文档库 最新最全的文档下载
当前位置:文档库 › 直流输电总结

直流输电总结

直流输电总结
直流输电总结

多端电压源型直流输电系统的控制策略_阮思烨

多端电压源型直流输电系统的控制策略 阮思烨1,李国杰2,孙元章2 (1.国网运行有限公司,北京市100005;2.清华大学电机系电力系统国家重点实验室,北京市100084) 摘要:以提高多端电压源型直流输电系统的运行可靠性为目的,提出了基于直流电压—有功功率调节特性的多端直流输电系统控制策略。在系统负荷发生突变或任一换流站故障退出后,所有具备功率调节能力的换流站根据给定的调制方式在一定程度上分担系统功率的缺额,这样既维持了系统内的功率平衡,又避免了单个换流站承担功率过大的情况。最后通过数字仿真验证了所提出的控制策略设计的正确性和可行性。 关键词:多端电压源型直流输电系统;直流电压—有功功率调节特性;电压源换流器;控制策略中图分类号:TM761;TM721.1 收稿日期:2008212213;修回日期:2009202224。国家自然科学基金资助项目(50823001)。 0 引言 到目前为止建成的电压源换流器(VSC )型直流输电系统[122]都是两端直流系统,即只有一个整流站和一个逆变站。与基于电流源换流器的传统直流输电[3]不同,电压源型直流输电可以给无源系统直接供电,潮流反转时电流方向反转,电压极性不变[426]。因此,它适合于构成具备较高可靠性的并联多端直流系统,便于对潮流的控制。其应用场合包括[4]:从能源基地输送电力到远方的几个负荷中心、为大城市和工业中心供电、连接分布式发电系统等。 与双端直流系统相比,多端直流输电系统的各个换流站之间功率可以相互协调,因此,运行更加灵活、可靠,但是控制也相对复杂。近年来,国内外许多学者针对多端VSC 直流系统已经展开了广泛的研究。文献[7]提出了基于单端直流电压调节的多端直流控制策略,它指定一个换流站作为主导换流站,该换流站起到系统内功率平衡和直流电压稳定的作用。其不足之处在于没有考虑换流站故障尤其是主导换流站故障退出时的情况。文献[8]设计了换流站紧急退出情况下的控制策略,但该设计仅仅是为了防止换流站直流侧过电压,没有进行各换流站间的功率协调设计。文献[9]给出了基于功率模式与直流电压模式之间自动转换的控制方式,其原理如下:正常情况下指定一个换流站作为主导站,作为功率平衡节点;一旦主导站退出工作,将由另一个换流站充当主导站的作用,其余的换流站仍然保持定有功功率输出。该控制方式在一定程度上弥补了 文献[728]在设计上的不足,其缺点是要求充当主导站的换流站有足够大的后备容量以完全补偿系统功率的不平衡,这在实际中很难实行。 为解决上述控制策略的不足,本文提出了基于直流电压—有功功率调节特性的多端直流系统控制策略。采取该控制策略,扰动发生后各电压源换流站均能够稳定运行,同时避免了单个换流站过载的情况。利用电磁暂态仿真软件PSCAD/EM TDC [10]建立多端VSC 直流输电系统和控制模型,验证了所设计的控制器的有效性和合理性。 1 多端VSC 直流系统的建模 本文以图1所示的环状多端电压源型直流系统为例 。 图1 多端电压源型直流系统Fig.1 A multi 2infeed V SC 2HV DC system 该系统包括5个电压源换流站:VSC1作为主 导站,工作在直流电压模式下,交流侧与无穷大电源 — 7 5—第33卷 第12期2009年6月25 日Vol.33 No.12J une 25,2009

我国特高压直流输电技术的现状及发展

我国特高压直流输电技术的现状及发展 (华北电力大学,北京市) 【摘要】直流输电是目前世界上电力大国解决高电压、大容量、远距离送电和电网互联的一个重要手段。本文主要介绍了特高压直流输电技术的特点,特高压直流输电技术所要解决的问题,特高压直流输电技术的在我国发展的必要性以及发展前景。 【关键词】特高压直流输电,特点,问题,必要性,发展前景 0.引言 特高压电网是指由特高压骨干网架、超高压、高压输电网、配电网及高压直流输电系统共同构成的分层、分区,结构清晰的大电网。其中,国家电网特高压骨干网架是指由1000kV级交流输电网和±600kV级以上直流输电系统构成的电网。 特高压直流输电技术起源于20 世纪60 年代,瑞典Chalmers 大学1966 年开始研究±750kV 导线。1966 年后前苏联、巴西等国家也先后开展了特高压直流输电研究工作,20 世纪80 年代曾一度形成了特高压输电技术的研究热潮。国际电气与电子工程师协会(IEEE)和国际大电网会议(Cigre)均在80 年代末得出结论:根据已有技术和运行经验,±800kV 是合适的直流输电电压等级,2002 年Cigre又重申了这一观点。随着国民经济的增长,中国用电需求不断增加,中国的自然条件以及能源和负荷中心的分布特点使得超远距离、超大容量的电力传输成为必然,为减少输电线路的损耗和节约宝贵的土地资源,需要一种经济高效的输电方式。特高压直流输电技术恰好迎合了这一要求。 1.特高压直流输电的技术特点 1.1特高压直流输电系统 特高压直流输电的系统组成形式与超高压直流输电相同,但单桥个数、输送容量、电气一次设备的容量及绝缘水平等相差很大。换流站主接线的典型方式为每极2组12脉动换流单元串联,也可用每极2组12脉动换流单元并联。特高压直流输电采用对称双极结构,即每12脉动换流器的额定电压均为400kV,这样的接线方式使运行灵活性可靠性大为提高。特高压直流输电的运行方式有:双极运行方式、双极混合电压运行方式、单击运行方式和单极半压运行方式等。换流阀采用二重阀,空气绝缘,水冷却;控制角为整流器触发角15°;逆变器熄弧角17°。换流变压器形式为单相双绕组,油浸式;短路阻抗16%-18%;有载调压开关共29档,每档1.25%。换流站平面布置为高、低压阀厅及其换流变压器采用面对面布置方式,高压阀厅布置在两侧,低压阀厅布置在中间。 1.2 特高压直流输电技术的主要特点 (1)特高压直流输电系统中间不落点,可点对点、大功率、远距离直接将电力送往负荷中心。在送受关系明确的情况下,采用特高压直流输电,实现交直流并联输电或非同步联网,电网结构比较松散、清晰。 (2)特高压直流输电可以减少或避免大量过网潮流,按照送受两端运行方式变化而改变潮流。特高压直流输电系统的潮流方向和大小均能方便地进行控制。 (3)特高压直流输电的电压高、输送容量大、线路走廊窄,适合大功率、远距离输电。 (4)在交直流并联输电的情况下,利用直流有功功率调制,可以有效抑制与其并列的交流线路的功率振荡,包括区域性低频振荡,明显提高交流的暂态、动态稳定性能。 (5)大功率直流输电,当发生直流系统闭锁时,两端交流系统将承受大的功率冲击。 1.3 与超高压直流输电比较 和±600千伏级及600千伏以下超高压

