数如下: ①f(x)=x2,g(x)=x;②f(x)=10-x+2,g(x)=2x-3 x;

③ f(x)= , g(x)= ; ④ f(x)= , g(x)=2(x-1-e -x ) . 年 高 考 江 苏 卷 试 题 11 ) 已 知 函 数 f ( x ) = ? x + 1, x ≥ 0 , 则 满 足 不 等 式 ) 剪成两块,其中一块是梯形,记 S = ,则 S 的最小值是____▲____。 2 x 2 +1 xlnx+1 2x 2 x lnx x+1 其中, 曲线 y=f(x) 和 y=g(x) 存在“分渐近线”的是( ) A. ①④ B. ②③ C.②④ D.③④ 33. (20XX 年 高 考 天 津 卷 理 科 16) 设 函 数 f ( x ) = x 2 - 1 , 对 任 意 3 x x ∈[ , +∞) , f ( ) - 4m 2 f ( x ) ≤ f ( x - 1) + 4 f (m ) 2 m 恒成立,则实数 m 的取值范围是 。 34 .( 20XX ? 2 ?1, x < 0 f (1- x 2 )> f ( 2x 的 x 的范围是__▲___。 35.(20XX 年高考江苏卷试题 14)将边长为 1m 正三角形薄片,沿一条平行于底边的直线 (梯形的周长) 梯形的面积 36 已知函数 f ( x ) = ( x + 1)ln x - x + 1 . (Ⅰ)若 xf '(x) ≤ x 2 + ax + 1 ,求 a 的取值范围; (Ⅱ)证明: ( x - 1) f ( x ) ≥ 0 .

高考数学专题练习--函数图像

高考数学专题练习--函数图像 1. 【江苏苏州市高三期中调研考试】已知函数()2 21,0 ,0 x x f x x x x ->?=? +≤?,若函数()()g x f x m =-有三个零点,则实数m 的取值范围是__________. 【答案】1 ,04 ?? - ??? 【解析】 2. 【江苏省苏州市高三暑假自主学习测试】已知函数31 1, ,()11,, x f x x x x ?>?=?-≤≤??若关于x 的方程 ()(1)f x k x =+有两个不同的实数根,则实数k 的取值范围是 ▲ . 【答案】1 (0,)2 【解析】 试题分析:作函数()y f x =及(1)y k x =+图像,(11), (1,0)A B -,,由图可知要使关于x 的方程()(1)f x k x =+有两个不同的实数根,须满足1 (0,)(0,).2 AB k k ∈=

3. 【江苏省南通市如东县、徐州市丰县高三10月联考】设幂函数()f x kx α=的图象经过点 ()4,2,则k α+= ▲ . 【答案】 32 【解析】 试题分析:由题意得11,422 k α α==?=∴32k α+= 4. 【泰州中学第一学期第一次质量检测文科】已知幂函数()y f x =的图象经过点1 (4,)2 ,则 1 ()4 f 的值为 . 【答案】2 【解析】 试题分析:设()y f x x α ==,则11422α α=?=-,因此1 211()()244 f -== 5. 【江苏省南通中学高三上学期期中考试】已知函数2 +1, 1, ()(), 1, a x x f x x a x ?-?=?->??≤ 函数 ()2()g x f x =-,若函数()()y f x g x =- 恰有4个零点,则实数的取值范围是 ▲ . 【答案】23a <≤ 【解析】

指数函数经典例题(标准答案)

指数函数 1.指数函数的定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数的图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 的图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且的图象和性质。 a>10

()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中 间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x 的取值范围是14 ??+ ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.

