文档库 最新最全的文档下载
当前位置:文档库 › 含泥量对混凝土性能的影响及解决方法

含泥量对混凝土性能的影响及解决方法

含泥量对混凝土性能的影响及解决方法
含泥量对混凝土性能的影响及解决方法

含泥量对混凝土性能的影响及解决方法

发表时间:2019-02-26T10:41:33.070Z 来源:《防护工程》2018年第32期作者:徐成龙

[导读] 一定要把控质量关,对混凝土的配合比严格要求,不断创新方式降低含泥量对混凝土的危害,才能保障工程质量,促进企业更加繁荣发展。

江苏城科建设发展有限公司江苏省镇江市丹徒区高资镇招甸

摘要:随着现代社会的不断发展,对于建筑工程的要求也在不断提高,混凝土作为工程当中最主要的材料,保障混凝土的质量就是对工程的负责体现。现代建筑工程量大,对工程的质量要求较高,资料显示,我国每年使用的混凝土量大概在几十亿吨,所消耗的砂石以及水泥等原材料也非常巨大,对于砂石来说,如此大规模的消耗导致优质砂石不断减少,在一些工程的混凝土当中,如果所用砂石质量较低,含泥量较多,就会严重影响混凝土的性能,导致工程稳定性和耐久性变差,所以对混凝土中含泥量的影响应当提高重视,并及时研究解决方式。

关键词:含泥量;混凝土性能;影响;解决

引言

国家对于建筑行业制定了明确的标准,对混凝土中的含泥量也设定了合理的指标,但现代的很多商品混凝土的性能却不能达到标准,导致工程的建设当中,由于含泥量过大,造成混凝土和易性变差,坍落度经时损失增加,对于工程的顺利开展造成阻碍,如果长此以往,混凝土的性能将逐渐下降,不仅会导致工程质量下降,对人民的财产安全以及人身安全造成威胁,还会导致工程企业信誉受损,无法长期有效发展。

一、含泥量的主要来源

混凝土的原材料当中,泥的主要来源在于细骨料和粗骨料,在生产厂家采砂的过程当中,主要以河砂和山砂为主,河砂在采集的过程当中,往往河底泥含量较大,不可避免的被仪器带入到砂石当中,而山砂的泥含量较比河砂更大,混入泥更多,很多情况下,如果骨料所覆盖的泥得不到清洗,而直接进行破碎,就会造成骨料当中泥含量超标,包含在骨料当中的泥颗粒由于吸水性较强,容易在吸水后产生膨胀,对混凝土的性能造成影响。

二、含泥量对混凝土性能的影响

(一)含泥量对混凝土拌合物的影响

现代一些工程施工当中,利用黏土颗粒代替部分砂子进行拌合,但由于黏土中所包含了大量的吸水矿物,对拌合物的成果造成影响。混凝土在拌合当中,由于黏土较为吸水,拌合水的量较为固定,黏土颗粒大量吸附拌合水,导致拌合水的流动性较差,一些黏土由于吸水后膨胀,导致拌合物更加粘稠,对拌合工作造成一定的阻碍,而且一些混凝土在拌合后,由于拌合水被蒸发,黏土体积变化产生裂痕,造成混凝土的质量变低。如果混凝土拌合当中,因黏土颗粒的吸水性能而增加拌合水的投入,将一部分划分为黏土颗粒所吸附,另一部分帮助拌合的流动性,也会对对混凝土的强度造成威胁,所以无论是从拌合水的哪一方面考虑,对于混凝土的拌合过程来说,如果泥含量较大,就极为容易产生质量差异。

(二)含泥量对减水剂的影响

减水剂是混凝土重要的组成部分,能够在维持混凝土的坍落度保持不变的情况下,减少拌合水量,在混凝土的拌合当中对水泥颗粒具有分散作用,能够改善工作性,促进拌合流动性,对施工单位水泥的用量做到尽可能的节约,降低成本,防止浪费。按照组成材料区分,减水剂可以分为木质素磺酸盐类、多环芳香族盐类和水溶性树脂磺酸盐类,在不同强度的混凝土拌合当中,水泥的使用量各不相同,但如果含泥量增大,就会对减水剂的影响逐渐增大。

(三)含泥量对混凝土力学性能的影响

很多实验表明,对于混凝土的强度来说,含泥量越大,混凝土的强度就越小,二者呈反比关系。如果混凝土配比当中,砂子中含泥量低于百分之二的情况下,基本对于混凝土没有影响,但如果在此基础上,每提高一些就会对混凝土的弹性强度,以及耐久程度造成影响,而且含泥量越高,影响的后果就会更严重。

(四)含泥量对混凝土耐久性的影响

混凝土作为工程当中的重要组成部分,其耐久性是工程是否能够长期维持的标准,也是施工单位综合实力的体现,由于其直接能够影响建筑物的寿命,所以在任何的工程施工当中都会受到极大的重视。由于泥含量对于混凝土造成一定的不稳定性,而且泥本身也是一个流动性较强,稳定性较弱的物质,在混凝土配比当中,如果泥含量不断增加,混凝土的抗渗能力就越差,收缩值越大,对于混凝土的日后使用当中,容易因环境日积月累的影响而产生裂痕,对于建筑物的寿命造成恶劣影响。

三、泥含量对混凝土造成影响的原理

在混凝土当中,由于泥含量增加,泥颗粒表面又较为粗糙,在混凝土流动时,摩擦力就会不断增加,导致坍落性下降。泥的存在也会导致混凝土的结构产生变化,在混凝土的拌合结果当中,由于泥含量大量吸水,首先对混凝土的流动性造成影响,而且在拌合后形成结果时,由于泥中的拌合水不能被吸收,所以不断被蒸发消散,体积产生一定的变化,在混凝土当中产生较为薄弱的部分,对混凝土的整体质量造成影响。

四、泥含量对混凝土性能影响的解决方式

由于混凝土的性能与泥含量呈反比关系,所以在工程的施工当中,应当通过一定的科学措施,或是降低泥含量,或是通过一些手段防范影响的产生。

(一)加强砂石原材料的质量控制

施工单位在进行原材料采购时,应当注重对质量的监控,并且通过标准衡量原材料的性能,才能应用于工程建设当中。由于现代社会很多生产企业对所生产的原材料并不负责,所以很多原材料在采购的过程中,已经存在泥含量过多的情况,在施工单位进行工作当中,不仅对于工程质量造成影响,也会提高采购成本,得不偿失,所以施工单位一定要按照国家统一标准进行市场调查,通过工作人员的多方对