多端柔性直流输电技术

1、简介 从上个世纪 五十年代至今, 高压直流输电技 术(High V oltage Direct Current,HVDC) 经历了跨越式发 展,己经广泛应 用于风电场并网、大容量远距离输电、非同步大电网互联、孤岛和弱电网供电等领域HVDC技术从早期的汞弧阀换流技术发展到高压大功率晶闹管换流器技术,极大地促进了直流输电技术的发展。与高压输电技术相反的是换流技术几乎仍在原地踏步,线换相换流器(Line Commuted Converter, LCC)直流输电占据主流。由于晶闸管关断不可控,传统直流输电技术具有明显缺陷。 随着电力电子变流技术的迅猛发展,出现了以脉宽调制(Plus Width Modulation, PWM)技术为基础的变流器。并且PWM变流器技术也日漆完善。目前主要应用的主电路类型有电流型变流器(Current Source Converter, CSC)和电压源型变流器(V oltageSource Converter, VSC)。并且,全控器件电压和容量的等级的不断提升,控制技术的日趋完善,带动VSC开始应用于大容量高压输配电领域,如,灵活交流输电系统(Flexible ACTransmission System, FACTS)、基于电压源变流器的高压直流输电(VSC basedHVDC,VSC-HVDC)、定制电力系统(Custom Power,CP)等典型代表。VSC设备配合不同的控制策略可以控制系统潮流、调节网络运行参数,进而优化电力统运行状态,提高系统稳定性和运行可靠性。VSC-HVDC技术是以电压源变流器,可控关断的IGBT和脉宽调制(PWM)为基础的新型输电技术。VSC-HVDC不仅可以独立快速控制有功无功,还易于翻转潮流,实现了无源网络供电。同时,随着能源紧缺和环境污染的日益严重,我国开始大力幵发和利用风能、太阳能等可再生清洁能源,优化能源结构。但是其固有的分散性、小型化、远离负荷中心等特点直接制约了风电利用规模的不断扩大以及传统交流输电技术和CSC-HVDC 输电技术联网的经济性。此外,城市配电网的快速扩容一方面要求利用有限的线路走廊输送更多的电能,另一方面要求大量配电网转入地下。VSC-HVDC输电技术可以很好地解决上述问题,并且已经有实际运行的商业工程应用在分布式发电系统接入大电网、孤岛供电、城市直流配网改造、异步大电网互联等领域。然而,VSC-HVDC也尤其不容忽视的缺陷,一旦其两端输电系统中有一端VSC发生故障退出运行,系统将被迫处于瘫痪状态。 2.1 VSC-HVDC的结构 VSC-HVDC的结构如图1-1所示,两端是两个VSC换流站,中间连接换流变压器、换流电抗器、交流滤波器、直流电容器、直流输电线路等组成的两条线路。VSC既可以通过直流线路在互联系统间传输潮流又能够像STATCOM —样进行动态无功交换。 VSC换流器包括换流电路和直流电容器,由一个或多个换流桥并联(串联)组成的换流电路来实现交直流转换。目前多个换流桥组成的组合式换流器并未在实际工程中应用。VSC是换流站的核心元件,通过VSC桥臂的开通和关断切换控制系统潮流,其拓扑结构实际工程中主要采用三相两电平、二极管钳位三电平结构。系统开关频率限制了全控器件的选择,目前VSC-HVDC系统采用压装式IGBT连同驱动电路、散热片及其他辅助电路共同构成。 直流电容器为VSC变流器提供直流电压支撑、缓冲桥臂关断时的冲击电流、减小直流侧谐波。直流电容器的容量决定了VSC-HVDC直流侧的动态特性。 换流变压器和换流电抗器是换流站和交流系统之间能量交换的纽带。换流变压器一般设计为消除零序分量的接法,此时两端中必有一侧为接地系统,如Yn/Y或者Yn/△等,并带有分接头控制,可以隔离两端零序分量的相互影响。 交流滤波器的作用是滤除VSC交流侧谐波。由于VSC-HVDC采用PWM调制技术,故VSC输出的电压和电流中包含开关频率及其整数倍附近次谐波,其谐波含量与调制方式、调制比、开关频率以及所采用的拓扑结构有关。交流滤波器与换流电抗、换流变压器以及系统阻抗相互作用,对高次谐波形成一个低阻通道,从而达到滤除谐波的目的。