近五年高考数学函数及其图像真题及其答案

1. 已知函数()f x =32 31ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为 A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1) 2. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为 3. 设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是 A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数 C .()f x |()g x |是奇函数 D .|()f x ()g x |是奇函数 4. 函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是 A .()y g x = B .()y g x =- C .()y g x =- D .()y g x =-- 5. 已知函数f (x )=????? -x 2+2x x ≤0ln(x +1) x >0 ,若|f (x )|≥ax ,则a 的取值范围是 A .(-∞,0] B .(-∞,1] C .[-2,1] D .[-2,0] 6. 已知函数3 2 ()f x x ax bx c =+++,下列结论中错误的是

A .0x R ?∈,0()0f x = B .函数()y f x =的图象是中心对称图形 C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减 D .若0x 是()f x 的极值点,则0'()0f x = 7. 设3log 6a =,5log 10b =,7log 14c =,则 A .c b a >> B .b c a >> C .a c b >>D .a b c >> 8. 若函数()2 11=,2f x x ax a x ?? ++ +∞ ??? 在是增函数,则的取值范围是 A .[]-1,0 B .[)+∞-,1 C .[]0,3 D .[)+∞,3 9. 函数()()21=log 10f x x x ??+> ? ?? 的反函数()1 =f x - A .()1021x x >- B .()1021 x x ≠-C .()21x x R -∈D .()210x x -> 10. 已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为 A .()1,1-B .11,2? ?-- ??? C .()-1,0 D .1,12?? ??? 11. 已知函数()()x x x f -+= 1ln 1 ,则y=f (x )的图像大致为 A . B .

2017年高考数学函数真题汇编

2017年高考数学《不等式》真题汇编 1.(2017北京)已知函数1()3()3 x x f x =-,则()f x (A ) (A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数 (C )是奇函数,且在R 上是减函数 (D )是偶函数,且在R 上是减函数 2.(2017北京)已知函数()cos x f x e x x =- (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间[0, ]2 π 上的最大值和最小值. 解:(Ⅰ)()cos x f x e x x =- ∴()(cos sin )1x f x e x x '=-- ∴曲线()y f x =在点(0,(0))f 处的切线斜率为0 (cos0sin 0)10k e =--= 切点为(0,1),∴曲线()y f x =在点(0,(0))f 处的切线方程为1y = (Ⅱ)()(cos sin )1x f x e x x '=--, 令()()g x f x '=,则()(cos sin sin cos )2sin x x g x e x x x x e x '=---=- 当[0, ]2 x π ∈,可得()2sin 0x g x e x '=-≤, 即有()g x 在[0,]2 π 上单调递减,可得()(0)0g x g ≤=, 所以()f x 在[0, ]2 π 上单调递减, 所以函数()f x 在区间[0, ]2 π 上的最大值为0(0)cos001f e =-=; 最小值为2()cos 2 2 2 2 f e π π π π π =- =- 3.(2017全国卷Ⅰ)函数在单调递减,且为奇函数.若,则满足 的的取值范围是(D ) A . B . C . D . ()f x (,)-∞+∞(11)f =-21()1x f --≤≤x [2,2]-[1,1]-[0,4][1,3]

高考数学-对数函数图像和性质及经典例题

对数函数图像和性质及经典例题 第一部分:回顾基础知识点 对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数其中x 是自变量,函数的定义域是(0,+∞). 对数函数的图象和性质 ○ 1 在同一坐标系中画出下列对数函数的图象; (1) x y 2log = (2) x y 2 1log = (3) x y 3log = (4) x y 3 1log = ○ 2 对数函数的性质如下: 图象特征 函数性质 1a > 1a 0<< 1a > 1a 0<< 函数图象都在y 轴右侧 函数的定义域为(0,+∞) 图象关于原点和y 轴不对称 非奇非偶函数 向y 轴正负方向无限延伸 函数的值域为R 函数图象都过定点(1,1) 11=α 自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数 减函数 第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0 0log ,1>>x x a 0log ,10><x x a ○ 3 底数a 是如何影响函数x y a log =的. 规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.

