文档库 最新最全的文档下载
当前位置:文档库 › 弹塑性力学

弹塑性力学

弹塑性力学
弹塑性力学

清华大学研究生弹塑性力学讲义 5弹塑性_弹性力学的基本方程与解法

弹塑性力学 第四章 弹性力学的基本方程与解法 一、线性弹性理论适定问题的基本方程和边界条件 对于在空间占有体积域V 的线弹性体在外加恒定载荷和固定几何约束条件下引起 的小变形问题,若以, , u εσ作为求解变量,则可以建立如下偏微分方程边值问题: 几何方程 ()1,,2ij i j j i u u ε= + ()12?+?u u ε= (1a) 广义胡克定律 ij ijkl kl E σε= :E σ=ε (1b) 平衡方程 ,0ij j i f σ+= ??+=f 0σ V ?∈x (1c) 以上方程均要求在域内各点均满足。 边界条件 u u i i = ?∈x S ui (2a) n t j ji i σ= ?∈x S ti (2b)对于适定问题,即不仅要求保证解存在唯一,而且有较好的稳定性。当载荷或边界条件给定值有微小摄动时,应能保证问题解的变化也是微小的。对于边界条件的提法就有严格的要求。即要求: S S S S S ui ti ui ti U I ==? (2c) 对于各向同性材料,其广义胡克定律可具体写成 σλεδεij kk ij ij G =+2 ()tr 2G λ+I σ=εε (3a) ()11ij ij kk ij E ενσνσδ??=+??? ()()1tr E νν=????I ε1+σ?σ (3b)以上就域内方程来说,一共是对于u ,,σ ε的15个独立分量u i ij ij ,, σε的15个方程。对于边界条件来说,三维问题每点有三个边界条件,而且是在三个正交方向上每个方向有一个边界条件,这个边界条件或者给定位移、或者给定面力。这三个正交

应用弹塑性力学李同林第四章

应用弹塑性力学李同林第四章 这是变形理论。这个理论首先由亨斯基提出,然后由前苏联的伊留申进一步完善。问题提出得更清楚了,并且给出了使用条件。因此,这个理论也被称为亨奇-伊柳辛理论。伊柳欣的变形理论应该满足几个条件: (1)外载荷(包括体力)成比例增加,变形体处于主动变形过程中(即应力强度无中间卸载); (2)材料所用体积不可压缩,采用泊松比μ = 1/2进行计算;(3)材料的应力-应变曲线具有幂强化形式,即 或者 ; 在变形过程中 (4)满足小弹塑性变形的各种条件,塑性变形和弹性变形大小相同。满足上述条件后,变形理论将给出正确的结果。如果负载没有成比例地增加,则外部负载成比例地增加是简单负载的必要条件。这样不仅不能保证物体内部的简单加载状态,而且物体表面也不能满足简单加载条件。体积不可压缩性和泊松比μ=1/2的假设不仅简化了具体计算,而且与实验结果基本一致,因此变形理论的物理关系主要表现为应力挠度和应变挠度之间的关系,这是令人满意的。 法律。 使用幂强化模型可以避免区分弹性区和塑性区,但实际上该模型对不同材料的限制很小,因为各种材料都可以通过选择公式中常数a的指

数m来拟合拉伸曲线。采用小变形条件是因为平衡方程和几何方程是在小变形条件下推导出来的,物理关系也是小变形条件下的关系。伊柳辛不仅明确规定了亨奇变形理论的适用条件,而且证明了简单加载定理。他提出,在小的弹塑性变形条件下,总应变与应力挠度成正比,即: 如果使用主应力,有 等效应变的表达式为: 从这里 因此,Hench-Ilyushin理论的应力-应变关系可以写成如下: 展开等式(4-84): 根据胡克定律(4-33),弹性应变为: 因为塑性应变是总应变和弹性应变之间的差,所以它由方程(4-85)和(1)获得: 公式(4-86)可以缩写为: 实施例4-3众所周知,具有封闭端的薄壁圆筒的平均半径为R,平均直径为D,壁厚为T,圆筒长度为L,并且承受内压P以产生塑性变形。材料是各向同性的。尝试找到: (1)如果忽略弹性应变,周向、轴向和径向应变之比在圆筒壁上的一点处增加; (2)如果材料是不可压缩的,即μ=1/2,圆柱壁上一点的周向、轴向和径向应变总量之比。 因为t/r1是解,所以可以近似地考虑圆柱壁中每个点的径向应力ζr=0。