国内外高压直流输电的发展与现状

国内外高压直流输电的发展与现状 1.1 我国高压直流输电系统的进展历程 我国的高压直流输电工程总体上能够讲是起步较晚, 但进展迅速。198 0 年国家确定全部依靠自己力量建设中国第一项直流输电工程———舟山直流输电工程。它具有向自主建设大型直流输电工程过渡的工业性试验性质,于1984 年开始施工, 1987 年投入试运行, 1989 年正式投运。工程最终规模为±1 100 kV, 500 A, 100 MW, 线路全长54 km。嗓泅直流输电工程( 上海―嗓泅岛) 是我国自行设 计、制造、建设的双极海底电缆直流工程, 于1996 年完成研究工作, 2002 年全部建成。工程为双极±500 kV,600 A, 60 MW, 可双向供电, 线路长度66.2 km, 其中海底电缆59.7 km。葛南( 葛洲坝―上海南桥) 高压直流输电系统, 是我国引进的第一个高压直流输电工程, 1989 年单极投运, 1990 年双极投运。进入21 世纪, 我国的高压直流输电进展迅速, 相继建成投产了天广( 天生桥―广州) 、三常( 三峡―常州) 、三广( 三峡―广东)和贵广( 贵州―广东) 等多项高压直流输电项目。作为引进技术的验证, 自主研发设计制造的华中―西北联网灵宝背背直流工程, 2005 年7 月投入运行。 1.2 我国高压直流输电系统的现状 至2004 年末, 我国高压直流输电工程累计输送容量达12 470 MW, 输电线路长度累计达4 840 km, 差不多超过美国位列世界第一。截至2007年年底, 我国已建成并正式投入运行葛( 洲坝) 沪( 上海) 、三( 峡) 常( 州) 、三( 峡) 广( 东) 、三( 峡) 沪( 上海) 、天( 天生桥) 广( 东) 、贵( 州) 广( 东) Ⅰ回、Ⅱ回等7 个超高压直流输电工程和灵宝背靠背直流工程,直流输电线路总长度达 7 085 km, 输送容量达18 560 MW, 线路总长度和输送容量均居世界第一。与此同时, 我国超高压直流输电工程的设计建设、运行治理和设备制造水平也处于国际领先地位。 2 高压直流输电系统中存在的咨询题 2.1 直流输电中的谐波咨询题

2020年经典的输电技术总结

2020年经典的输电技术总结 中国高等学校电力系统及其自动化专业学术会议于1985年10月召开了首次会议,明确了会议的宗旨是为各校师生提供一个学术讲坛,促进学术交流,促进我国电力科学技术.下面是小 输电技术总结1 2019年10月12日,由中国高等学校电力系统及其自动化专业学术年会组织委员会主办,西华大学电气与电子信息学院承办,亚洲电能质量产业联盟、内蒙古工业大学协办的中国高等学校电力系统及其自动化专业第35届学术年会在四川成都隆重开幕。《电力自动化设备》杂志社是本次会议支持单位之一。 中国高等学校电力系统及其自动化专业学术会议于1985年10月召开了首次会议,明确了会议的宗旨是为各校师生提供一个学术讲坛,促进学术交流,促进我国电力科学技术、电力工业 的原则。经过30多年的发展,该年会已成为全国高校电力系统及其自动化专业师生一年一度不可缺少的学术盛会,为培养我国

的贡献。 会上,华北电力大学赵成勇教授进行了《直流输电技术面临 输电技术总结2 特高压输电技术是中国实现能源大范围优化配置的战略途径,该技术是世界上最先进的输电技术之一。目前,在世界范围内只有我国全面掌握了这项技术,并开始了大规模的工程应用。我国从2004年底开始集中开展大规模研究论证、技术攻关以及工程实践,进行了特高压交流输电、特高压直流输电技术的研究,掌握了过电压抑制、外绝缘配置、电磁环境控制等关键技术,研制出变压器、开关、串补装置,和换流变、换流阀、平波电抗器、直流控制保护等核心设备,建立了包括研究、设计、制造在内完整的特高压输电技术体系,整个体系具有完全的自主性。 中国由于能源资源与电力需求存在远距离、逆向分布特点,以及经济快速发展带来的电力需求,需要开发和应用远距离、大容量、高效率的特高压输电技术。实践证明特高压输电在大范围内配置能源资源具有技术和经济优势。以特高压800千伏直流输电项目为例,相比较500千伏直流工程,它的输送容量提高到 2-3倍,经济输送距离提高到2-2.5倍,运行可靠性提高了8倍,

高压直流输电情况总结

高压直流输电总结 一、高压直流输电概述: 1.高压直流输电概念: 高压直流输电是交流-直流-交流形式的电力电子换流电路,由将交流电变换为直流电的整流器、高压直流输电线路及将直流电变换为交流电的逆变器三部分组成。 注意:高压输电好处是在输送相同的视在功率S的前提下,高压输电能够降低输电线路流过的电流,减少线路损耗,提高输送效率(,)。 2.高压直流输电的特点: (1)换流器控制复杂,造价高; (2)直流输电线路造价低,输电距离越远越经济; (3)没有交流输电系统的功角稳定问题; (4)适合海底电缆(海岛供电、海上风电)和城市地下电缆输电; (5)能够非同步(同频不同相位,或不同频)连接两个交流电网,且不增加短路容量; (6)传输功率的可控性强,可有效支援交流系统; (7)换流器大量消耗无功,且产生谐波; (8)双极不对称大地回线运行时存在直流偏磁问题和电化学腐蚀问题; (9)不能向无源系统供电,构成多端直流系统困难。 3.对直流输电的基本要求: (1)能够灵活控制输送的(直流)电功率(大小可调;一般情况下,应能够正反双向传送电功率(功率方向可变);