第二部分:对数函数图像及性质应用 例1.如图,A ,B ,C 为函数x y 2 1log =的图象上的三点,它们的横坐标分别是t , t +2, t +4(t ≥1). (1)设?ABC 的面积为S 。求S=f (t ) ; (2)判断函数S=f (t )的单调性; (3) 求S=f (t)的最大值 . 解:(1)过A,B,C,分别作AA 1,BB 1,CC 1垂直于x 轴,垂足为A 1,B 1,C 1, 则S=S 梯形AA 1B 1B +S 梯形BB 1C 1C -S 梯形AA 1C 1C . )44 1(log )2(4log 2 3223 1t t t t t ++=++= (2)因为v =t t 42+在),1[+∞上是增函数,且v ≥5, [)∞++=.541在v v 上是减函数,且1

(word完整版)高中数学函数图象高考题.doc

B 1 .函数 y = a | x | (a > 1)的图象是 ( y y o x o A B B ( ) y o 1 x -1 o 函数图象 ) y 1 1 x o x C y y x x o 1 y 1 o x D y -1 o x A B C B 3.当 a>1 时,函数 y=log a x 和 y=(1 - a)x 的图象只可能是( ) y A4.已知 y=f(x) 与 y=g(x) 的图象如图所示 yf ( x ) x O 则函数 F(x)=f(x) ·g(x) 的图象可以是 (A) y y y O x O x O x A xa x B C B 5.函数 y (a 1) 的图像大致形状是 ( ) | x | y y y O f ( x) 2x x O 1 O x ( D 6.已知函数 x x x 1 ,则 f x ( 1- x )的图象是 log 1 2 y y y A B C 2 。 。 1 。 - 1 D y y g( x) O x y O x D y O ) x y D 2

O x

A B C D D 7.函数 y x cosx 的部分图象是 ( ) A 8.若函数 f(x) =x 2 +bx+c 的图象的顶点在第四象限,则函数 f /(x)的图象是 ( ) y y y y o x o x o x o x A B C D A 9.一给定函数 y f ( x) 的图象在下列图中,并且对任意 a 1 (0,1) ,由关系式 a n 1 f (a n ) 得到的数列 { a n } 满足 a n 1 a n (n N * ) ,则该函数的图象是 ( ) A B C D C10.函数 y=kx+k 与 y= k 在同一坐标系是的大致图象是( ) x y y y y O x O x O x O x A 11.设函数 f ( x ) =1- 1 x 2 (- 1≤ x ≤0)的图像是( ) A B C D

高中数学常见函数图像

高中数学常见函数图像1. 2.对数函数:

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k π π=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ??++???? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

高考数学函数专题

专题1 函数(理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映. 这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求. 函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。因此,掌握函数的图像是学好函数性质的关键,这也正是“数形结合思想”的体现。复习函数图像要注意以下方面。

高中数学_经典函数试题及答案

经典函数测试题及答案 (满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <

(新)高中数学复习专题一---函数图象问题

专题一 函数图象 数形结合是中学数学的重要的数学思想方法,尤其是函数的图象更是历年高考的热点.函数图象是函数的一种表达形式,形象的显示了函数的性质,为研究数量关系提供了“形”的直观性,它是探求解题途径,获得问题的结果的重要工具. 一、知识方法 1.函数图象作图方法 (1)描点法:列表、描点(注意关键点:如图象与x 、y 轴的交点,端点,极值点等))、连线(注 意关键线:如;对称轴,渐近线等) (2)利用基本函数图象变换。 2.图象变换(由一个图象得到另一个图象):平移变换、对称变换和伸缩变换等。 (1)平移变换 ① 水平平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; ② 竖直平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿y 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到. (2)对称变换 ① 函数()y f x =-的图象可以将函数()y f x =的图象关于y 轴对称即可得到; ② 函数()y f x =-的图象可以将函数()y f x =的图象关于x 轴对称即可得到; ③ 函数()y f x =--的图象可以将函数()y f x =的图象关于原点对称即可得到; (3)翻折变换 ① 函数|()|y f x =的图象可以将函数()y f x =的图象的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; ② 函数(||)y f x =的图象可以将函数()y f x =的图象右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到. (4)伸缩变换 ① 函数()y af x =(0)a >的图象可以将函数()y f x =的图象中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到; ② 函数()y f ax =(0)a >的图象可以将函数()y f x =的图象中的每一点纵坐标不变横坐标伸长(01a <<)或压缩(1)a >为原来的 1 a 倍得到. 3.函数图象的对称性:对于函数)(x f y =,若对定义域内的任意x 都有 ①)()(x a f x a f +=-(或))2()(x a f x f -=,则)(x f 的图象关于直线a x =对称; ②b x a f x a f 2)()(=++-(或)2)2()(b x a f x f =-+,,则)(x f 的图象关于点),(b a P 对称. 4、熟练掌握基本初等函数(如正、反比例函数,一次、二次函数,指数、对数函数,幂函数,三角函数)的图象 5、作函数图象的一般步骤: (1)求出函数的定义域;(2)化简函数式;(3)讨论函数的性质(如奇偶性、周期性、单调性)以及图像上的特殊点、线(如极值点、渐近线、对称轴等);(4)利用基本函数的图像(5)利