砂含泥量对混凝土性能的影响

砂含泥量对混凝土性能的影响 砂是现代建筑施工中不可缺少的材料之一,亦是商品混凝土中重要的材料组成,随着日益加大的基础设施建设的投资,砂的用量日益增多。在建筑施工中砂浆、商品混凝土的性能受到砂含泥量等质量指标的影响,在国家、行业标准中均限制其含泥量、泥块含量指标,但目前关于砂的含泥量在商品混凝土中的影响,尚无系统的试验和足够的数据证明。因此,本文通过不同含泥量的砂配制商品混凝土进行试验研究,总结其对商品混凝土性能的影响规律,为在当地配制合理等级的商品混凝土提供试验数据和理论依据。 1 原材料与试验方法 1.1原材料 1.1.1水泥:选用中联P.O4 2.5级采用宿迁巨龙水泥厂PO42.5级, 1.1.2粉煤灰 采用淮安华能电厂Ⅱ级灰,其性能如表1-2表1-2粉煤灰性能细度(%)需水量比(%)活性指数(%)烧失量7d28d12.610375833.8 1.1.3粗集料 碎石玄武岩,产地盱眙,其性能指标如表1-3表1-3表观密度(㎏/㎡)堆积密度(㎏/M3)针片状含量(%)压碎值(%)级配(㎜)269015803.48.15-25 1.1.4细集料 选用宿迁骆马湖中砂,细度模数2.6,性能指标见表1-4表1-4砂性能指标表观密度(㎏/㎡)堆积密度(㎏/M3)空隙率(%)细度模数(%)颗粒级配25501550362.6Ⅱ区 1.1.5外加剂 采用江苏博特新材料有限公司生产JM-Ⅷ高效减水剂,其性能指标见表1-5表1-5 JM-Ⅷ性能指标密度g/m掺量%减水率%含气量%凝结时间(h)抗压强度比(%)初凝终凝7d28d1.241.320.42.61012142130 1.1.6 材料检测依据 水泥检测按GB/T17671-1999《水泥胶砂强度检验方法(ISO法)》、GB/T1346-2001《水泥标准稠度用水量、凝结时间、安定性检验方法》及GB176-1996《水泥化

浅谈影响型钢混凝土结构抗震性能的因素

浅谈影响型钢混凝土结构抗震性能的因素 浅谈影响型钢混凝土结构抗震性能的因素 摘要:由于型钢混凝土具有刚度大,防火、防腐性能好及重量轻、延性好等优点,因此在土木工程中具有广阔的应用前景。从抗震性能来讲,型钢混凝土结构适用于抗震烈度为6度至9度的多层、高层和一般构筑物。本文总结出了影响型钢混凝土结构抗震性能的六大因素:轴压比、剪跨比、型钢含量和型钢形式、 配箍率、混凝土强度、型钢的锚固形式。 关键字:型钢混凝土;轴压比;剪跨比;配箍率;型钢的锚固形式 中图分类号:TU528文献标识码: A 文章编号: 型钢混凝土组合结构是一种优于钢结构和钢筋混凝土结构的新 型结构,它分别继承了钢结构和钢筋混凝土结构的优点,克服了两者的缺点而产生的一种新型结构体系。型钢混凝土结构充分利用钢(抗拉性能好)和混凝土(抗压性能好)的特点,按照最佳几何尺寸,组成最优的组合构件,这种组合构件具有刚度大的特点,与钢结构相比,防火、防腐性能好,具有较大的抗扭和抗倾覆能力,而且,与钢筋混凝土结构相比,具有重量轻,构件延性好,增加净空高度和使用面积,同时缩短施工期,节约模板,特别是在高层和超高层建筑及桥梁结构中使用组合构件,更加体现了它的承载能力高和能克服混凝土结构施工困难的特点。 由于型钢混凝土结构具有上述特点,因此在土木工程中具有广阔的应用前景。从抗震角度来讲,型钢混凝土结构适用于抗震烈度为6度至9度的多层、高层和一般构筑物。 通过实验,总结出了影响型钢混凝土抗震性能的主要因素为: 1、轴压比 实验和工程实践表明,轴压比是影响型钢混凝土偏心受压构件破坏形式、延性、变形能力和抗震性能的最重要因素。当轴压比超过一定限值时,无论配箍率如何提高,框架柱的延性都不能得到明显改善,

砂含泥量及其对混凝土的影响

砂含泥量及其对混凝土的影响 含泥量是指砂中粒径小于75μm,且其矿物组成和化学成分与母岩不同并吸附性相对较强的细微颗粒含量。天然河砂中的泥主要来源于河底的粘土,机制砂中的泥来源于岩石表面的粘土未经过清洗,直接进行破碎,混入机制砂中。泥的主要矿物成分为高岭土,蒙脱土,伊利土,这些矿物成分多为层状硅酸盐矿物,由铝硅酸盐组成的结晶水合物。蒙脱石是由二层硅氧四面体片与其间的铝氧八面体片相结合形成的,铝氧八面体与硅氧四面体通过中间的氧原子进行连接,结构中的高价Al3+常常被低价态的Mg2+,Fe2+替代,Si4+常常被Al3+替代,导致蒙脱石带有多余的负电荷,且结构中层与层的联接力比较弱,使蒙脱石具有强烈的吸水性、膨胀性。高岭石由硅氧四面体片与铝氧八面体片组成,但是结构片层是堆垛而成,联接片层的静电力比较强,使得高岭石吸水不会膨胀。伊利石是由层间的钾离子与层状结构联接,使得结构比较稳定,伊利石吸水后不会膨胀。 (一)砂含泥量检测方法 目前,测定砂中含泥量,一般采用《普通混凝土用砂质量标准及检验方法》JGJ52中的检测方法。其主要过程是:称取经缩分烘干至恒重的干砂400g,置于注入饮用水且水面高出砂面约150mm的容器中浸泡2h,然后用手在水中淘洗,使岩屑、淤泥及粘土与砂粒分离,并悬浮或溶于水中,缓缓地将浑浊液倒入上面为1.25mm下面为0.075mm的套筛上,滤去小于0.075mm颗粒。再加水于容器中,重复上述过程,直

至容器内洗出的水清澈,终止淘洗。然后,将充分洗除小于0.075mm 颗粒后的0.075mm筛及1.25mm筛上剩留颗粒和容器中已洗净的试样一并装入浅盘烘干至恒重,冷却后称重,计算该试样的含泥量。以两个试样试验结果的算术平均值作为砂中含泥量测定值,要求在整个试验过程中应避免丢失砂粒。 实践证明:采用这种方法测定砂中含泥量,尚存在以下不足之处。 (1)终止淘洗的条件不易准确掌握 标准方法测定砂中含泥量主要是通过对试样反复进行淘洗实现,终止淘洗以“容器内洗出的水清澈为止”作为判定界限。在实际工作中,由于对该界限认识观察及掌握程度上的差异,影响到含泥量的准确测定。 (2)小于0.075mm的颗粒不可能全部被淘洗出去 在对试样反复淘洗过程中,有部分小于0.075mm的颗粒因不悬浮或不溶于水而不能被排除;有部分小于0.075mm的颗粒虽悬浮或溶于水,但在每次将容器中的水缓缓倒出时可能会沉淀下来。因此也影响到含泥量的准确测定。 (3)小于0.075mm颗粒是否均为泥 砂中中一定量的小于0.075mm粉砂对增加混凝土密实性、提高混凝土强度还是有益的。如果单纯的将小于0.075mm粉砂也作为泥土和淤泥一样的有害物质加以控制是不合适的。 (二)含泥量对混凝土工作性的影响 混凝土中含有大量的层状吸水泥土矿物成分,会吸收大量的拌合水,使拌合物中自由水减少,混凝土流动性变差。高岭土、蒙脱土等泥矿物颗粒极易吸水,造成混凝土拌合物中自由水减少。蒙脱土吸水后,体积