(2)维持直流线路电压在额定值附近; (3)尽可能降低对交流系统的谐波污染; (4)尽可能少地吸收交流系统中的无功功率; (5)尽可能降低流入大地的电流。 注意:大地电流的不利影响包括①不同接地点之间存在电位差,形成电解池,造成电化学腐蚀;②变压器接地中性点流过直流电流,造成变压器直流偏磁,使变压器噪声增加、损耗加大、振动加剧。 4.高压直流输电的适用范围: 答:1.远距离大功率输电;2.海底电缆送电;3.不同频率或同频率非周期运行的交流系统之间的联络;4.用地下电缆向大城市供电;5.交流系统互联或配电网增容时,作为限制短路电流的措施之一;6.配合新能源供电。 二、高压直流输电系统的基本构成: 1.双端直流输电的基本构成: (1)单极大地回线(相对于大地只有一个正极或者负极): 图2- 1 (2)单极金属回线: 图2- 2 (3)双极大地回线(最常用): 图2- 3 (4)双极单端接地(很少用): 图2- 4 (5)双极金属回线(较少用): 图2- 5 (6)并联式背靠背: 图2- 6 (7)串联式背靠背:

三大特高压直流输电线路背景资料

三大特高压直流输电线路背景资料 一、特高压直流线路基本情况 ±800kV复奉直流线路四川段起于复龙换流站,止于377#塔位,投运时间2009年12月,长度187.275km,铁塔378基,途径四川省宜宾市宜宾县、高县、长宁县、翠屏区、江安县、泸州市纳溪区、江阳区、合江县共8个区县,在合江县出境进入重庆境内。线路全部处于公司供区,途径地市公司供电所35个。接地极线路79公里,铁塔189基。±800kV 复奉线输送容量6400MW。 ±800kV锦苏直流线路四川段起于锦屏换流站,止于987#塔位,投运时间2012年12月,长度484.034km,铁塔988基,自复龙换流站起与复奉线同一通道走线,途径四川省凉山州西昌市、普格县、昭觉县、美姑县、雷波县、云南省昭通市绥江县、水富县、宜宾市屏山县、宜宾县、高县、长宁县、翠屏区、江安县、泸州市纳溪区、江阳区、合江县共16个区县,在合江县出境进入重庆境内。线路处于公司供区长度268.297公里、铁塔563基,途径地市公司供电所44个;另有0036#-0344#、0474#-0493#区段(长度153.268公里、铁塔320基)处于地方电力供区,0494#-0598#区段(长度62.469公里、铁塔105基)处于南方电网供区。接地极线路74公里,铁塔207基。±800kV锦苏线输送容量7200MW。

±800kV宾金直流线路工程四川段起于宜宾换流站,止于365#塔位,试运行时间2014年03月,长度182.703km,铁塔366基,途径四川省宜宾市宜宾县、珙县、兴文县、泸州市叙永县、古蔺县共5个区县,在古蔺县出境进入贵州境内。线路全部处于公司供区,途径地市公司供电所22个。接地极线路101公里,铁塔292基。±800kV宾金线输送容量8000MW。 线路名称线路长度 (km) 杆塔数量投运时间 途径区县数 量 途径属地公 司供电所 ±800kV 复奉直流 187.275 378 2009.12 8 35 复龙换流站 接地极线路 79.106 189 ±800kV 锦苏直流 484.034 988 2012.12 16 44 锦屏换流站 接地极线路 74.147 207 ±800kV 宾金直流 182.703 366 2014.03(试 运行)5 22 宜宾换流站 接地极线路 101.174 292

多端柔性直流输电(VSC—HVD)系统直流电压下垂控制

多端柔性直流输电(VSC—HVD)系统直流 电压下垂控制 学院: 姓名: 学号: 组员: 指导老师: 日期:

摘要: 多端柔性直流输电系统(voltage sourcedconverter based multi-terminal high voltage direct current transmission,VSC-MTDC)与传统的电网换相换流器构成的多端直流输电系统相比,具有控制灵活、能够与短路容量较小的弱交流系统甚至无源交流系统相连、扩建容易等诸多优点直流电压的稳定直接影响到直流潮流的稳定,因此直流电压控制是多端柔性直流输电系统稳定运行的重要因素之一。下垂控制策略具有无需通讯、可靠性较高等优点,但存在直流电压质量较差、功率分配不独立、参数设计困难等问题。本文首先介绍了多端柔性直流输电系统控制方法的分类比较,然后重点介绍了下垂控制数学模型,分析MTDC 系统中下垂控制参数对直流电压与电流(功率)的影响机理,研究满足MTDC 系统功率平衡和直流电压稳定的V-I(V-P)下垂特性曲线。 关键词:VSC-MTDC 下垂控制模块化多电平换流器