高考数学函数测试题

高考数学函数测试题

(—)函数测试题 (满分:100分) 姓名: ___________ 分数: ___________ 一、选择题(67?分) 1、设()f x是R上的任意函数,下列叙述正确的是() A、()() f x f x -是奇函数; B、()() f x f x-是奇函数; C、()() f x f x +-是偶函数; D、()() f x f x --是偶函数 2、下列各式错误 ..的是(). A. 0.80.7 33 > B. 0..50..5 log0.4log0.6 > C. 0.10.1 0.750.75 -< D. lg1.6lg1.4 > 3、已知753 ()2 f x ax bx cx =-++,且(5), f m -=则(5)(5) f f +-的值为(). A. 4 B. 0 C. 2m D. 4 m -+ 4、函数265 1 ()() 3 x x f x-+ =的单调递减区间为(). A. (,) -∞+∞ B. [3,3] - C. (,3] -∞D. [3,)+∞ 5、如图的曲线是幂函数n x y= 在第一象限内的图象. 已知n 分别取2±,1 2 ±四个值,与曲线1c、 2 c、3c、4c相应的n依次为(). A.11 2,,,2 22 -- B. 11 2,,2, 22 -- C. 11 ,2,2, 22 -- D. 11 2,,,2 22 -- 6、在R上定义的函数()x f是偶函数,且 4 2 5 c4 c3 c2 c1 2

3 ()()x f x f -=2,若()x f 在区间[]2,1是减函数,则函数 () x f ( ) A.在区间[]1,2--上是增函数,区间[]4,3上是增函数; B.在区间[]1,2--上是增函数,区间[]4,3上是减函数; C.在区间[]1,2--上是减函数,区间[]4,3上是增函数; D.在区间[]1,2--上是减函数, 区间[]4,3上是减函数 7、函数y=f(x)与y=g(x)的图象如所示: 则函数y=f(x)·g(x)的图象可能为( ) 二、填空题(27?分) 8、设函数()()() x a x x x f ++=1为奇函数,则实数= a 。 9.、24,02 (),(2)2,2x x f x f x x ?-≤≤== ?>? 已知函数则 ;若 00()8,f x x == 则 .

高中数学导数典型例题

高中数学导数典型例题 题型一:利用导数研究函数的单调性、极值、最值 1. 已知函数32()f x x ax bx c =+++ 过曲线()y f x =上的点(1,(1))P f 的切线方程为y=3x +1 。 (1)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (2)在(1)的条件下,求函数)(x f y =在[-3,1]上的最大值; (3)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 2. 已知).(323 2)(23R a x ax x x f ∈--= (1)当41||≤ a 时, 求证:)x (f 在)1,1( -内是减函数; (2)若)x (f y =在)1,1( -内有且只有一个极值点, 求a 的取值范围. 题型二:利用导数解决恒成立的问题 例1:已知322()69f x x ax a x =-+(a ∈R ) . (Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)当0a >时,若对[]0,3x ?∈ 有()4f x ≤恒成立,求实数a 的取值范围.