混凝土强度等级对照表

混凝土强度等级对照表 混凝土的抗压强度是通过试验得出的,我国最新标准C60强度以下的采用边长为150mm的立方体试件作为混凝土抗压强度的标准尺寸试件。按照《普通混凝土力学性能试验方法标准》GB/T50081-2002,制作边长为150mm的立方体在标准养护(温度20±2℃、相对湿度在95%以上)条件下,养护至28d龄期,用标准试验方法测得的极限抗压强度,称为混凝土标准立方体抗压强度,以fcu表示。按照GB50010-2010《混凝土结构设计规范》规定,在立方体极限抗压强度总体分布中,具有95%强度保证率的立方体试件抗压强度,称为混凝土立方体抗压强度标准值(以MPa计),用fcu 表示。 依照标准实验方法测得的具有95%保证率的抗压强度作为混凝土强度等级。 按照GB50010-2010《混凝土结构设计规范》规定,普通混凝土划分为十四个等级,即:C15,C20,C25,C30,C35,C40,C45,C50,C55,C60,C65,C70,C75,C80。例如,强度等级为C30的混凝土是指30M Pa≤fcu<35MPa 影响混凝土强度等级的因素主要与水泥等级和水灰比、骨料、龄期、

养护温度和湿度等有关。 混凝土质量的主要指标之一是抗压强度,从混凝土强度表达式不难看出,混凝土抗压强度与混凝土用水泥的强度成正比,按公式计算,当水灰比相等时,高标号水泥比低标号水泥配制出的混凝土抗压强度高许多。一般来说,水灰比与混凝土强度成反比,水灰比不变时,用增加水泥用量来提高混凝土强度是错误的,此时只能增大混凝土和易性,增大混凝土的收缩和变形。 所以说,影响混凝土抗压强度的主要因素是水泥强度和水灰比,要控制好混凝土质量,最重要的是控制好水泥质量和混凝土的水灰比两个主要环节。此外,影响混凝土强度还有其它不可忽视的因素。 粗骨料对混凝土强度也有一定影响,所以,工程开工时,首先由技术负责人现场确定粗骨料,当石质强度相等时,碎石表面比卵石表面粗糙,它与水泥砂浆的粘结性比卵石强,当水灰比相等或配合比相同时,两种材料配制的混凝土,碎石的混凝土强度比卵石高。 因此我们一般对混凝土的粗骨料粒径控制与不同的工程部位相适应;细骨料品种对混凝土强度影响程度比粗骨料小,但砂的质量对混凝土质量也有一定的影响,施工中,严格控制砂的含泥量在3%以内,因此,砂石质量必须符合混凝土各标号用砂石质量标准的要求。

影响混凝土强度的主要因素

影响混凝土强度的主要因素 1.影响混凝土强度的因素很多,从内因来说主要有水泥强度、水灰比和骨料质量。 水泥强度和水灰比: 混凝土的强度主要来自水泥石以及与骨料之间的粘结强度。水泥强度越高,则水泥石自身强度及与骨料的粘结强度就越高,混凝土强度也越高。试验证明,混凝土与水泥强度成正比关系。水泥完全水化的理论需水量约为水泥重的23%左右,但实际拌制混凝土时,为获得良好的和易性,水灰比大约在0.40--0.65之间,多余水分蒸发后,在混凝土内部留下孔隙,且水灰比越大,留下的孔隙越大,使有效承压面积减少,混凝土强度也就越小。另一方面,多余水分在混凝土内的迁移过程中遇到粗骨料时,由于受到粗骨料的阻碍,水分往往在其底部积聚,形成水泡,极大地削弱砂浆与骨料的粘结强度,使混凝土强度下降。因此,在水泥强度和其他条件相同的情况下,水灰比越小,混凝土强度越高,水灰比越大,混凝土强度越低。但水灰比太小,混凝土过于干稠,使得不能保证振捣均匀密实,强度反而降低。试验证明,在相同的情况下,混凝土的强度( Mpa)与水灰比呈有规律的曲线关系,而与灰水比则成线性关系。 2 影响强度的其它因素

为了使混凝土能达到预定的强度,还必须在施工中搅拌均匀、捣固密实,养护良好并使之达到规定的龄期。 (一)施工条件的影响:施工条件是确保混凝土结构均匀密实、硬化正常、达到设计要求强度的基本条件。在施工过程中必须把拌合物搅拌均匀,浇注后必须捣固密实,且经良好的养护才能使混凝土硬化后达到预定的强度。采用机械搅拌比人工搅拌的拌合物更均匀,同时采用机械捣固的混凝土更密实,因此机械捣固可适用于更低水灰比的拌合物;能获得更高的强度。改进施工工艺性能也能提高混凝土强度,如采用分次投料搅拌工艺、高速搅拌机搅拌、高频或多频振捣器振捣、二次振捣工艺都会有效的提高混凝土的强度。 (二)养护条件的影响:为了获得质量良好的混凝土,混凝土成型后必须在一定的养护条件下(包括养护温度)进行养护,目的是保证水泥水化的正常进行,以达到预定的强度和其他性能。周围环境湿度是保证水泥正常水化、混凝土顺利成型的一个重要条件。在适当的湿度下,水泥能正常水化,使混凝土强度充分发展。如果湿度不足,混凝土表面会发生失水干燥现象,迫使内部水分向表面迁移,造成混凝土结构疏松、干裂,不但降低强度,而且还将影响混凝土的耐久性能。环境温度对水泥水化作用的影响是显著的。养护温度高,可以加快水泥水化速度,混凝土早期强度高;反之,混凝土在低温下强度发展相应迟缓,尤其温度在冰点以下

影响混凝土强度的主要因素

影响混凝土强度的主要因素 硬化后的混凝土在未受到外力作用之前,由于水泥水化造成的化学收缩和物理收缩引起砂浆体积的变化,在粗骨料与砂浆界面上产生了分布极不均匀的拉应力,从而导致界面上形成了许多微细的裂缝。另外,还因为混凝土成型后的泌水作用,某些上升的水分为粗骨料颗粒所阻止,因而聚集于粗骨料的下缘,混凝土硬化后就成为界面裂缝。当混凝土受力时,这些预存的界面裂缝会逐渐扩大、延长并汇合连通起来,形成可见的裂缝,致使混凝土结构丧失连续性而遭到完全破坏。强度试验也证实,正常配比的混凝土破坏主要是骨料与水泥石的粘结界面发生破坏。所以,混凝土的强度主要取决于水泥石强度及其与骨料的粘结强度。而粘结强度又与水泥强度等级、水灰比及骨料的性质有密切关系,此外混凝土的强度还受施工质量、养护条件及龄期的影响。 1)水灰比 水泥强度等级和水灰比是决定混凝土强度最主要的因素。也是决定性因素。 水泥是混凝土中的活性组成,在水灰比不变时,水泥强度等级愈高,则硬化水泥石的强度愈大,对骨料的胶结力就愈强,配制成的混凝土强度也就愈高。如常用的塑性混凝土,其水灰比均在0.4~0.8之间。当混凝土硬化后,多余的水分就残留在混凝土中或蒸发后形成气孔或通道,大大减小了混凝土抵抗荷载的有效断面,而且可能在孔隙周围引起应力集中。因此,在水泥强度等级相同的情况下,水灰比愈小,水泥石的强度愈高,与骨料粘结力愈大,混凝土强度也愈高。但是,如果水灰比过小,拌合物过于干稠,在一定的施工振捣条件下,混凝土不能被振捣密实,出现较多的蜂窝、孔洞,将导致混凝土强度严重下降。参见图3—1。 图3—1混凝土强度与水灰比的关系 a)强度与水灰比的关系 b)强度与灰水比的关系 2)骨料的影响 当骨料级配良好、砂率适当时,由于组成了坚强密实的骨架,有利于混凝土强度的提高。如果混凝土骨料中有害杂质较多,品质低,级配不好时,会降低混凝土的强度。 由于碎石表面粗糙有棱角,提高了骨料与水泥砂浆之间的机械啮合力和粘结力,所以在原材料、坍落度相同的条件下,用碎石拌制的混凝土比用卵石拌制的混凝土的强度要高。 骨料的强度影响混凝土的强度。一般骨料强度越高,所配制的混凝土强度越高,这在低水灰比和配制高强度混凝土时, 特别明显。骨料粒形以三维长度相等或相近的球形或立方体