一、引言 基于电压源换流器(Voltage Source Converter,VSC)的高压直流输电(High Voltage Direct Current,HVDC)技术(HVDC based on VSC,VSC-HVDC,也称柔性直流输电技术)系统以其灵活性、经济性和可靠性,在新能源并网、城市直流配电网、孤岛供电等领域有着广泛的应用前景。MTDC 系统接线方式分为串联、并联和混联等,目前主要采用并联式[1]。并联接线的MTDC 系统中所有VSC 工作于相同直流母线电压下,因此直流电压控制是系统稳定运行的关键,类似于交流系统中的频率控制。 多端柔性直流输电系统级直流电压控制策略可以分为三大类,分别是单点直流电压控制策略、多点直流电压控制策略以及直流电压斜率控制策略。单点直流电压控制策略将一个换流站作为直流电压控制站,其余换流站负责控制其他的变量,例如交流功率、交流频率、交流电压等,系统中仅有一个换流站对直流电压进行控制,如果这个换流站失去了直流电压的控制能力,整个柔性直流输电系统的潮流将失稳,因此单点直流电压控制策略的适用性较差。多点直流电压控制策略是使直流输电系统中的多个换流站具备直流电压控制能力。按照是否需要换流站间通信设备进行分类,多点直流电压控制策略又可分为主从控制策略和直流电压偏差控制策略。主从控制策略是一种需要换流站间通信的控制策略,这种控制方式利用换流站间的通信系统实现了直流电压的稳定,具有控制特性好、直流电压质量高等优点,但系统可靠性依赖于换流器控制器与系统控制器之间的高速通讯,这严重制约了多端直流输电尤其是长距离输电系统可靠性的提高。直流电压偏差控制策略是一种无需站问通信的控制策略,这种控制策略的实质是在定直流电压站故障退出运行后,后备定直流电压站能够检测到直流电压的较大偏移并转入定直流电压运行模式,保证了直流电压的稳定性;同时其设计简单、可靠性强。 下垂控制策略为多点控制,控制器通过测量本地直流母线电压对功率分配进行调节,因而不依赖于换流站间的高速通讯,系统可靠性较高。 二、多端柔性直流输电系统的直流电压控制策略 2.1柔性直流输电系统概述 总体上来看,目前的多端直流输电系统接线方式主要有串联型、并联型和混联型 3 种类型。由于并联型多端系统具有调节范围宽、扩建灵活、易于控制和可靠性高等突出优点,成为研究的热点和应用的重点。本文设计的直流电压混合控制策略主要是针对并联型多端系统。多端柔性直流输电系统控制是一个庞大复杂且相互耦合的多输入、多输出系统,为满足系统控制的快速性和高可靠性,一

特高压直流输电的现状与展望

特高压直流输电的现状与展望 摘要:特高压直流输电大多用于长距离输电,例如海底电缆、大型发电站输电等,在我国,其是指通过1000kV级交流电网和±600kV级以上直流电网要求构成 的电网系统。放眼现在,直流输电在电力传输中的地位与日俱增,尤其在结合计 算机等技术后,特高压直流输电系统的整体调控更加可靠。本文将通过分析我国 特高压直流输电的现状,以及探究今后发展的展望,讨论特高压直流输电如何在 个别恶劣环境中进行应用的问题。 关键词:特高压;直流输电;现状;展望 1 特高压直流输电的现状 1.1 发展速度快 从上世纪六十年代开始,由于部分发达国家需要向部分地区进行远距离、大 容量输电的需求,开始了对特高压直流输电的研究。从开始阶段的不到一千公里,五十万千伏直流输电电压,输电功率六百万千瓦,到如今的上千公里,八十万千 伏直流输电电压,其中的发展速度无疑是飞快的。除此之外,由于现代科技更为 发达,再加上可以通过计算机进行实时地检测,特高压直流输电系统在调节方面 的优化,可谓是跨越了一大步。此外,相较于以往的电线,光纤的使用也使得特 高压直流输电在传输过程中的安全性得以提高,大大提高了其输电效率。并且, 特高压直流输电的应用范围也大大扩增,不再局限于几个发达国家。 1.2 效率更高 在远距离大容量输电方面,相较于交流输电,或者是超高压输电方式,特高 压直流输电通常会是更好的选择,其在经济投资、能源损耗以及工程规模方面都 要优于交流输电和超高压输电。例如,在特高压和超高压两种方式之间,面对相 同的输电工程,姑且定为10GW的输送功率,2千米的输送距离,超高压输电需 要240亿元的投资,在输电过程中有将近1.15GW的损耗,其工程规模为135米,而特高压输电只需要200亿元的投资,在输电过程中只有1GW的损耗,工程规 模也只有120米;而相等电压等级情况下的交流输电方式,需要315亿元的投资,在输电过程中更是有1.7GW的线损,工程规模也远远大于前面两种方案。所以, 在远距离大容量电力输送过程中,特高压直流输电的输电效率更好。 1.3 我国特高压直流输电现状 我国从上世纪八十年代才开始尝试建设超高压直流输电工程,即葛洲坝直流 输电工程,虽然开始较晚,但发展十分迅速。经过这些年的技术积累,我国现已 具备建设特高压直流输电工程的技术,并于2010年,完全通过我国自主研发, 成功建造了在当时而言,技术领先全球、输电能力最大的±800kV的向家坝特高压 直流输电工程。在今后3~5年中,我国还将在其他地区建设特高压直流输电工程,预计将会达到二十个左右。 2 特高压直流输电的特点 2.1 技术性能更加稳定 直流输电技术基本不存在系统稳定的问题,可以实现电网的非同期互联。简 单来说,就是指直流输电在连接连两个交流系统时,可以在非同步时期运行,在 效果方面,通过交变直,直变交,将两个直流系统隔离,使得两边能够独立运行。除此之外,在运行期间,如果线路发生短路,直流输电能够及时地进行调节,恢 复时间也很短,例如直流输电单极故障的恢复时间一般不超过0.4秒,除此之外,还可以抑制振荡阻尼和次同步振荡的影响。