例2:已知函数222()2()21x x f x e t e x x t =-++++,1()()2g x f x '= . (1)证明:当t <时,()g x 在R 上是增函数; (2)对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b , 上是减函数; (3)证明: 3()2 f x ≥. 例3:已知3)(,ln )(2-+-==ax x x g x x x f (1)求函数)(x f 在)0](2,[>+t t t 上的最小值 (2)对(0,),2()()x f x g x ?∈+∞≥恒成立,求实数a 的取值范围 题型三:利用导数研究方程的根 例4:已知函数a x ax x f 313)(23-+-=. (I)讨论函数)(x f 的单调性; (Ⅱ)若曲线()f x 上两点A 、B 处的切线都与y 轴垂直,且线段AB 与x 轴有公共点,求实 数a 的取值范围.

全国高考数学复习微专题:函数的图像

函数的图像 一、基础知识 1、做草图需要注意的信息点: 做草图的原则是:速度快且能提供所需要的信息,通过草图能够显示出函数的性质。在作图中草图框架的核心要素是函数的单调性,对于一个陌生的可导函数,可通过对导函数的符号分析得到单调区间,图像形状依赖于函数的凹凸性,可由二阶导数的符号决定(详见“知识点讲解与分析”的第3点),这两部分确定下来,则函数大致轮廓可定,但为了方便数形结合,让图像更好体现函数的性质,有一些信息点也要在图像中通过计算体现出来,下面以常见函数为例,来说明作图时常体现的几个信息点 (1)一次函数:y kx b =+,若直线不与坐标轴平行,通常可利用直线与坐标轴的交点来确定直线 特点:两点确定一条直线 信息点:与坐标轴的交点 (2)二次函数:()2 y a x h k =-+,其特点在于存在对称轴,故作图时只需做出对称轴一侧的图像,另一侧由对称性可得。函数先减再增,存在极值点——顶点,若与坐标轴相交,则标出交点坐标可使图像更为精确 特点:对称性 信息点:对称轴,极值点,坐标轴交点 (3)反比例函数:1 y x = ,其定义域为()(),00,-∞+∞U ,是奇函数,只需做出正版轴图像即可(负半轴依靠对称做出),坐标轴为函数的渐近线 特点:奇函数(图像关于原点中心对称),渐近线 信息点:渐近线 注: (1)所谓渐近线:是指若曲线无限接近一条直线但不相交,则称这条直线为渐近线。渐近线在作图中的作用体现为对曲线变化给予了一些限制,例如在反比例函数中,x 轴是渐近线,那么当x →+∞,曲线无限向x 轴接近,但不相交,则函数在x 正半轴就不会有x 轴下方的部分。 (2)水平渐近线的判定:需要对函数值进行估计:若x →+∞(或-∞)时,()f x →常

高中数学-经典函数试题及答案

(满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <xy a

2019高考数学《函数的图像》题型专题汇编

2019高考数学《函数的图像》题型专题汇编 题型一 作函数的图象 1、分别画出下列函数的图象: (1)y =|lg(x -1)|; (2)y =2x + 1-1; (3)y =x 2-|x |-2; (4)y =2x -1x -1 . 解 (1)首先作出y =lg x 的图象,然后将其向右平移1个单位,得到y =lg(x -1)的图象,再把所得图象在x 轴下方的部分翻折到x 轴上方,即得所求函数y =|lg(x -1)|的图象,如图①所示(实线部分). (2)将y =2x 的图象向左平移1个单位,得到y =2x +1的图象,再将所得图象向下平移1个单位,得到y =2x +1-1 的图象,如图②所示. (3)y =x 2-|x |-2=???? ? x 2-x -2,x ≥0,x 2+x -2,x <0, 其图象如图③所示. (4)∵y =2+1x -1,故函数的图象可由y =1 x 的图象向右平移1个单位,再向上平移2个单位得到,如图④所 示. 题型二 函数图象的辨识 1、函数y =x 2ln|x | |x | 的图象大致是( ) 答案 D 解析 从题设解析式中可以看出函数是偶函数,x ≠0,且当x >0时,y =x ln x ,y ′=1+ln x ,可知函数在区间????0,1e 上单调递减,在区间??? ?1 e ,+∞上单调递增.由此可知应选D.