砂率对混凝土性能的影响

砂率对混凝土性能的影响 砂率:SP= 砂的用量S/(砂的用量S+石子用量G)×100% 是质量比 砂率的变动,会使骨料的总表面积有显著改变,从而对混凝土拌合物的和易性有较大影响。 和易性概念和易性是指新拌水泥混凝土易于各工序施工操作(搅拌、运输、浇灌、捣实等)并能获得质量均匀、成型密实的性能。 和易性是一项综合的技术性质,它与施工工艺密切相关,通常,包括有流动性、保水性和粘聚性三方面的含义。 流动性是指新拌混凝土在自重或机械振捣的作用下,能产生流动,并均匀密实地填满模板的性能。 粘聚性是指新拌混凝土的组成材料之间有一定的粘聚力,在施工过程中,不致发生分层和离析现象的性能。 保水性是指在新拌混凝土具有一定的保水能力,在施工过程中,不致产生严重泌水现象的性能。 新拌混凝土的和易性是流动性、粘聚性和保水性的综合体现,新拌混凝土的流动性、粘聚性和保水性之间既互相联系,又常存在矛盾。因此,在一定施工工艺的条件下,新拌混凝土的和易性是以上三方面性质的矛盾统一。 确定砂率的原则是:在保证混凝土拌合物具有的粘聚性和流动性的前提下,水泥浆最省时的最优砂率。 砂率对和易性的影响非常显著。 ① 对流动性的影响。在水泥用量和水灰比一定的条件下,由于砂子与水泥浆组成的砂浆在粗骨料间起到润滑和辊珠作用,可以减小粗骨料间的摩擦力,所以在一定范围内,随砂率增大,混凝土流动性增大。另一方面,由于砂子的比表面积比粗骨料大,随着砂率增加,粗细骨料的总表积增大,在水泥浆用量一定的条件下,骨料表面包裹的浆量减薄,润滑作用下降,使混凝土流动性降低。所以砂率超过一定范围,流动性随砂率增加而下降 ② 对粘聚性和保水性的影响。砂率减小,混凝土的粘聚性和保水性均下降,易产生泌水、离析和流浆现象。砂率增大,粘聚性和保水性增加。但砂率过大,当水泥浆不足以包裹骨料表面时,则粘聚性反而下降。

粉煤灰对混凝土性能有何影响

粉煤灰具有三大效应: (1)表面效应:粉煤灰表面可吸附浆体中的某些离子,有利于粉煤灰固化混凝土中的某些有害离子以及作为晶核形成水化产物。 (2)填充效应:粉煤灰与水泥颗粒粒径的差异可以填充水泥和骨料孔隙中,减小混凝土的孔隙率,增加混凝土密实性; (3)火山灰活性效应:粉煤灰中的活性SiO2与水泥水化产物CH发生二次反应,生成C-S-H凝胶填充骨料—水泥浆体界面层孔隙,改善混凝土界面结构,提高强度和耐久性。 劣质粉煤灰的主要特点是: 玻璃珠体少,需水量大,使用后易造成混凝土泌水或滞后泌水,降低混凝土的工作性能,易导致混凝土28d强度不足,后期强度增长低,造成混凝土工程质量不合格。 优质粉煤灰对混凝土的性能影响 (1)工作性能 粉煤灰可以改善胶凝材料体系的颗粒级配,降低空隙率,释放水泥颗粒间的“填充水”,改善混凝土工作性。 粉煤灰中含有大量球形玻璃体,起到“滚珠、轴承”润滑效应,减少颗粒间的摩擦力,改善混凝土的工作性。 粉煤灰活性大大低于水泥活性,可以降低混凝土坍落度损失。优质粉煤灰对外加剂的吸附低于水泥,使用优质粉煤灰相当于增加外加剂用量,混凝土初始坍落度及保持能力都有提高。 粉煤灰的密度小于水泥,等量取代水泥后,混凝土中的浆体量增加,改善混凝土的粘聚性,提高抗离析能力,减水泌水,改善混凝土工作性能,使混凝土具有更好的流动性、密实性、匀质性,便于混凝土的施工。 (2)力学性能 粉煤灰自身不能进行水化反应,只能与水泥水化产物进行二次水化,因此,用粉煤灰等量替代水泥后,早期强度将会降低,随着二次水化的进行,中后期会达到甚至超过不掺粉煤灰的混凝土。随着粉煤灰替代水泥量的增加,早期强度逐渐降低,但掺加粉煤灰的混凝土后期强度增长较快,而且在一定范围内(<50%)随粉煤灰掺量增加而增大。(3)