弹塑性力学总结汇编

弹塑性力学总结 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。通过一学期的弹塑性力学的学习,对其内容总结如下: 一、弹性力学 1、弹性力学的基本假定 求解一个弹性力学问题,通常是已知物体的几何形状(即已知物体的边界),弹性常数,物体所受的外力,物体边界上所受的面力,以及边界上所受的约束;需要求解的是物体内部的应力分量、应变分量与位移分量。求解问题的方法是通过研究物体内部各点的应力与外力所满足的静力平衡关系,位移与应变的几何学关系以及应力与应变的物理学关系,建立一系列的方程组;再建立物体表面上给定面力的边界以及给定位移约束的边界上所给定的边界条件;最后化为求解一组偏分方程的边值问题。

在导出方程时,如果考虑所有各方面的因素,则导出的方程非常复杂,实际上不可能求解。因此,通常必须按照研究对象的性质,联系求解问题的范围,做出若干基本假定,从而略去一些暂不考虑的因素,使得方程的求解成为可能。 (1)假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。 (2)假设物体是线弹性的。就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料服从虎克定律,应力与应变成正比。 (3)假设物体是均匀的。就是说整个物体是由同一种质地均匀的材料组成的。这样,整个物体的所有部分才具有相同的物理性质,因而物体的弹性模量和泊松比才不随位置坐标而变。 (4)假设物体是各向同性的。也就是物体内每一点各个不同方向的物理性质和机械性质都是相同的。 (5)假设物体的变形是微小的。即物体受力以后,整个物体所有各点的位移都小于物体的原有尺寸,因而应变和转角都远小于1。这样,在考虑物体变形以后的平衡状态时,可以用变

应用弹塑性力学习题解答

应用弹塑性力学习题解答 目录 第二章习题答案 设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。 解该平面的法线方向的方向余弦为 而应力矢量的三个分量满足关系 而法向分量满足关系最后结果为 利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。 解求出后,可求出及,再利用关系

可求得。 最终的结果为 已知应力分量为,其特征方程为三次多项式,求。如设法作变换,把该方程变为形式,求以及与的关系。 解求主方向的应力特征方程为 式中:是三个应力不变量,并有公式 代入已知量得 为了使方程变为形式,可令代入,正好项被抵消,并可得关系 代入数据得,, 已知应力分量中,求三个主应力。 解在时容易求得三个应力不变量为, ,特征方程变为 求出三个根,如记,则三个主应力为 记 已知应力分量 ,是材料的屈服极限,求及主应力。 解先求平均应力,再求应力偏张量,, ,,,。由此求得 然后求得,,解出 然后按大小次序排列得到 ,,

已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。 解特征方程为记,则其解为,,。对应于的方向余弦,,应满足下列关系 (a) (b) (c) 由(a),(b)式,得,,代入(c)式,得 ,由此求得 对,,代入得 对,,代入得 对,,代入得 当时,证明成立。 解 由,移项之得 证得 第三章习题答案 取为弹性常数,,是用应变不变量表示应力不变量。