(发展战略)国内外高压直流输电的发展与状态

1 我国高压直流输电系统的发展历程及现状 1.1 我国高压直流输电系统的发展历程 我国的高压直流输电工程总体上可以说是起步较晚, 但发展迅速。1980 年国家确定全部依靠自己力量建设中国第一项直流输电工程———舟山直流输电工程。它具有向自主建设大型直流输电工程过渡的工业性试验性质,于1984 年开始施工, 1987 年投入试运行, 1989 年正式投运。工程最终规模为±1 100 kV, 500 A, 100 MW, 线路全长54 km。嗓泅直流输电工程( 上海―嗓泅岛) 是我国自行设计、制造、建设的双极海底电缆直流工程, 于1996 年完成研究工作, 2002 年全部建成。工程为双极±500 kV,600 A, 60 MW, 可双向供电, 线路长度66.2 km, 其中海底电缆59.7 km。葛南( 葛洲坝―上海南桥) 高压直流输电系统, 是我国引进的第一个高压直流输电工程, 1989 年单极投运, 1990 年双极投运。进入21 世纪, 我国的高压直流输电发展迅速, 相继建成投产了天广( 天生桥―广州) 、三常( 三峡―常州) 、三广( 三峡―广东) 和贵广( 贵州―广东) 等多项高压直流输电项目。作为引进技术的验证, 自主研发设计制造的华中―西北联网灵宝背背直流工程, 2005 年7 月投入运行。 1.2 我国高压直流输电系统的现状 至2004 年末, 我国高压直流输电工程累计输送容量达12 470 MW, 输电线路长度累计达4 840 km, 已经超过美国位列世界第一。截至2007 年年底, 我国已建成并正式投入运行葛( 洲坝) 沪( 上海) 、三( 峡) 常( 州) 、三( 峡) 广( 东) 、三( 峡) 沪( 上海) 、天( 天生桥) 广( 东) 、贵( 州) 广( 东) Ⅰ回、Ⅱ回等7 个超高压直流输电工程和灵宝背靠背直流工程, 直流输电线路总长度达 7 085 km, 输送容量达18 560 MW, 线路总长度和输送容量均居世界第一。与此

我国直流输电现状

电的使用和发展可以分为三个阶段 1、直流输电阶段:发电、输电和用电均为直流电 主张采用直流输电:爱迪生、开尔文 主张采用交流输电:威斯汀豪斯、费朗蒂 1882年在德国建成的57km向慕尼黑国际展览会送电的是直流输电线路(2kV,1.5kW)。 2、交流输电阶段:发电、输电和用电均为交流电 原因:远距离送电→减少输电线路中电能的损失→改变电压→交流输电1888年,由费朗蒂设计的伦敦泰晤士河畔的大型交流电站开始输电。随着三相交流发电机,感应电动机和变压器的迅速发展,发电和用电领域很快被交流电所取代。同时变压器又可方便地改变交流电压,从而使交流输电和交流电网得到迅速的发展,并很快占据了统治地位。 3、交直流输电并存阶段:发电和用电为交流电输电为直流 并不是简单地恢复到爱迪生时代的那种直流输电。发电站发出的电和用户用的电仍然是交流电,只是在远距离输电中,采用换流设备,把交流高压变成直流高压。目的:为了解决交流输电存在的问题,寻求更合理的输电方式。 我国直流输电现状 ①早在50年代初,派人去学习苏联的高压汞弧阀设计制造。1978年上海投运一条31kV、150A、送电电缆长9km的直流输电试验线,累计运行2 300h。②舟山直流输电工程,1989年9月1日通过了国家鉴定,并正式投入运行。③1984年10月国家批准建设葛洲坝至上海直流输电工程,于1989年投入运行。④天广500kV直流输电工程,2000年12月底单极投产,2001年6月26日双极投产。 ⑤三峡至常州±500kV直流输电工程西起宜昌龙泉,东至常州政平,全长890km,2002年单极投运,2003年双极投运。线路采用ASCR-720/50四分裂导线,是我国采用截面最大的导线。随线架设OPGW复合地线光缆一条。⑥“十五”期间安排了7项直流输电工程。除三峡至常州外,荆州至惠州博罗响水镇、安顺至肇庆±500kV直流输电工程将于2005年投运;稍后开工的还有三峡至上海练塘±500kV工程;作为大区互联的直流背靠背工程,将有陕西至河南灵宝、邯郸至新乡、东北至华北项目。 ⑦国家电力公司部署了“西电东送、南北互联、全国联网”的方针。全国互联电网的基本格局是:以三峡输电系统为主体,向东西南北方向辐射,形成以北、中、南送电通道为主体,南北电网间多点互联,纵向通道联系较为紧密的全国互联电网格局。北、中、南三大片电网之间原则上采用直流背靠背或常规直流隔开,以控制交流同步电网的规模。随着西部开发号角的吹响,预计今后十几年内直流输电项目不少。

