文档库 最新最全的文档下载
当前位置:文档库 › 数学 反比例函数的专项 培优易错试卷练习题附答案解析

数学 反比例函数的专项 培优易错试卷练习题附答案解析

数学 反比例函数的专项 培优易错试卷练习题附答案解析
数学 反比例函数的专项 培优易错试卷练习题附答案解析

一、反比例函数真题与模拟题分类汇编(难题易错题)

1.如图,一次函数y1=k1x+b与反比例函数y2= 的图象交于点A(4,m)和B(﹣8,﹣

2),与y轴交于点C.

(1)m=________,k1=________;

(2)当x的取值是________时,k1x+b>;

(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP 与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标.

【答案】(1)4;

(2)﹣8<x<0或x>4

(3)解:由(1)知,y1= x+2与反比例函数y2= ,∴点C的坐标是(0,2),点A 的坐标是(4,4).

∴CO=2,AD=OD=4.

∴S梯形ODAC= ?OD= ×4=12,

∵S四边形ODAC:S△ODE=3:1,

∴S△ODE= S梯形ODAC= ×12=4,

即OD?DE=4,

∴DE=2.

∴点E的坐标为(4,2).

又点E在直线OP上,

∴直线OP的解析式是y= x,

∴直线OP与y2= 的图象在第一象限内的交点P的坐标为(4 ,2 ).

【解析】【解答】解:(1)∵反比例函数y2= 的图象过点B(﹣8,﹣2),∴k2=(﹣8)×(﹣2)=16,

即反比例函数解析式为y2= ,

将点A(4,m)代入y2= ,得:m=4,即点A(4,4),

将点A(4,4)、B(﹣8,﹣2)代入y1=k1x+b,

得:,

解得:,

∴一次函数解析式为y1= x+2,

故答案为:4,;(2)∵一次函数y1=k1x+2与反比例函数y2= 的图象交于点A(4,4)和B(﹣8,﹣2),

∴当y1>y2时,x的取值范围是﹣8<x<0或x>4,

故答案为:﹣8<x<0或x>4;

【分析】(1)由A与B为一次函数与反比例函数的交点,将B坐标代入反比例函数解析式中,求出k2的值,确定出反比例解析式,再将A的坐标代入反比例解析式中求出m的值,确定出A的坐标,将B坐标代入一次函数解析式中即可求出k1的值;(2)由A与B 横坐标分别为4、﹣8,加上0,将x轴分为四个范围,由图象找出一次函数图象在反比例函数图象上方时x的范围即可;(3)先求出四边形ODAC的面积,由S四边形ODAC:S△ODE=3:1得到△ODE的面积,继而求得点E的坐标,从而得出直线OP的解析式,结合反比例函数解析式即可得.

2.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴

上,点A在反比例函数y= (k>0,x>0)的图象上,点D的坐标为(,2).

(1)求k的值;

(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y= (k>0,x

>0)的图象上时,求菱形ABCD平移的距离.

【答案】(1)解:作DE⊥BO,DF⊥x轴于点F,

∵点D的坐标为(,2),

∴DO=AD=3,

∴A点坐标为:(,5),

∴k=5 ;

(2)解:∵将菱形ABCD向右平移,使点D落在反比例函数y= (x>0)的图象上D′,∴DF=D′F′=2,

∴D′点的纵坐标为2,设点D′(x,2)

∴2= ,解得x= ,

∴FF′=OF′﹣OF= ﹣ = ,

∴菱形ABCD平移的距离为,

同理,将菱形ABCD向右平移,使点B落在反比例函数y= (x>0)的图象上,

菱形ABCD平移的距离为,

综上,当菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图象上.【解析】【分析】(1)根据菱形的性质和D的坐标即可求出A的坐标,代入求出即可;(2)B和D可能落在反比例函数的图象上,根据平移求出即可.

3.平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点

(1)已知点A的坐标是(2,3),求k的值及C点的坐标;

(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.