2、设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是( ) A .y =f (|x |) B .y =-|f (x )| C .y =-f (-|x |) D .y =f (-|x |) 答案 C 解析 题图中是函数y =-2-|x |的图象,即函数y =-f (-|x |)的图象,故选C. 3、函数f (x )=1+log 2x 与g (x )=????12x 在同一直角坐标系下的图象大致是( ) 答案 B 解析 因为函数g (x )=????12x 为减函数,且其图象必过点(0,1),故排除A ,D.因为f (x )=1+log 2x 的图象是由y =log 2x 的图象上移1个单位得到的,所以f (x )为增函数,且图象必过点(1,1),故可排除C ,故选B. 4、函数f (x )=??? ?2 1+e x -1·sin x 的图象的大致形状为( ) 答案 A 解析 ∵f (x )=? ????21+e x -1·sin x ,∴f (-x )=? ????21+e -x -1· sin(-x ) =-? ????2e x 1+e x -1sin x =? ?? ?? 21+e x -1· sin x =f (x ),且f (x )的定义域为R , ∴函数f (x )为偶函数,故排除C ,D ;当x =2时,f (2)=? ?? ??21+e 2-1· sin 2<0,故排除B , 只有A 符合. 5、若函数f (x )=(ax 2+bx )e x 的图象如图所示,则实数a ,b 的值可能为( )

高考数学函数图像

函数图像与变换 一、 图像变换 1.平移变换: (1)水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单 位即可得到; (2)竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单 位即可得到. 2.对称变换:(1)函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; (2)函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; (3)函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; (4)函数1()y f x -=的图像可以将函数()y f x =的图像关于直线y x =对称得到. 3.翻折变换: (1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分, 并保留()y f x = 的x 轴上方部分即可得到; (2)函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留 ()y f x =在y 轴右边部 分即可得到. 4.伸缩变换: (1)函数()y af x = (0a >)的图像可以将函数()y f x =的图像的纵坐标伸长到原来的(0)k k >倍(横坐标不变) 得到。 (2)函数()y af x = (0a >)的图像可以将函数()y f x =的图像的横坐标伸长到原来的(0)k k >倍(纵坐标不变) 得到。 二、典型例题 1、 函数的图象变换 函数的图象变换这一节的知识点是高考考查的重要方面,一些复杂的函数是可以通过一些较为简单的函数由相应的变换得到,从而我们可以利用之研究函数的性质。 例1、(1)设()2,()x f x g x -=的图像与()f x 的图像关于直线y x =对称,() h x 的图像由()g x 的图像 右平移1个单位得到,则()h x 为__________ (2)要得到)3lg(x y -=的图像,只需作x y lg =关于_____轴对称的图像,再向____平移3个单位而得到 (3)将函数()y f x =的图像上所有点的横坐标变为原来的13 (纵坐标不变),再将此图像沿x 轴方向向左平移2个单位,所得图像对应的函数为_____ 例2、已知f(x+199)=4x 2+4x+3(x ∈R),那么函数f(x)的最小值为____. 例3、设函数y=f(x)的定义域为R,则函数y=f(x-1)与y=(1-x)的图象关系为( ) A、直线y=0对称 B、直线x=0对称 C、直线y=1对称 D、直线x=1对称 2 、函数图象的画法 以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线.要把表列在关键处,要把线连在恰当处.这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究.而这个研究要借助于函数性质、方程、不等式等理论和手段。用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换。

相关文档 最新文档