特高压直流输电技术现状及在我国的应用前景

特高压直流输电技术现状及在我国的应用前景 发表时间:2018-11-17T14:55:25.480Z 来源:《基层建设》2018年第28期作者:朱振伟李天轩 [导读] 摘要:通过总结特高压直流输电的特点和国外特高压直流输电的研究结论,在分析我国西部水电和煤炭资源集中分布以及东部沿海工业发达地区对电能需求日益增加等情况的基础上,指出在开发我国西部水电和“三西”(山西、陕西、内蒙古西部)煤电资源时采用特高压直流输电技术实现远距离大容量输电的应用前景。 国网江苏省电力有限公司宿迁供电分公司江苏宿迁 223800 摘要:通过总结特高压直流输电的特点和国外特高压直流输电的研究结论,在分析我国西部水电和煤炭资源集中分布以及东部沿海工业发达地区对电能需求日益增加等情况的基础上,指出在开发我国西部水电和“三西”(山西、陕西、内蒙古西部)煤电资源时采用特高压直流输电技术实现远距离大容量输电的应用前景。 关键词:特高压;直流输电;技术现状;应用前景 1 引言 特高压直流输电技术起源于20 世纪60年代,瑞典Chalmers大学1966年开始研究±750kV导线。1966年后前苏联、巴西等国家也先后开展了特高压直流输电研究工作,20世纪80年代曾一度形成了特高压输电技术的研究热潮。国际电气与电子工程师协会(IEEE)和国际大电网会议(Cigre)均在80 年代末得出结论:根据已有技术和运行经验,±800kV是合适的直流输电电压等级,2002 年 Cigre又重申了这一观点。随着国民经济的增长,中国用电需求不断增加,中国的自然条件以及能源和负荷中心的分布特点使得超远距离、超大容量的电力传输成为必然,为减少输电线路的损耗和节约宝贵的土地资源,需要一种经济高效的输电方式。特高压直流输电技术恰好迎合了这一要求。 2 特高压直流输电现状 20 世纪 80 年代前苏联曾动工建设长距离直流输电工程,输送距离为2400km,电压等级为±750kV,输电容量为 6GW。该工程将哈萨克斯坦的埃基巴斯图兹的煤炭资源转换成电力送往前苏联欧洲中部的塔姆包夫斯克,设计为双极大地回线方式,每极由两个 12 脉动桥并联组成,各由 3×320Mvar Y/Y 和 3×320Mvar Y/Δ单相双绕组换流变压器供电;但由于 80 年代末到90年代前苏联政局动荡,加上其晶闸管技术不够成熟,该工程最终没有投入运行。由巴西和巴拉圭两国共同开发的伊泰普工程采用了±600kV 直流和 765kV 交流的超高压输电技术,第一期工程已于 1984 年完成,1990 年竣工,运行正常。 3 特高压直流输电技术的特点及适用范围 特高压直流输电无需复杂的系统设计,基本可以采用±500kV 和±600kV 直流输电系统类似的设计方法,需要考虑的关键问题是外部绝缘和套管的设计等问题。特高压直流输电的输送容量大,输电距离长,输电能力主要受导线最高允许温度的限制。交流线路的无功补偿对远距离大容量输电系统至关重要;而直流输电线路本身不需要无功补偿,在换流站利用站内的交流滤波器和并联电容器即可向换流器提供所需的无功功率。一般来讲,对于远距离大容量输电直流方案优于交流方案,特高压方案优于超高压方案。表 1 为输送功率为 10GW 输送距离为 2000km 时交、直流以及不同电压等级直流的投资及线路走廊占用情况比较。 表1 10GW 电力输送 2000km 的交、直流输电方案 由表 1 可见,特高压直流输电适用于远距离大容量的电力输送。 4 我国能源和负荷的分布特点 水能资源和煤炭作为我国发电能源供应的两大支柱,今后的开发多集中在西南、西北和晋陕蒙地区,并逐渐向西部和北部地区转移,而东部沿海地区和中南地区的国民经济的持续快速发展导致能源产地与能源消费地区之间的距离越来越大,使得我国能源配置的距离、特点和方式都发生了巨大变化,并决定了能源和电力跨区域大规模流动的必然性。 (1)水电东送规模 三峡水电站(包括地下电站)的总装机容量为22.4GW,“十二五”初期将全部建成投产。综合分析一次能源平衡、输电距离及资源使用效率等因素,可知金沙江下游水电站主送华中、华东电网是合理的。 (2)煤电基地的电力外送规模 各煤电基地的电力外送规模有望得到较大发展。现已建成和规划采用 500kV 交流和±500kV 直流跨区送电的坑口电站的电力外送规模总计15GW。2020 年煤电外送将新增 84GW,主要送往华中东部四省、华东地区和华北京津冀鲁四省市以及广东地区。 (3)东部电力市场空间 华中东部四省。按低负荷水平预测,2020 年需电量将为 600TWh,负荷将为 110GW,装机容量缺额将为 138GW。扣除本地水电和必要的气电以外,2020 年之前尚有 47GW 的市场空间,其中2010~2020 年约为 32GW。华北的京津冀鲁。按低负荷水平预测,2020年需电量将为 840TWh,负荷将为 140GW,装机容量缺额将为 168GW。扣除本地核电、蓄能电站以外,2020 年之前尚有 90GW 的市场空间,其中2010~2020 年约为 45GW。初步测算,到 2020 年水电跨区送电规模总计约 70GW,煤电外送约 84GW,而东部受电地区的市场空间约为 127GW;而能源与负荷的距离大多数超过了 1000km,采用特高压直流输电技术比较合适。 5 特高压直流输电的初步发展规划 2020 年前后西部水电的大部分电力通过直流特高压通道向华中和华东地区输送,其中金沙江一期溪洛渡和向家坝水电站、二期乌东德和白鹤滩水电站向华东、华中地区送电,锦屏水电站向华东地区送电,宁夏和关中煤电基地向华东地区送电、呼伦贝尔盟的煤电基地向京津地区送电大约需要 9 条输电容量为 6GW 的±800kV 级特高压直流输电线路。根据 10 年发展规划,特高压直流输电工程的建设进度如

输变电工程工作总结.

青藏±400kV直流输电线路工程 工 作 总 结 单位: 光明监理 部门: 电网部

格尔木~拉萨±400kV直流输电线路工程 工作总结 “那是一条神奇的天路,把人间的温暖送到边疆,从此山不再高路不再漫长,各族儿女欢聚一堂”,广为传唱的歌曲《天路》是西藏现代化建设的生动注释。上世纪50年代通车的青藏公路和新世纪竣工的青藏铁路,相继成为西藏经济社会循环的两条大动脉。而今,一条深入藏区的“电力天路”青藏交直流输联网工程,正在加紧建设,预计最快能在2011年11月投入运营。 记得2010年10月份我们新员工匆匆踏上西去的列车,心里感到无比的欣慰和喜悦,因为这是我们的第一份工作,然而,刚参加工作的我们面对一切感到很困惑。因为我们这次的工作地点是青藏高原,早就听说那的气候很是可怕,大多天气不是狂风就是大雪,气候干燥严寒,冬天的青藏高原平均气温都在零下20度,尤为重要的是氧气含量不到平原的一般,平均海拔在4500米左右,施工地点处在荒凉的草原——可可西里。面多种种困惑和忧虑,我们毅然坚信,我们是最棒的,因为我们年轻,。随着火车的前进,我们穿越了高山,跨过了河流,时间慢慢的流逝,远离了家乡和亲人。同时,我们为此感到无比的喜悦和自豪,因为此项工程是国家重点工程,是建设西藏繁荣发展的重要一部分,我们为有幸成为西部大开发建设中的一部分