砂子含泥量对砼聚羧酸的影响

砂子含泥量对掺用聚羧酸高性能减水剂混凝土性能的影响 摘要:聚羧酸外加剂具有高减水率,高保坍性、能更高地提高混凝土强度有优点,但它同时对骨料中含泥量的高敏感性,本文对掺聚羧酸外加剂混凝土中含泥量的多少对混凝土性能的影响进行了详细的分析。 (摘要:聚羧酸高性能减水剂具有高减水率、高保坍性、能更好地提高混凝土强度等优点备受欢迎,但它对骨料中含泥量的高敏感性却困扰着我们,本文就针对混凝土中细骨料的含泥量对掺用聚羧酸高性能减水剂混凝土性能的影响进行了详细的分析。)关键词:外加剂(建议改成聚羧酸高性能减水剂)、含泥量、工作性能、力学性能 前言: 作为混凝土重要组成部分的细骨料占混凝土体积的百分之三十(30%)左右,其各项性能的好坏直接影响到混凝土的早期工作性能、硬化后的力学性能及混凝土的耐久性等。 聚羧酸减水剂是一种高性能混凝土外加剂,具有掺量低、减水率高,混凝土拌合物和易性和坍落度保持性能优异,增强减缩效果显著、低碱含量,低氯离子含量,水泥适应性好,绿色球保等优点,对混凝土的综合性能有质的提高,是配制高性能混凝土不可缺少的组分。(具有低掺量、低碱含量、低氯离子含量、高减水率、水泥适应性好、绿色环保等许多优点,掺用该外加剂的混凝土具有良好的和易性和保坍性,使混凝土的减缩效果显著增强,大大提高了混凝土的综合性能,同时能够减少水泥用量,是配置高性能混凝土不可缺少的重要组成部分。)聚羧酸减水剂是一类表面活性剂,其分子结构一般含有亲水主链和疏水的聚氧乙烯侧链,因此可以通过表面活性剂的分子设计和分子剪裁技术,设计相应的分子结构,选择合适的反应单体,通过化学反应得到具有预期性能的产品,应用在不同需求和领域的工程上。(由于聚羧酸高性能减水剂具有以上诸多优点,已经在广大的工程领域得到普遍的应用。) (但是,)聚羧酸减水剂对混凝土中砂子含泥量却十分敏感,砂子中的含泥量对混凝土的影响很大,从混凝土工作性能来讲,它严重影响聚羧酸减水剂对混凝土的坍落度及坍落度损失,从混凝土的力学性能来说,当砂子含泥量超过3%就会对混凝土强度有很大影响。(砂子含泥量超过3%对混凝土的耐久性不做讨论)。 1、聚羧酸分子结构 聚羧酸减水剂的分子是梳状结构,在分子主链上接有许多个有一定长度和刚度的侧链。在主链上有能使水泥颗粒带电的极性基团,可以起到水泥颗粒作用,有一定的电荷排斥作用;侧链为聚氧乙烯长链,能阻碍了水泥颗粒相互接近,有空间位阻作用,起减水的功能。聚羧酸减水剂其在分子结构上有两个层次:线性主链:以非极性基相互连接为主,主链上含有亲水的极性基团如羧基、磺酸基等。影响聚羧酸减水剂性能的因素为分子量、分子量分布、主链电荷密度。溶剂化侧链:一般为聚氧乙烯长链,增加空间位阻,降低水分子渗透作用,同时起调节表面活性,影响分散性、分散保持性和引气性。影响聚羧酸头号水剂性能的因素为聚氧乙烯长链的数量、相对位置及组合。 聚羧酸减水剂通常由两种以上的不饱和单体,通过活性可控自由基聚合反应(ACFRPR)合成。聚羧酸减水剂的分子结构过程中,不同单体随机或有规律地聚合在一起。如下图为聚

矿粉对混凝土性能的影响

矿粉对混凝土性能的影响 双击自动滚屏发布者:admin 发布时间:2009-6-5 阅读:652 次【字体:大中小】 矿粉对混凝土性能的影响 矿粉对混凝土性能的影响的研究可以由“矿粉+水泥浆体”到“矿粉+水泥胶砂”再到“矿粉混凝土”逐步进行。但对于普通应用单位,如商品混凝土搅拌站,就不必遵循此规律,可借鉴有关研究成果,直接进行混凝土试验,找出特定条件下的合理配合比。 1. 矿粉对混凝土工作性能和力学性能的影响 1)矿粉比表面积在430m2/kg~520m2/kg之间,掺量在30%~40%范围,增强效应表现得最为显著。 2)单掺矿粉会使混凝土的粘聚性提高,凝结时间有所延长,泌水量有增大的迹象,可能对混凝土泵送带来一定的不利影响; 3)矿粉和Ⅰ级粉煤灰复配配制混凝土,可以充分发挥二者的“优势互补效应”,使混凝土的坍落度增加,和易性好,粘聚性好,泌水得到改善。同时混凝土成本可显著降低。 4)针对水泥-粉煤灰-矿粉胶凝材料体系,在等量取代的前提下,粉煤灰的掺量以不超过20%为宜,粉煤灰和矿粉掺量以不超过40%为宜,同时建议采用60d或90d 强度作为混凝土评定标准,以充分利用混凝土的后期强度。 2. 矿粉对混凝土耐久性的影响 1)混凝土水化热。掺加矿粉,可降低浆体水化热,单掺量小于50%时,水化热降低不明显。当达到70%掺量时,3d和7d水化热分别降低约36%和29%;矿粉和粉煤灰复配,可显著降低浆体3d、7d水化热,采用20%矿粉和20%粉煤灰复配,浆体3d和7d水化热分别降低38%和20%,对要求严格控温的大体积混凝土,矿粉和粉煤灰复配是理想的矿物掺合料组合,可以有效减少混凝土早期温缩裂缝的危险。 2)抗渗性能。混凝土中掺加矿粉或矿粉和粉煤灰复配,发挥掺合料的微集料效应和二次水化反应,可以使混凝土孔径细化,连通孔减少,混凝土密实性提高,从而大幅提高混凝土的抗渗性能。采用库仑电量方法评价,矿粉、粉煤灰和引气剂均

影响混凝土质量的主要因素

影响混凝土质量的主要因素 摘要:在我国的土建工程施工中,掌握影响混凝土质量的主要因素,切实控制施工质量,对促进我国混凝土施工技术等具有重要意义。本文对施工中影响混凝土的施工质量的因素进行了探讨有足够的重视。关键词:土建工程混凝土质量控制 2008年以来,随着国家对实体经济刺激政策的逐步落地生根,我国的基础设施建设和固定资产投资进入一个高速发展的阶段。混凝土作为基础设施建设的主要建筑材料,其质量好坏,直接影响结构物的安全和造价。因此在施工中必须对混凝土的施工质量有足够的重视和有效地控制。 1.混凝土的强度及影响因素 混凝土是由水泥、水、细骨料、化学外加剂、矿物质等材料按照一定比例配合而成,经过均匀拌制,振捣密实成型及养护硬化而成的人工石材。混凝土质量的关键指标之一是抗压强度,混凝土抗压强度与混凝土用水水泥的强度成正比。当水灰比相等时,高标号水泥比低标号水泥配制出的混凝土抗压强度高许多。所以混凝土施工必须核对、选好水泥标号。 影响混凝土抗压强度的主要因素是水泥强度和水灰比,因此要提高混凝土的质量,关键是控制好水泥和混凝土的水灰比两个主要环节。另外,粗骨料对混凝土强度也有一定影响,当石质强度相等时,碎石表面比卵石表面粗糙,它与水泥砂浆的粘结性比卵石强,当水灰比相等或配合比相同时,两种材料配制的混凝土,碎石的混凝土强度

比卵石强。因此我们一般对混凝土的粗骨料控制在3.2cm左右,细骨料品种对混凝土强度影响程度比粗骨料小,所以混凝土公式内没有反映砂种柔效,但砂的质量对混凝土质量也有一定的影响。因此,砂石质量必须符合混凝土各标号用砂石质量标准的要求。由于施工现场砂石质量变化相对较大,因此现场施工人员必须保证砂石的质量要求,并根据现场砂含水率及时调整水灰比,以保证混凝土配合比,不能把实验配比与施工配比混为一谈。混凝土强度只有在温度、湿度条件下才能保证正常发展,应按施工规范的规定予在养护、气温高低对混凝土强度发展有一定的影响。冬季要保温防冻害,夏季要防暴晒脱水。 2.混凝土标号与混凝土平均强度及其标准差的关系 混凝土标号是根据混凝土标准强度总体分布的平均值减去1.645倍标准值确定的。这样可以保证混凝土确定均有95%的保证率,低于该标准值的概率不大于5%,充分保证了建筑物的安全,从此推定,抽样检查的几组试件的混凝土平均确定一定大于等于混凝土设计标号。通过公式计算可以看出,施工人员不但要使混凝土平均确定大于混凝土标号,更重要的是千方百计的减少混凝土确定的变异性,即要尽量使混凝土标准差降到较低值,这样,既保证了工程质量,也降低了工程造价。 3.混凝土质量控制的有效措施 3.1原材料的质量要保证 混凝土是由水泥、水、细骨料、化学外加剂、矿物质混合材料,

影响高性能混凝土工作性能的因素.