解:由,可得, 由,得 物体内部的位移场由坐标的函数给出,为, ,,求点处微单元的应变张量、转动张量和转动矢量。 解:首先求出点的位移梯度张量 将它分解成对称张量和反对称张量之和 转动矢量的分量为 ,, 该点处微单元体的转动角度为 电阻应变计是一种量测物体表面一点沿一定方向相对伸长的装置,同常利用它可以量测得到一点的平面应变状态。如图所示,在一点的3个方向分别粘贴应变片,若测得这3个应变片的相对伸长为,,,,求该点的主应变和主方向。 解:根据式先求出剪应变。考察方向线元的线应变,将,,,,,代入其 中,可得 则主应变有 解得主应变,,。由最大主应变可得上式只有1个方程式独立的,可解得与轴的夹角为 于是有,同理,可解得与轴的夹角为。 物体内部一点的应变张量为 试求:在方向上的正应变。

弹塑性力学理论及其在工程上的应用

弹塑性力学理论及其在工程上的应用 摘要:弹塑性力学理论在工程中应用十分的广泛,是工程中分析问题的一个重要手段,本文首先是对弹塑性力学理论进行了阐述,然后讨论了它在工程上面的应用。 关键词:弹塑性力学;工程;应用 第一章 弹塑性力学的基本理论 (一)应力理论 1、 应力和应力张量 在外力作用下,物体将产生应力和变形,即物体中诸元素之间的相对位置发生变化,由于这种变化,便产生了企图恢复其初始状态的附加相互作用力。用以描述物体在受力后任何部位的内力和变形的力学量是应力和应变。本章将讨论应力矢量和某一点处的应力状态。 为了说明应力的概念,假想把受—组平衡力系作 用的物体用一平面A 分成A 和B 两部分(图1.1)。如 将B 部分移去,则B 对A 的作用应代之以B 部分对A 部分的作用力。这种力在B 移去以前是物体内A 与B 之间在截面C 的内力,且为分布力。如从C 面上点P 处取出一包括P 点在内的微小面积元素S ?,而S ?上 的内力矢量为F ?,则内力的平均集度为F ?/S ?, 如令S ?无限缩小而趋于点P ,则在内力连续分布的条件下F ?/S ?趋于一定的极限σo ,即 σ=??→?S F S 0lim 2、二维应力状态与平面问题的平衡微分方程式 上节中讨论应力概念时,是从三维受力物体出发的,其中点P 是从一个三维空间中取出来约点。为简单起见,首先讨论平面问题。掌提了平面问题以后.再讨论空间问题就比较容易了。

当受载物体所受的面力和体力以及其应力都与某—个坐标轴(例如z 轴)无 关。平面问题又分为平面应力问题与平面应变问题。 (1) 平面应力问题 如果考虑如图所示物体是一个很薄的 平板,荷载只作用在板边,且平行于板面,即 xy 平面,z 方向的体力分量Z 及面力分量z F 均 为零,则板面上(2/δ±=z 处)应力分量为 0) (2=±=δσz z 0)()(22==±=±=δ δ ττz zy z zx 图2.2平面应力问题 因板的厚度很小,外荷载又沿厚度均匀分布, 所以可以近似地认为应力沿厚度均匀分布。由此, 在垂直于z 轴的任一微小面积上均有 0=z σ, 0==zy zx ττ 根据切应力互等定理,即应力张量的对称性,必然有0==xz yx ττ。因而对于平面应力状态的应力张量为 ???? ??????=00000y yx xy x ij σττσσ 如果z 方向的尺寸为有限量,仍假设0=z σ,0==zy zx ττ,且认为x σ,y σ和xy τ(yx τ)为沿厚度的平均值,则这类问题称为广义平面应力问题。 (2)平面应变问题 如果物体纵轴方向(oz 坐标方向)的尺寸很长,外荷载及体力为沿z 轴均匀分 布地作用在垂直于oz 方向,如图1.4所示的水坝是这类问题的典型例子。忽略端部效应,则因外载沿z 轴方向为一常数,因而可以认为,沿纵轴方向各点的位