而感到自豪。因而心中所有的困惑都化为泡影,心中更是充满着挑战困难的决心和勇气,我们深深的明白,作为光明监理公司的一部分,建设青藏交直流联网工程,责任之重大。 初到格尔木对于我们这些刚从学校毕业的学生们,公司首先组织我们在格尔木大厦习服,同时也充分利用习服时间,一边习服、一边培训。在项目部培训的七天里,我们的总监理工程师,总监理工程师代表,专业工程师,技术专责们以他们多年丰富的工作经验,结合青藏线特殊的施工环境,给我们做了详细认真的讲解。指导我们如何做好现场监理工作,如何跟施工方共同做好质量、安全、进度等方面的工作。我感觉到这七天里学到的东西,比在学校里学到的要实用很多,使我们受益匪浅。 培训完毕后我们都分好了驻点,10月的不冻泉,早就听说像小孩的脸一样,变幻无常,时而烈日高照,时而大雪纷飞,时而狂风四起。第二天早上起来还烈日高照,就当我们准备出发前往不冻泉的时候大雪纷飞、狂风四起,然而我们依旧迎着风雪前往不冻泉。一路颠颠簸簸我们穿越了巍巍昆仑,途径昆仑山口,直奔不冻泉。面对不冻泉高海拔、低温严寒、紫外线辐射强、气候干燥且复杂多样,强日光幅射和自然疫源等,我们没有一个退缩,作为电力天路的建设者,肩负祖国的重任,不怕困难、不怕严寒,是我们义不容辞的义务。同时我们也提出了“缺氧不缺斗志,缺氧不缺智慧,艰苦不怕吃苦,海拔高追求更高”的高原精神! 记忆犹新的是初到驻点时强烈的紫外线,灼烧着这里的每一寸肌肤,刺骨的寒风,侵蚀着这里的每一个身体,看着眼前的这一切我们

多端高压直流输电系统保护动作策略

DOI:10.3969/j .issn.1000-1026.2012.10.018多端高压直流输电系统保护动作策略 王俊生,吴林平,郑玉平 (国网电力科学研究院/南京南瑞集团公司,江苏省南京市210003 )摘要:多端高压直流输电(HVDC) 系统保护动作后故障处理策略的选择与多端系统结构密切相关。详细分析了串联型和并联型多端直流输电系统的闭锁和线路故障再启动逻辑2类保护动作后故障处理策略,并简要介绍了其他保护动作处理策略。快速移相及同时投旁通对是串联型常用的 闭锁策略; 并联型常采用闭锁脉冲策略,以及禁止投旁通对策略。对串联型而言,极隔离实际上是换流器隔离;由于存在多条多电压等级的直流线路,从而线路故障处理策略复杂度很高;功率回降和极平衡需各主控站协同处理;新增合大地回线开关的处理策略。对并联型而言,线路故障处理需各整流站协同处理;新增降电流后闭锁策略;新增分断直流线路开关策略,便于隔离故障直流线路。关键词:高压直流输电;多端直流输电系统;故障处理策略;串联型;并联型 收稿日期:2011-06-20;修回日期:2011-10- 20。0 引言 多端高压直流输电(HVDC) 系统(本文简称多端系统)在国外已经有工程应用[1- 2],主要分两大类:一类是基于晶闸管单控器件的高压/特高压直流输 电,另一类是基于绝缘栅双极型晶体管(IGBT)/集成门极换流晶闸管(IGCT)等全控器件的HVDC。 本文研究前一类。 常规两端HVDC系统的保护动作后处理策略有20余种。多端系统包括多个换流站,为保证非故障健全系统继续运行,除需对已有动作策略进行调整外,还需新增一些处理策略。多端系统结构框架分串联型、并联型和混合型。多端系统结构框架的不同,直接影响控制保护系统的策略和保护动作后处理策略的选取。 本文针对串联型和并联型多端系统,着重介绍闭锁和线路故障再启动逻辑2种重要的保护动作后处理策略,并简单介绍其他保护动作后处理策略。 1 总体原则 保护动作后处理策略的首要原则是切除和隔离故障,故障程度和故障范围不能因为选取的处理策略而扩大。多端系统由多个换流站及相关设备组成,输送功率大,保证非故障系统继续运行是处理策略选择的重要原则之一。由于非故障系统继续运行,因此故障换流站不能因为闭锁方式的选择而产生潮流反转,否则对故障换流站的交流系统冲击太 大:这是多端系统不同于两端系统而需要特别考虑 的原则。 2 串联型多端系统保护动作后处理策略 2.1 系统结构 虽然目前世界上运行的多端系统均采用并联型框架[ 1- 3],但由于特高压直流输电在中国的工程化应用,串联型结构又引起了国内专家学者的研究兴趣, 因此,有必要探讨串联型多端系统结构。图1为典型的串联型多端系统框架,简化起见图中只画了1个极 。 图1 串联型5端直流系统结构示意图 Fig.1 Diagram of series type five-terminal HVDC sy stem将目前的±800kV双阀组串联特高压直流输电系统的2个阀组分别建设在2个不同的换流站中,就可以形成一个串联型4端直流系统,如图2所示。 图2所示结构给控制保护系统带来的技术挑战是:原本在一个站(甚至一个控制保护系统)内的双阀组协同控制(包括正常解闭锁、故障闭锁处理策略等)分离在相隔数百千米的2个换流站间协同控制。 — 10 1—第36卷 第10期2012年5月25日Vol.36 No.10 May  25,2012

相关文档
相关文档 最新文档