随着科学技术和生产力的发展,高性能混凝土应用越来越广泛,如高速铁路、高层建筑,跨海大桥、海底隧道等,高性能混凝土具有独特的优越性,高工作性、高耐久性,在工程中安全使用寿命、经济合理性、环境条件的适应性等方面产生了明显的效益。 高性能混凝土的工作性能主要是保证混凝土结构成型时无原始缺陷,从而保证混凝土的耐久性。良好的工作性能是使混凝土质量均匀、获得高性能,从而安全可靠的前提。 高性能混凝土的工作性能主要包括三部分内容: 1. 流动性:表征拌和物流动的难易程度。 2. 粘聚性:拌和物在搅拌、运输、泵送、浇注、振实过程中不容易出现泌水和离析分层的性能。 3. 可泵性:拌和物在泵压下在管道中移动摩擦阻力和弯头阻力之和的倒数。 影响高性能混凝土的工作性能的因素: 一、砂 砂的粗细程度、细颗粒含量、级配均严重影响高性能混凝土的工作性,高性能混凝土应采用细度模数在 2.6-3.0之间的 II 区砂, 细颗粒含量 0.315mm 筛以下达到15%, 含泥量控制在 2%以下。往往受资源的局限不容易找到上述要求的砂,偃师西梁场使用的砂细度模数在 2.8-3.3之间满足Ⅰ区和Ⅱ区颗粒级配,但 0.315mm 筛以下颗粒含量在 5%以内,混凝土施工过程中经常出现堵管、爆管现象。在保证混凝土的抗压强度、弹性模量、耐久性的前提下,通过提高砂率和细砂与粗砂掺配的方法,满足了混凝土的工作性。二、碎石 碎石的粒径、形状、级配对混凝土所需的水泥浆量有重大影响,从而影响混凝土的工作性能。高性能混凝土应选择针片状含量少、级配良好、石粉含量少的碎石。颗粒级配良好可以减少混凝土所需水泥浆量。高性能混凝土碎石中的泥和石

影响混凝土强度因素

影响混凝土强度因素; 1、原材料 水泥强度,包括早期与后期 掺合料,品种与活性 砂石,砂石得级配与含泥量、针片状等含量 外加剂,有得外加剂就是早强,有得缓凝,但不影响后期强度,部分外加剂引气量高会影响强度。 2、配合比 合理得调整水灰比与砂率。 3、养护 养护温度,温度高则强度高,温度低则强度低,当然不不能用火烤,高于60多度混凝土水化产物会分解得,导致强度降低。 4、周边环境 有无腐蚀性得介质存在,如酸碱盐等 我说点现场需具体考虑得: 天气,需考虑就是否下雨,降温。 人员配制,如果砼工劳动力不足,会影响浇筑质量。 掺与料,现在都就是商混,掺与料,水灰比都不需要工长操心了,只要控制如丹落度与禁止工人往砼里加水,基本上就相当于控制住了砼质量。 浇筑方案,大体积砼如果浇筑,一层砼,先浇什么后浇什么都要有方案。 养护要跟上。 收面,找平,做好,就OK了影响因素与控制措施 混凝土内部得温度与混凝土厚度及水泥品种、用量有关。混凝土越厚,水泥用量越大,水化热越高得水泥,其内部温度越高,形成温度应力越大,产生裂缝得可能性越大。 对于大体积混凝土,其形成得温度应力与其结构尺寸相关,在一定尺寸范围内,混凝土结构尺寸越大,温度应力也越大,因而引起裂缝得危险性也越大,这就就是大体积混凝土易产生温度裂缝得主要原因。因此防止大体积混凝土出现裂缝最根本得措施就就是控制混凝土内部与表面得温度差。 3、1混凝土原材料及配合比得选用 (1)尽量选用低热或中热水泥,减少水泥用量。 大体积钢筋混凝土引起裂缝得主要原因就是水泥水化热得大量积聚,使混凝土出现早期升温与后期降温,产生内部与表面得温差。减少温差得措施就是选用中热硅酸盐水泥或低热矿渣硅酸盐水泥,在掺加泵送剂或粉煤灰时,也可选用矿渣硅酸盐水泥。再有,可充分利用混凝土后期强度,以减少水泥用量。改善骨料级配,掺加粉煤灰或高效减水剂等来减少水泥用量,降低水化热。 (2)掺加掺合料 大量试验研究与工程实践表明,混凝土中掺入一定数量优质得粉煤灰后,不但能代替部分水泥,而且由于粉煤灰颗粒呈球状具有滚珠效应,起到润滑作用,可改善混凝土拌合物得流动性、粘聚性与保水性,从而改善了可泵性。 特别重要得效果就是掺加原状或磨细粉煤灰后,可以降低混凝土中水泥水化热,减少绝热条件下得温度升高。在混凝土中掺加一定量得具有减水、增塑、缓凝等作用得外加剂,改善混凝土拌合物得流动性、保水性,降低水化热,推迟热峰得出现时间。

影响混凝土质量的主要因素

影响混凝土质量的主要因素 来工程质量受到越来越多的社会关注。预拌混凝土有利于采用先进的工艺技术,实行专业化生产管理,产品质量好、材料消耗少、工效高、成本较低,又能改善劳动条件,减少环境污染等优势,在施工占有越来越大的比重。由于生产地点与使用地点不同,在施工中必须掌握影响混凝土质量的主要因素,切实控制施工质量。 随着改革开放进程的不断深化我国的建筑业取得了快速的发展。混凝土作为主要的建筑材料,其质量优劣,直接影响到结构物的使用安全及人民生命财产安全。在施工中我们必须对混凝土的施工质量有足够的重视。预拌混凝土是时代发展和市场经济下的产物,由于其优质、高效、环保等特点备受施工企业青睐。近年来,全国各地预拌混凝土厂家犹如雨后春笋建成投产,在为国家建筑业增添活力的同时,也出现了许多值得重视和解决的问题。 1、预拌混凝土质量的外部因素 随着市场竞争愈来愈激烈,生产厂家为生存相互压价,最终导致预拌混凝土质量普遍下降,最近几年较大的工程质量事故的事例屡屡见诸报端。再者生产与施工管理两张皮,预拌混凝土的生产、运输、浇筑成型等环节的质量要求在国家或地方规范、标准中均有相关规定。但在实际过程中,往往出现供需双方管理界限问题,因质量造成的责任纠纷不断,厂家指责施工方浇筑方法不正确,养护不及时,施工方指责厂家产