【答案】(1)解:∵点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比

例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,∴3= ,点C与点A关于原点O对称,

∴k=6,C(﹣2,﹣3),

即k的值是6,C点的坐标是(﹣2,﹣3);

(2)解:过点A作AN⊥y轴于点N,过点D作DM⊥AC,如图,

∵点A(2,3),k=6,

∴AN=2,

∵△APO的面积为2,

∴,

即,得OP=2,

∴点P(0,2),

设过点A(2,3),P(0,2)的直线解析式为y=kx+b,

,得,

∴过点A(2,3),P(0,2)的直线解析式为y=0.5x+2,

当y=0时,0=0.5x+2,得x=﹣4,

∴点D的坐标为(﹣4,0),

设过点A(2,3),B(﹣2,﹣3)的直线解析式为y=mx+b,

则,得,

∴过点A(2,3),C(﹣2,﹣3)的直线解析式为y=1.5x,

∴点D到直线AC的直线得距离为:= .

【解析】【分析】(1)根据点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C

在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,可以求得k的值和点C的坐标;(2)根据△APO的面积为2,可以求得OP的长,从而可以求得点P的坐标,进而可以求得直线AP的解析式,从而可以求得点D的坐标,再根据点到直线的距离公式可以求得点D到直线AC的距离.

4.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)

(1)试确定上述比例函数和反比例函数的表达式;

(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?

(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.

【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,

∴反比例函数解析式为y= ,正比例函数解析式为y= x;

(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;

(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,

∴OE= OA= ,点D(,2),

∴点B(3,4),

又∵点F在正比例函数y= x图象上,

∴F(,),

∴DF= 、BC=3、EA= ,

∴四边形DFCB的面积为 ×( +3)× = .

【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.

5.如图1,经过原点的抛物线y=ax2+bx+c与x轴的另一个交点为点C;与双曲线y= 相交于点A,B;直线AB与分别与x轴、y轴交于点D,E.已知点A的坐标为(﹣1,4),点B在第四象限内且到x轴、y轴的距离相等.

(1)求双曲线和抛物线的解析式;

(2)计算△ABC的面积;

(3)如图2,将抛物线平移至顶点在原点上时,直线AB随之平移,试判断:在y轴的负半轴上是否存在点P,使△PAB的内切圆的圆心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.

【答案】(1)解:把点A的坐标代入双曲线的解析式得:k=﹣1×4=﹣4.

所以双曲线的解析式为y=﹣.

设点B的坐标为(m,﹣m).

∵点B在双曲线上,

∴﹣m2=﹣4,解得m=2或m=﹣2.

∵点B在第四象限,

∴m=2.

∴B(2,﹣2).

将点A、B、C的坐标代入得:,

解得:.

∴抛物线的解析式为y=x2﹣3x.

(2)解:如图1,连接AC、BC.

令y=0,则x2﹣3x=0,

∴x=0或x=3,

∴C(3,0),

∵A(﹣1,4),B(2,﹣2),

∴直线AB的解析式为y=﹣2x+2,

∵点D是直线AB与x轴的交点,

∴D(1,0),

∴S△ABC=S△ADC+S△BDC= ×2×4+ ×2×2=6;

(3)解:存在,理由:如图2,

由原抛物线的解析式为y=x2﹣3x=(x﹣)2﹣,

∴原抛物线的顶点坐标为(,﹣),

∴抛物线向左平移个单位,再向上平移个单位,

而平移前A(﹣1,4),B(2,﹣2),

∴平移后点A(﹣,),B(,),

∴点A关于y轴的对称点A'(,),

连接A'B并延长交y轴于点P,连接AP,

由对称性知,∠APE=∠BPE,

∴△APB的内切圆的圆心在y轴上,

∵B(,),A'(,),

∴直线A'B的解析式为y=3x﹣,

∴P(0,﹣).

【解析】【分析】(1)首先将点A的坐标代入反比例函数的解析式求得k的值,然后再求得B的值,最后根据点A的坐标求出双曲线的解析式,进而得出点B的坐标,最后,将点A、B、O三点的坐标代入抛物线的解析式,求得a、b、c的值即可;

(2)由点A和点B的坐标可求得直线AB的解析式,然后将y=0可求得点D的横坐标,最后用三角形的面积和求解即可;

(3)先确定出平移后点A,B的坐标,进而求出点A关于y轴的对称点的坐标,求出直线BA'的解析式即可得出点P的坐标.

6.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数

的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE=

(1)求该反比例函数和一次函数的解析式;

(2)求△AOC的面积;

(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.