武汉大学弹塑性力学简答题以及答案

弹塑性力学简答题 2002年 1 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2 从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 3 两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 4 虚位移原理等价于哪两组方程?推导原理时是否涉及到物理方程?该原理是否适用于塑性力学问题? 平衡微分方程和静力边界条件。不涉及物理方程。适用于塑性力学问题。 5 应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的, 而是相关,否则导致位移不单值,不连续。 6 什么是加载?什么是卸载?什么是中性变载?中性变载是否会产生塑性变形? 加载:随着应力的增加,应变不断增加,材料在产生弹性变形的同时,还会产生新的塑性变形,这个过程称之为加载。 卸载:当减少应力时,应力与应变将不会沿着原来的路径返回,而是沿接近于直线的路径回到零应力,弹性变形被恢复,塑性变形保留,这个过程称之为卸载。 中性变载:应力增量沿着加载面,即与加载面相切。应力在同一个加载面上变化,内变量将保持不变,不会产生新的塑性变形,但因为应力改变,会产生弹性应变。 7 用应力作为未知数求解弹性力学问题时,应力除应满足平衡方程外还需要满足哪些方程? 协调方程和边界条件。 8 薄板弯曲中,哪些应力和应变分量较大?哪些应力和应变分量较小? 平面内应力分量最大,最主要的是应力,横向剪应力较小,是次要的应力;z 方向的挤压应力最小,是更次要的应力。 9 什么是滑移线?物体内任意一点沿滑移线的方向的剪切应力是多少? 在塑性区内,将各点最大剪应力方向作为切线而连接起来的线,称之为滑移线。 剪切应力是最大剪应力。

清华大学研究生弹塑性力学讲义 8弹塑性_塑性力学基本方程和解法

弹塑性力学 第七章塑性力学的基本方程与解法 一、非弹性本构关系的实验基础 拿一根工程上最常用的低碳钢的试件,在拉伸试验机上就可得到如图7.1所示的应力应变曲线。图中A为比例极限,当变形状态未超过A点时材料处于线弹性状态;B为弹性极限,AB段的变形虽然还是弹性的,即卸载时能按原来的加载曲线返回,但应力应变之间不再是线性关系。C,D分别为上、下屈服极限,超过C点后材料进入塑性变形状态,卸载时不再按原来的加载曲线返回,而且当载荷完全卸除后还有残余变形。由C到D是突然发生的,由于材料屈服引起应力突然下降,而应变继续增加。由D到H是一接近水平的线段,称为塑性流动段。对同一种材料D点的测量值比较稳定,而C点受试件截面尺寸、加载速率等影响较大。如果载荷在使材料屈服之后还继续增加,则进入图中曲线右部的强化段。即虽然材料已经屈服,但只有当应力继续增加时,应变才能继续增大。在图中b点之后,试件产生颈缩现象,最后试件被拉断。如果在塑性流动段的D′点,或强化段的H′点卸载,将能观测到沿着与OA平行的直线返回,当载荷为零是到达O′点或O′′点,即产生残余变形。 图7.1 低碳钢单向拉伸应力应变曲线 有些高强度的合金钢并没有象低碳钢那样的屈服段,其单向拉伸的应力应变曲线如图7.2所示。这种情况下屈服极限规定用产生0.2%塑性应变所对应的应力来表示,σ。 记为 0.2 图7.2 高强度合金钢单向拉伸应力应变曲线