品不合格,运输超时等。 以上问题的应采用系统的方法加以解决。宏观上积极呼吁地方政府对本地的经济发展规模,对预拌混凝土搅拌站项目要有积极的政策导向,避免出现生产力过剩现象。政府应对企业生产过程中的产品质量起到有效监督、协调等作用。其次,建筑施工企业与混凝土厂家签订合同时,不应局限于合同负责人之间理论性的谈判及笼统模糊的约定,应该要求双方负责现场管理、具有实践经验的技术人员参加,使合同条款具有实用、全面、约束力强、便于责任追溯等特点。 2、预拌混凝土质量的技术性因素 混凝土质量要求是一种综合性指标,根据工程特点,结构设计不仅对混凝土的强度等级提出明确要求,具备相应的变形性能、耐久性等,而且在施工过程中还需混凝土具有和易性。混凝土抗压强度与混凝土所用水泥的强度成正比,按公式计算,当水灰比相等时,高强度等级水泥比低强度等级水泥配制出的混凝土抗压强度高许多。所以预拌混凝土生产时应严格执行技术要求,切勿用错水泥标号及用量。实践中,不少厂家为降低成本,想方设法降低水泥用量,为在数据上使混凝土试块抗压强度符合要求,采用非统计方法评定,但如采用统计方法评定时却不合格,希望工程技术、质量管理人员及监理单位注意此类问题。 由上述可知,影响混凝土抗压强度的主要因素是水泥强度和水灰比,

新拌混凝土的性能

4.1工作性的定义: 新拌混凝土的工作性包括流动性、充填性、粘聚性、保水性、可泵性等,是混凝土拌合物运输、浇捣、抹面等主要操作工序能够顺利地进行的保证,故又称和易性。 流动性是指混凝土拌合物在自重或机械振捣力的作用下,能产生流动并均匀密实地充满模型的性能。流动性的大小,反映拌合物的稠度,它直接影响施工的难易和混凝土的质量。 粘聚性则是指混凝土拌合物内部组分之间具有一定的粘聚力,在运输和浇注过程中不会发生分层离析现象,能使混凝土保持整体均匀性。 保水性是指混凝土拌合物具有一定的保持内部水分的能力,在施工中不致产生严重的泌水现象。保水性好的新拌混凝土,在混凝土振实后,一部分水容易从内部析出至表面,在渗流之处留下许多毛细管孔道,成为混凝土内部的透水通道。 4.2 影响工作性的因素 (1).用水量 用水量的大小是影响新拌混凝土工作性的决定性因素。 (2)水泥 混凝土拌合物在自重或外界振动力的作用下要产生流动,必须克服其内部的阻力。拌合物内部阻力主要来自两个方面,一是骨料间的摩阻力,二是水泥浆的粘聚力。 (3) 骨料 骨料对新拌混凝土工作性的影响较大。在混凝土骨料用量一定的情况下,采用卵石和河砂拌制的混凝土拌合物,其流动性比用碎石和山砂拌制的好。这是因为前者骨料表面光滑,摩阻力小,而后者骨料摩阻力相对较大;骨料级配的好坏也影响着混凝土拌合物的工作性。 砂率对混凝土拌合物的工作性也有显著影响。 (4)拌和物存放时间和环境温度的影响 混凝土拌合物随着时间的延长会变得越来越干稠,这是由于拌合物中的水分一部分被蒸发,另一部分则是水泥水化所消耗,因此拌合物逐渐失去可塑性而凝结硬化。混凝土工作性还受温度的影响。随着环境温度的升高,混凝土的工作性降低很快,因为这时的水分蒸发及水泥的化学反应将进行得更快。 4.3工作性的表征 混凝土拌合物工作性的内容比较复杂,通常是采用一定的实验方法测定混凝土拌合物的流动性,再辅以直观经验,综合评定其粘聚性和保水性。按《混凝土质量控制标准》(GB50164—92)规定,混凝土拌合物的流动性以坍落度或维勃稠度作为指标。坍落度适用于流动性较大的混凝土拌合物,维勃稠度适用于干硬性混凝土。 5、硬化混凝土的强度 混凝土强度包括立方体抗压强度、轴心抗压强度:抗拉强度、抗弯强度和抗剪强度等,其中以立方体抗压强度值为最大。 5.1混凝土立方体抗压强度与强度等级 根据国家标准规定,我国采用标准立方体抗压强度作为混凝土强度特征值。制作边长为150mm 的立方体标准试件,在标准养护条件(温度20±30C,相对湿度大于90%)下,养护至28天龄期,用标准试验方法测得的抗压强度值称为混凝土立方体抗压强度。 混凝土强度等级采用符号“C”与立方体抗压强度标准值(以N/mm2计)表示。混凝土立方体抗压强度标准值是指用标准方法制作并养护的边长为150mm的立方体试件,在28天龄期,用标准试验方法测得的具有95%保证率的抗压强度。普通混凝土按立方体强度标准值“划分为C7.5、C10、C15、C20、C25、C30、C35、C40、C45、C50、C55、C60共12个强度等级。 5.2混凝土轴心抗压强度:混凝土轴心抗压强度又称棱柱体抗压强度。是以150mm×150mm×300mm的棱柱体作为标准试件。标准棱柱体试件的制作、养护条件与标准立方

影响钢筋混凝土工程质量因素及解决方法

影响钢筋混凝土工程质量因素及解决方法 摘要:本文针对在某工程施工中通过加强控制混凝土工程施工管理,有效控制了混凝土工程施工质量,达到了良好的效果。 关键词:钢筋混凝土质量;因素;解决方法 某工程由10栋高层住宅,框架剪力墙结构,建筑层数26-33层、由于在基础、主体结构施工过程中材料、施工等方面把关不到位,控制不严格,造成较多的质量缺陷,混凝土强度回弹不合格,柱、梁出现较多的孔洞、麻面、爆模等现象,严重影响工程的质量,造成重大的经济损失。 1 主要质量问题分析 1.1 材料方面 钢筋问题:(1) 钢筋进场后没有及时按规定进行取样复验而事先进行使用;钢筋进入仓库或现场时,管理不好,施工中容易弄错。 (2) 钢筋露天堆放,保管不好,受雨雪侵蚀,环境潮湿而通风不良,产生锈蚀;或存放期过长,工程中途停工,裸露钢筋未加保护使钢筋呈片状褐锈,造成钢筋截面减小,受拉应力降低。(3) 工程施工中油类等物质污染钢筋或混凝土浇筑过程中水泥浆污染钢筋,影响钢筋的握裹力及结构受力。 混凝土问题: (1) 水泥无出厂合格证或材质证明,进场后未经复试合格:出厂后超过三个月(快硬水泥超过一个月)未经复试;进口水泥没有商检合格证,未经复试。(2) 砂、石未按规定批量取样

试验或砂石级配不合格。(3) 掺合料如粉煤灰、氟石粉等无出厂合格证或未经试验;混凝土外加剂没有生产许可证,未经质量监督部门认可合格。 1.2 施工方面 1.2.1 模板工程 柱模板问题: (1) 由于柱模的背楞间距大,柱箍少或柱箍对拉螺栓松紧不一,出现胀模,断面尺寸鼓出等现象。(2) 由于柱模拼装接缝较大,柱下口不平、容易造成漏浆、烂根,柱身扭曲变形等缺陷。(3) 柱子支模前未弹出截面尺寸线,成排柱支模不跟线,钢筋偏移未校正就合模。(4) 模板有混凝土残渣未认真清理,漏刷拆模剂或拆模过早,致使柱混凝土表面产生粘膜、掉角等缺陷。 梁模板问题:(1) 梁的支撑间距大,刚度不足;支撑直接设在素土地面上造成下沉变形,未设水平拉杆和斜撑,稳定性差。(2) 梁底模铺设时未拉通线找直,接缝不严,没有按规定起拱或起拱太大;底模板材料厚度小,横楞间距大,断面偏小。(3) 梁侧模的刚度不足,横楞间距大,断面小,上下口固定不牢或松紧不一。(4) 梁侧模拼接不严,缝隙大,组合钢模板拼装时u形卡漏安或方向一顺。板模板问题: (1) 板模板的搁栅用料偏小或搁栅间距偏大,下部支撑未加拉杆和斜撑;支撑稳定性差,上标高没有找正,支撑地面下沉。(2) 板底搁栅未拉通线找平或模板厚薄不一,模板铺设完后没有用水准仪找平调整标高。(3) 模板铺设时板面高低不平,板