【答案】(1)解:作AD⊥x轴于D,如图,

在Rt△OAD中,∵sin∠AOD= = ,

∴AD= OA=4,

∴OD= =3,

∴A(﹣3,4),

把A(﹣3,4)代入y= 得m=﹣4×3=﹣12,

所以反比例函数解析式为y=﹣;

把B(6,n)代入y=﹣得6n=﹣12,解得n=﹣2,

把A(﹣3,4)、B(6,﹣2)分别代入y=kx+b得,解得,

所以一次函数解析式为y=﹣x+2

(2)解:当y=0时,﹣x+2=0,解得x=3,则C(3,0),所以S△AOC= ×4×3=6

(3)解:当x<﹣3或0<x<6时,一次函数的值大于反比例函数的值

【解析】【分析】(1)作AD⊥x轴于D,如图,先利用解直角三角形确定A(﹣3,4),

再把A点坐标代入y= 可求得m=﹣12,则可得到反比例函数解析式;接着把B(6,n)代入反比例函数解析式求出n,然后把A和B点坐标分别代入y=kx+b得到关于a、b的方程组,再解方程组求出a和b的值,从而可确定一次函数解析式;(2)先确定C点坐标,然后根据三角形面积公式求解;(3)观察函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.

7.如图,过原点O的直线与双曲线交于上A(m,n)、B,过点A的直线交x轴正半轴于点D,交y轴负半轴于点E,交双曲线于点P.

(1)当m=2时,求n的值;

(2)当OD:OE=1:2,且m=3时,求点P的坐标;

(3)若AD=DE,连接BE,BP,求△PBE的面积.

【答案】(1)解:∵点A(m,n)在双曲线y=上,

∴mn=6,

∵m=2,

∴n=3;

(2)解:由(1)知,mn=6,

∵m=3,

∴n=2,

∴A(3,2),

∵OD:OE=1:2,

设OD=a,则OE=2a,

∵点D在x轴坐标轴上,点E在y轴负半轴上,

∴D(a,0),E(0,﹣2a),

∴直线DE的解析式为y=2x﹣2a,

∵点A(3,2)在直线y=2x﹣2a上,

∴6﹣2a=2,

∴a=2,

∴直线DE的解析式为y=2x﹣4①,

∵双曲线的解析式为y=②,

联立①②解得,(点A的横纵坐标,所以舍去)或,

∴P(﹣2,﹣3);

(3)解:∵AD=DE,点D在x轴坐标轴上,点E在y轴负半轴上,A(m,n),

∴E(0,﹣n),D( m,0),

∴直线DE的解析式为y= x﹣n,

∵mn=6,

∴m=,

∴y= x﹣n③,

∵双曲线的解析式为y=④,

联立③④解得,

∴(点A的横纵坐标,所以舍去)或,

∴P(﹣2m,﹣2n),

∵A(m,n),

∴直线AB的解析式为y=x⑤.

联立④⑤解得,(点A的横纵坐标,所以舍去)或

∴B(﹣m,﹣n),

∵E(0,﹣n),

∴BE∥x轴,

∴S△PBE= BE×|y E﹣y P|= ×m×|﹣n﹣(﹣2n)|= mn=3.

【解析】【分析】(1)把A(2,n)代入解析式即可求出n;(2)先求出A点坐标,设OD=a,则OE=2a,得D(a,0),E(0,﹣2a),直线DE的解析式为y=2x﹣2a,把点A(3,2)代入求出a,再联立两函数即可求出交点P;(3)由AD=DE,点D在x轴坐标

轴上,点E在y轴负半轴上,故A(m,n),E(0,﹣n),D( m,0),求得直线DE 的解析式为y= x﹣n,又mn=6,得y= x﹣n,与y=联立得

,即为P点坐标,由直线AB的解析式为y= x与双曲线联立解得B (﹣m,﹣n),再根据S△PBE= BE×|y E﹣y P|= ×m×|﹣n﹣(﹣2n)|求出等于3.

8.如图,正方形AOCB的边长为4,反比例函数y= (k≠0,且k为常数)的图象过点E,

且S△AOE=3S△OBE.

(1)求k的值;

(2)反比例函数图象与线段BC交于点D,直线y= x+b过点D与线段AB交于点F,延长

OF交反比例函数y= (x<0)的图象于点N,求N点坐标.