第七章 塑性力学的基本方程与解法 如果以超过屈服极限的载荷循环加载,所得试验结果则象图7.3所示。在实验中还发现,对于某些材料(图7.4),如果在加载(拉伸)屈服后完全卸载到O ′′点,然后接着反向加载(压缩),则其反向屈服点对应的应力绝对值s σ′′不仅小于s σ′,而且小于初始屈服应力的绝对值σ′。这是德国的包辛格(Bauschinger, J.)最早发现的,称为包辛格效应。 图7.3 循环加载曲线示意图 图7.4 包辛格效应 当材料进入塑性状态后,如果不是单调加载,则应力和应变之间不仅不是单值函数的关系,而且当时的应变不仅和当时的应力有关,还和整个加载的历史有关。同样,当时的应力不仅和当时的应变有关,而且也和整个变形的历史有关。这就增加了问题的复杂性。材料的特性不能简单的用应力应变关系来描述,而要用比较复杂的本构关系,即应力和整个变形历史的关系来描述。 此外,在实际工程问题中经常遇到的材料非线性问题往往不是单向应力状态,即不是一维问题。要对三维问题单靠实验来确定应力张量和应变张量之间的关系几乎是不可能的。因此,在建立非线性本构关系时,除去不能脱离实验基础之外,还必须有基本理论的指导。 二、刚塑性与弹塑性本构模型 z 简化模型 对于低碳钢一类材料,如果承载后产生的变形状态一直达到塑性流动段,为了简化起见,略去应力应变曲线中的上、下屈服极限等细节,可得到由线弹性段和塑性流动水平线段组成的简化模型,称为理想弹塑性模型(图7.5a ): s s s s E E σεεεσεσεε=≤??==>?当当 (1) 在金属成型等问题中,由于塑性流动引起的塑性应变较大,而弹性应变因相比较小而将其忽略,则又可进一步简化为只有水平线段的刚塑性模型(图7.5b ):

弹塑性力学讲义简答题

研究生弹塑性考试试题 1. 简答题:(每小题2分) (1) 弹性本构关系和塑性本构关系的各自主要特点是什么? (2) 偏应力第二不变量J 2的物理意义是什么? (3) 虚位移原理是否适用于塑性力学问题?为什么? (4) 塑性内变量是否可以减小?为什么? (5) Tresca 屈服条件和Mises 屈服条件是否适用于岩土材料?为什么? (6) 解释:在应力空间中为什么应力状态不能位于加载面之外? (7) π平面上的点所代表的应力状态有何特点? (8) 举例说明屈服条件为各向同性的物理含义? 2. 岩土材料若服从Drucker-Prager 屈服条件,试使用关联流动法则求塑性体积应变增量的表达式?(8分) 3. 试确定下面的平面应变状态是否存在?(6分) εx =Axy 2,εy =Bx 2y ,γxy =0,A 、B 为常数 4. 正方形薄板三边固定,另一边承受法向压力b x p p π-=sin 0,如图所示,设位移函数为 0=u b y b x a v 2sin sin 2ππ= 利用Ritz 法求位移近似解(泊松比ν=0)。(15分) y x a b A B C O (第4题图) (第5题图) 5. 如图所示的矩形薄板OABC ,OA 边与BC 边为简支边,OC 边与AB 边为自由边。板不受横向荷载,但在两个简支边上受大小相等而方向相反的均布弯矩M 。试证,为了将薄

板弯成柱面,即w =f (x ),必须在自由边上施加以均布弯矩νM 。并求挠度和反力。(15分) 6. 如图所示矩形截面梁受三角形分布荷载作用,试检验应力函数 ?=Ax 3y 3+Bxy 5+Cx 3y +Dxy 3+Ex 3+Fxy 能否成立。若能成立求出应力分量。(15分) (第6题图) 7. 8. 一材料质点处在平面应变状态下(εz =0),若假定材料的弹性变形相对其塑性变形较小可 忽略,应力应变关系服从Levy-Mises 增量理论,即d εij =d λs ij ,且材料体积是不可压缩的,试证明 σz =2 1(σx +σy ) 进一步证明在此情况下,Tresca 屈服条件和Mises 屈服条件重合。(10分)