影响混凝土和易性的主要因素有哪些

影响混凝土和易性的主要因素 作者:李春芳 摘要:和易性是指混凝土易于搅拌、运输、浇筑、捣实等施工作业,并能获得质量均匀和密实的混凝土性能。和易性为一综合技术性能,它包括流动性、黏聚性、保水性三方面的含义,和易性有时也称工作性。 Abstract:workability refers to the concrete mixing easily, transportation, casting, ramming construction work, performance of concrete and to obtain uniform quality and dense. And as a comprehensive technical performance, including liquidity, cohesiveness, water retention of three aspects, and is also sometimes referred to the work of. 关键词:和易性、流动性、粘聚性、保水性 1)水泥浆的数量 混凝土拌合物水泥浆赋予混凝土拌合物一定的流动性。在水灰比不变的情况下,单位体积拌合物内,如果水泥浆愈多,则拌合物的流动性愈大。若水泥浆过多,将会出现流浆现象,使拌合物粘聚性变差,同时对混凝土耐久性也会产生一定影响,且水泥用量也大。水泥浆过少,不能填满骨料空隙或不能很好地包裹骨料表面时,就会产生崩坍现象,粘聚性变差。混凝土拌合物水泥浆的含量应以满足流动性要求为度,不宜过量。 2)水泥浆的稠度 水泥浆的稠度是由水灰比决定的。保持混凝土拌合物的水灰比不变增加用水量,这种情况下拌合物中的水泥浆增多,当水泥浆增加量在一定范围内时,骨料周围水泥浆润滑作用增强,减少了骨料间的摩擦力,使拌合物流动性增大,可以改善混凝土的和易性。但是,当水泥浆增加量过多时,骨料用量必然相对减少,这时混凝土拌合物就会出现流浆及泌水现象,致使黏聚性和保水性变差,反而使混凝土的和易性变坏。 保持混凝土的水泥用量不变增加用水量,当用水量增加不太多时,混凝土拌合物的黏聚性和保水性不受影响,流动性增大,这时混凝土的和易性得到改善。但当加水量过多时,拌合物的水灰比过大,水泥浆过稀,这时混凝土的流动性虽然增大,但将会产生严重的分层离析和泌水现象,致使混凝土的和易性变差,并严重影响混凝土的

聚羧酸减水剂对混凝土中砂子含泥量影响

聚羧酸减水剂对混凝土中砂子含泥量影响 聚羧酸减水剂对混凝土中砂子含泥量影响 加气块设备细骨料是混凝土的严重组分,约占混凝土体积总量的30%~40%,其性子的好坏将直接影响到新拌混凝土和硬化后混凝土的性能,如和易性、强度、耐久性等。随着聚羧酸减水剂的广泛使用,细骨料与其适应性好坏异样影响到新拌混凝土和硬化后混凝土的性能,成为业内人士关注的焦点之一。已有文献先容,聚羧酸减水剂对混凝土中砂子含泥量相称敏感,既能影响混凝土的坍落度及坍落度损失,在砂子含泥量胜过3%时还会对强度产生不利影响。事实上,除了砂子含泥量之外,砂子的其他性子也将对聚羧酸减水剂的适应性产生影响,进而影响混凝土的各项目标。 实验实例 选用两组胶凝材料及两种砂子进行尝试,其中1号砂是由于不合格而被施工方否定掉的砂子,2号砂是施工最终选用的砂子。本实验中为了对比细骨料对混凝土所产生的影响,特选用这两种砂子做了一个对比分 析。 尝试中发觉,采用2号砂子拌制的混凝土没有出现分层、离析,也没有出现泌水现场,黏聚性和保水性较好;而采用1号砂子拌制的混凝土出现了泌水地步,和易性欠佳。 使用同一种砂子,选取不同组胶凝材料时,混凝土的和易性基本一致,说明该工程现场使用的胶凝材料对混凝土和易性无不良影响。而在胶凝材料相同,砂子不同时,均需增加50%的减水剂,且W-1尚需多加2kg水才能勉强抵达施工要求。此外,由表2还可以看出,1号砂子比2号砂子拌制的混凝土含气量高, 含气量偏高将会影响混凝土的前期强度。 原因分析 影响混凝土和易性的因素很多,如单位用水量、水泥种类、水泥与外加剂的适应性、骨料性子、水泥浆的数量、水泥浆的稠度、砂率,以及环境条件(如温度、湿度等)、搅拌工艺、放置时光等。我们根据以往的经验认为,在合作比一定的混凝土计划中,对混凝土和易性影响最大的是胶凝材料和外加剂,尤其是近年来外加剂的广泛使用所惹起的胶凝材料水泥适应性题目层出不穷。但事实证明,细骨料的性子,以及细骨料与外加剂的适应性对混凝土的和易性也有很大的影响,有时能直接决定拌制的混凝土和易性的好坏。 细骨料的性子 1号砂偏细,细度模数惟有2.2,而且级配不良,出现中间级配脱节的地步。一般来说,看着加气混凝土砌块尺寸。细骨料越细,比表面积越大,须要越多的水泥浆来润湿,使得混凝土拌合物的流动性降低。砂的级配不良,以至空隙率和比表面积过大,须要消耗更多的水泥浆才能使混凝土得到一定的流动性,对混凝土的密实性、强度、耐久性等性能也会有一定影响。 GBl4684-2001标准中规定了砂子的含泥量、泥块含量,以及轻物质含量等,如表2所示,1号砂子含泥量 较高,含有一定量的泥块,轻物质含量也偏高。 砂子中的泥会吸附一定量的外加剂,同等条件下相当于减少了外加剂的掺量,使混凝土达不到预期成绩。此外,泥的颗粒极细,会黏附在砂粒表面,影响砂粒与水泥浆体的黏结,导致新拌混凝土和易性不佳。而当泥以团块生计时,会在混凝土中形成薄弱局部,对混凝土的质量危害更大,且混凝土强度越高影响越明 显。 砂子中氯离子含量较高,有可能是将海砂混入河砂中使用。海砂的吸附能力大于河砂,使得新拌混凝土和 易性变差。 轻物质多为轻质多孔结构,会吸附外加剂,还会使砂子的蓄水量增大,它的生计降低了混凝土中外加剂的有效掺量,若黏结在骨料表面,还会捣鬼水泥浆包裹骨料的黏结力,起隔层的反作用。聚羧酸减水剂 砂率的确定 实验选取42%的砂率,针对该合作比而言是合适的,但由于1号砂子细度偏细,相当于增加了骨料的总表面积和空隙率,在水泥浆用量一定的条件下,绝对而言水泥浆的用质变小了,减少了颗粒表面具有的光滑

相关文档