【答案】(1)解:∵S△AOE=3S△OBE,∴AE=3BE,

∴AE=3,

∴E(﹣3,4)

反比例函数y= (k≠0,且k为常数)的图象过点E,

∴4= ,即k=﹣12

(2)解:∵正方形AOCB的边长为4,∴点D的横坐标为﹣4,点F的纵坐标为4.

∵点D在反比例函数的图象上,

∴点D的纵坐标为3,即D(﹣4,3).

∵点D在直线y= x+b上,

∴3= ×(﹣4)+b,解得b=5.

∴直线DF为y= x+5,

将y=4代入y= x+5,得4= x+5,解得x=﹣2.

∴点F的坐标为(﹣2,4),

设直线OF的解析式为y=mx,

代入F的坐标得,4=﹣2m,

解得m=﹣2,

∴直线OF的解析式为y=﹣2x,

解,得.

∴N(﹣,2 )

【解析】【分析】(1)根据题意求得E的坐标,把点E(﹣3,4)代入利用待定系数法即可求出k的值;(2)由正方形AOCB的边长为4,故可知点D的横坐标为﹣4,点F的纵坐标为4.由于点D在反比例函数的图象上,所以点D的纵坐标为3,即D(﹣4,3),

由点D在直线y= x+b上可得出b的值,进而得出该直线的解析式,再把y=4代入直线的解析式即可求出点F的坐标,然后根据待定系数法求得直线OF的解析式,然后联立方程解方程组即可求得.

9.在平面直角坐标系xOy中,对于双曲线y= (m>0)和双曲线y= (n>0),如果m=2n,则称双曲线y= (m>0)和双曲线y= (n>0)为“倍半双曲线”,双曲线y=

(m>0)是双曲线y= (n>0)的“倍双曲线”,双曲线y= (n>0)是双曲线y= (m>0)的“半双曲线”,

(1)请你写出双曲线y= 的“倍双曲线”是________;双曲线y= 的“半双曲线”是________;

(2)如图1,在平面直角坐标系xOy中,已知点A是双曲线y= 在第一象限内任意一点,过点A与y轴平行的直线交双曲线y= 的“半双曲线”于点B,求△AOB的面积;

(3)如图2,已知点M是双曲线y= (k>0)在第一象限内任意一点,过点M与y轴

平行的直线交双曲线y= 的“半双曲线”于点N,过点M与x轴平行的直线交双曲线y= 的“半双曲线”于点P,若△MNP的面积记为S△MNP,且1≤S△MNP≤2,求k的取值范围.

【答案】(1)y=

;y=

(2)解:如图1,

∵双曲线y= 的“半双曲线”是y= ,

∴△AOD的面积为2,△BOD的面积为1,

∴△AOB的面积为1

(3)解:解法一:如图2,

依题意可知双曲线的“半双曲线”为,

设点M的横坐标为m,则点M坐标为(m,),点N坐标为(m,),∴CM= ,CN= .

∴MN= ﹣ = .

同理PM=m﹣ = .

∴S△PMN= MN?PM=

∵1≤S△PMN≤2,

∴1≤ ≤2.

∴4≤k≤8,

解法二:如图3,

依题意可知双曲线的“半双曲线”为,

设点M的横坐标为m,则点M坐标为(m,),点N坐标为(m,),

∴点N为MC的中点,同理点P为MD的中点.

连接OM,

∵,

∴△PMN∽△OCM.

∴.

∵S△OCM=k,

∴S△PMN= .

∵1≤S△PMN≤2,

∴1≤ ≤2.

∴4≤k≤8.

【解析】【解答】解:(1)由“倍双曲线”的定义

∴双曲线y= ,的“倍双曲线”是y= ;

双曲线y= 的“半双曲线”是y= .

故答案为y= ,y= ;

【分析】(1)直接利用“倍双曲线”的定义即可;(2)利用双曲线的性质即可;(3)先利用双曲线上的点设出M的横坐标,进而表示出M,N的坐标;方法一、用三角形的面积公

式建立不等式即可得出结论;方法二、利用相似三角形的性质得出△PMN的面积,进而建立不等式即可得出结论.