应用弹塑性力学 李同林 第四章

第四章弹性变形·塑性变形·本构方程 当我们要确定物体变形时其内部的应力分布和变形规律时,单从静力平衡条件去研究是解决不了问题的。因此,弹塑性力学研究的问题大多是静不定问题。要使静不定问题得到解答,就必须从静力平衡、几何变形和物性关系三个方面来进行研究。考虑这三个方面,就可以构成三类方程,即力学方程、几何方程和物性方程。综合求解这三类方程,同时再满足具体问题的边界条件,从理论上讲就可使问题得到解答。 在第二、三两章中,我们已经分别从静力学和几何学两方面研究了受力物体所应满足的各种方程,即平衡微分方程式(2-44)和几何方程式(3-2)等。所以,现在的问题是,必须考虑物体的物性,也即考虑物体变形时应力和应变间的关系。应力应变关系在力学中常称之为本构关系或本构方程。本章将介绍物体产生变形时的弹性和塑性应力应变关系。 大量实验证实,应力和应变之间的关系是相辅相成的,有应力就会有应变,而有应变就会有应力。对于每一种具体的固体材料,在一定条件下,应力和应变之间有着确定的关系,这种关系反映了材料客观固有的特性。下面我们以在材料力学所熟知的典型塑性金属材料低碳钢轴向拉伸试验所得的应力应变曲线(如图4-1所示)为例来说明和总结固体材料产生弹性变形和塑性变形的特点,并由此说明塑性应力应变关系比弹性应力应变关系要复杂的多。 在图4-1中,OA段为比例变形阶段。在这一阶段中,应力和应变之间的关系是线性的,即可用虎克定律来表示: ζ=Eε(4-1) 式中E为弹性模量,在弹性变形过程中,E为常数。A点对应的应力称为比例极限,记作ζP。由A点到B 点,已经不能用线性关系来表示,但变形仍是弹性的。B点对应的应力称为弹性极限,记作ζr。对于许多材料,A点到B点的间距很小,也即ζP与ζr数值非常接近,通常并不加以区分,而均以ζr表示,并认为当应力小于ζr时,应力和应变之间的关系满足式(4-1)。在当应力小于ζr时,逐渐卸去载荷,随着应力的减小,应变也渐渐消失,最终物体变形完全得以恢复。若重新加载则应力应变关系将沿由O到B的原路径重现。BF段称为屈服阶段。C点和D点对应的应力分别称为材料的上屈服极限和下屈服极限。应力到达D点时,材料开始屈服。一般来说,上屈服极限受外界因素的影响较大,如试件截面形状、大小、加载速率等,都对它有影响。因此在实际应用中一般都采用下屈服极限作为材料的屈服极限,并记作ζs。有些材料的屈服流动阶段是很长的,应变值可以达到0.01。由E点开始,材料出现了强化现象,即试件只有在应力增加时,应变才能增加。如果在材料的屈服阶段或强化阶段内卸去载荷,则应力应变不会顺原路径返回,而是沿着一条平行于OA线的MO'''(或HO'、KO'')路径返回。这说明材料虽然产生了塑性变形,但它的弹性性质却并没有变化。如果在点O'''(或O'、O'')重新再加载,则应力应变曲线仍将沿着O'''MFG (或O'HEFG、O''KFG)变化,在M点(或H点、K点)材料重新进入塑性变形阶段。显然,这就相当于提高了材料的屈服极限。经过卸载又加载,使材料的屈服极限升高,塑性降低,增加了材料抵抗变形能力的现象,称为强化(或硬化)。

弹塑性力学简答题

弹塑性力学简答题

弹塑性力学简答题 第一章 应力 1、 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2、应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系? 相同。110220330 S S S σσσσσσ=+=+=+。 4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 5、解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 6、Pie 平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 固体力学解答必须满足的三个条件是什么?可否忽略其中一个? 第二章 应变 1、从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3、应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。 5、应变协调方程的物理意义是什么? 对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。 6、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?

弹塑性力学讲义全套

弹塑性力学 弹塑性力学 绪论:弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。 弹塑性力学是固体力学的一个重要分支,是研究弹性和塑形物体变形规律的一门学科。它推理严谨,计算结果准确,是分析和解决许多工程技术问题的基础和依据。在弹塑性力学中,我们可以看到很多学习材料力学、结构力学等学科所熟知的参数和变量,一些解题的思路也很类似,但是我们不能等同的将弹塑性力学看成材料力学或者是结构力学来学习。材料力学和结构力学的研究对象及问题,往往也是弹塑性力学所研究的对象及问题。但是,在材料力学和结构力学中主要采用简化的初等理论可以描述的数学模型;在弹塑性力学中,则将采用较精确的数学模型。有些工程问题(例如非圆形断面柱体的扭转、孔边应力集中、深梁应力分析等问题)用材料力学和结构力学的方法求解,而在弹塑性力学中是可以解决的;有些问题虽然用材料力学和结构力学的方法可以求解,但无法给出精确可靠的理论,而弹塑性力学则可以给出用初等理论所得结果可靠性与精确度的评价。在弹塑性力学分析中,常采用如下简化假设:连续性假设、均匀各向同性、小变形假设、无初应力假设等假设。 弹塑性力学基本方程的建立需要从几何学、运动学和物理学三方面来研究。在运动学方面,主要是建立物体的平衡条件,不仅物体整体要保持平衡,而且物体内的任何局部都要处于平衡状态。反映这一规律的数学方程有两类,即运动微分方程和载荷的边界条件。以上两类方程都与材料的力学性质无关,属于普适方

弹塑性力学博士生考题03答案

2003年结构工程博士研究生入学考试 弹塑性力学试卷答案 第一道题答案: 圣维南原理可以这样陈述:如果把作用在物体表面一小部分边界上的面力,被分布不同但静力等效的面力(主矢量相同,对同一点的主矩也相同)所代替,那么,近处的应力分布将有显著的改变,但远处所受的影响小得可以忽略不计。 圣维南原理也可以这样陈述:如果物体一小部分边界上的面力是一自相平衡的力系(主矢量及主矩都等于零),那么,这个面力就只会在靠近受力表面附近产生显著的应力,远处(与受力表面之尺寸相较)产生的应力可以忽略不计。 上面两种陈述是一致的,因为,静力等效的两组面力,它们的差异是一个平衡力系。 正确理解和运用圣经南原理的关键是弄清“一小部分”,“静力等效”,“近处与远处”的概念。 实践应用中,圣维南原理可提供: 1.我们知道,弹性力学问题在数学上被称为边值问题,其待求的未知量(应力、位移、应变)完全满足基本方程并不困难,但是,要求在全部边界上都逐点地满足边界条件,往往会发生很大困难。为了使问题得到简化或有解,在符合圣维市原理的那部分边界上,可以放弃严格的逐点边界条件,而改为满足另一组静力等效的以合力形式表示的整体边界条件。这对于离边界较远处的应力状态,并无显著的误差。这已经为理论分析和实验所证实。 2.当物体的一小部分边界,仅仅知道物体所受外力的合力,而不能确知其分布方式时,就不能逐点地写出面力的边界条件,因而难以求解或无法求解。根据圣维南原理,可以在这一小部分边界,直接写合力条件进行求解。 3.当物体一小部分边界上的位移边界条件不能精确满足时,有时也可以应用圣维南原理得到有用的解答。 4.在工程结构的受力分析中,根据圣维南原理,有时可近似地判断应力分布和应力集中的情况。 第三道题答案:

弹塑性力学总结

应用弹塑性力学读书报告 姓名: 学号: 专业:结构工程 指导老师:

弹塑性力学读书报告 弹塑性力学是固体力学的一个重要分支,是研究可变形固体变形规律的一门学科。研究可变形固体在荷载(包括外力、温度变化等作用)作用时,发生应力、应变及位移的规律的学科。它由弹性理论和塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。弹塑性力学也是连续介质力学的基础和一部分。弹塑性力学包括:弹塑性静力学和弹塑性动力学。 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。 1 基本思想及理论 1.1科学的假设思想 人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。 1.1.1连续性假定 假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。 1.1.2线弹性假定(弹性力学) 假设物体是线弹性的。就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料服从虎克定律,应力与应变成正比。