10.已知:如图,在平面直角坐标系xOy中,点A在x轴的正半轴上,点B、C在第一象

限,且四边形OABC是平行四边形,OC=2 ,sin∠AOC= ,反比例函数y= 的图象经过点C以及边AB的中点D.

(1)求这个反比例函数的解析式;

(2)四边形OABC的面积.

【答案】(1)解:过C作CM⊥x轴于M,则∠CMO=90°,

∵OC=2 ,sin∠AOC= = ,

∴MC=4,

由勾股定理得:OM= =2,

∴C的坐标为(2,4),

代入y= 得:k=8,

所以这个反比例函数的解析式是y=

(2)解:

过B作BE⊥x轴于E,则BE=CM=4,AE=OM=2,过D作DN⊥x轴于N,

∵D为AB的中点,

∴DN= =2,AN= =1,

把y=2代入y= 得:x=4,

即ON=4,

∴OA=4﹣1=3,

∴四边形OABC的面积为OA×CM=3×4=12

【解析】【分析】(1)过C作CM⊥x轴于M,则∠CMO=90°,解直角三角形求出CM,根据勾股定理求出OM,求出C的坐标,即可求出答案;(2)根据D为中点求出DN的值,代入反比例函数解析式求出ON,求出OA,根据平行四边形的面积公式求出即可.

11.如图,在平面直角坐标系中,直线AB与x轴交于点B、与y轴交于点A,与反比例函数y= 的图象在第二象限交于C,CE⊥x轴,垂足为点E,tan∠ABO= ,OB=4,OE=2.

(1)求反比例函数的解析式;

(2)若点D是反比例函数图象在第四象限内的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.

(3)若动点D在反比例函数图象的第四象限上运动,当线段DC与线段DB之差达到最大时,求点D的坐标.

【答案】(1)解:∵tan∠ABO= ,

∴ = ,且OB=4,

∴OA=2,

∵CE⊥x轴,即CE∥AO,

∴△AOB∽△CEB,

∴ = ,即 = ,解得CE=3,

∴C(﹣2,3),

∴m=﹣2×3=﹣6,

∴反比例函数解析式为y=﹣

(2)解:设D(x,﹣),

∵D在第四象限,

∴DF=x,OF= ,

∴S△DFO= DF?OF= x× =3,

由(1)可知OA=2,

∴AF=x+ ,

∴S△BAF= AF?OB= (x+ )×4=2(x+ ),

∵S△BAF=4S△DFO,

∴2(x+ )=4×3,解得x=3+ 或x=3﹣,

当x=3+ 时,﹣的值为3﹣,

当x=3﹣时,﹣的值为3+ ,

∵D在第四象限,

∴x=3﹣不合题意,舍去,

∴D(3+ ,3﹣)

(3)解:∵D在第四象限,

∴在△BCD中,由三角形三边关系可知CD﹣CB≤BC,即当B、C、D三点共线时,其差最大,

设直线AB解析式为y=kx+b,

由题意可得,解得,

∴直线AB解析式为y=﹣ x+2,

联立直线AB和反比例函数解析式可得,解得或

(舍去),

∴D(6,﹣1),

即当线段DC与线段DB之差达到最大时求点D的坐标为(6,﹣1)

【解析】【分析】(1)由条件可求得OA,由△AOB∽△CEB可求得CE,则可求得C点坐标,代入反比例函数解析式可求得m的值,可求得反比例函数解析式;(2)设出D的坐标,从而可分别表示出△BAF和△DFO的面积,由条件可列出方程,从而可求得D点坐标;(3)在△BCD中,由三角形三边关系可知CD﹣CB≤BC,当B、C、D三点共线时,其差最大,联立直线BC与反比例函数解析式可求得D点坐标.

12.如图,在平面直角坐标系中,抛物线交轴于点,交轴于点和点,过点作轴交抛物线于点.

(1)求此抛物线的表达式;

(2)点是抛物线上一点,且点关于轴的对称点在直线上,求的面积;(3)若点是直线下方的抛物线上一动点,当点运动到某一位置时,的面积最大,求出此时点的坐标和的最大面积.

【答案】(1)解:抛物线交轴于点,交轴于点

和点,

,得,

此抛物线的表达式是

(2)解:抛物线交轴于点,

相关文档