弹塑性力学试题答案完整版

弹塑性力学2008、2009级试题 一、简述题 1)弹性与塑性 弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。 塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。 2)应力和应力状态 应力:受力物体某一截面上一点处的内力集度。 应力状态:某点处的9个应力分量组成的新的二阶张量∑。 3)球张量和偏量(P25) 球张量:球形应力张量,即σ=0 00000m m m σσσ?????????? ,其中()13m x y z σσσσ=++ 偏量:偏斜应力张量,即x m xy xz ij yx y m yz zx zy z m S σστττσστττσσ?? -?? =-????-? ?,其中()13 m x y z σσσσ=++ 4)描述连续介质运动的拉格朗日法和欧拉法 拉格朗日描述也被称为物质描述,同一物质点在运动过程中的坐标值不变,物质体变形表现为坐标轴变形、基矢量的随体变化。 采用拉格朗日描述时,在变形过程中网格节点和积分点始终与物质点一致,便于精确描述材料特性、边界条件、应力和应变率; 欧拉描述也被称为空间描述。在欧拉描述中,当前构形被离散化,初始构形(参考构形)是未知的。由于采用了物质对固定网格的相对运动,它具有以下优点: 欧拉描述便于对固定空间区域特别是包含流动、大变形和物质混合问题的建模。 5)转动张量:表示刚体位移部分,即 1102211022110 22u v u w y x z x v u v w ij x y z y w u w v x z y z W ? ? ?? ??????--?? ? ? ??????? ???? ? ? ?????????? =-- ? ??? ? ??????????? ????????????-- ? ? ????????? ?? ?? 6)应变张量:表示纯变形部分,即

弹塑性力学习题题库及答案

第二章 应力理论和应变理论 2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及 30106.768 6.77() 104sin 2cos 2sin 602cos 60 221 32 3.598 3.60() 22 x y xy MPa MPa σστατα= --=----+=?+=?-=-?-?=-- 代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τxy = +2 3030( )cos 2sin 22 2 1041041cos 602sin 607322226.768 6.77()104 sin 2cos 2sin 602cos 60 22132 3.598 3.60() 22 x y x y xy x y xy MPa MPa σσσσσατα σστατα+-= ++---+= ++=--?+=----+=-?+=-?+=?+?= 由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。 2—6. 悬挂的等直杆在自重W 作用下(如图所示)。材料比重为γ弹性模量为 E ,横截面面积为A 。试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。 解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得: c 截面的内力:N z =γ·A ·z ; 题图 1-3

c 截面上的应力:z z N A z z A A γσγ??= ==?; 所以离下端为z 处的任意一点c 的线应变εz 为: z z z E E σγε= = ; 则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为: ()2 2z z z z z z z z y z z l d l d d zd E E E γγ γε=???=??=? = ?= ; 显然该杆件的总的伸长量为(也即下端面的位移): ()2 222l l A l l W l l d l E EA EA γγ?????=??= = =  ;(W=γAl ) 2—9.己知物体内一点的应力张量为:σij =5003008003000 3008003001100-???? +-?? ??-- ?? 应力单位为kg /cm 2 。 试确定外法线为n i (也即三个方向余弦都相等)的微分斜截面上的总应力n P 、正应力σn 及剪应力τn 。 解:首先求出该斜截面上全应力n P 在x 、y 、z 三个方向的三个分量:n '=n x =n y =n z 题—图 16

弹塑性力学试题

弹塑性力学试题 (土木院15研) 考试时间:2小时 考试形式:笔试,开卷 一﹑是非题(下列各题,你认为正确的在括号内打“√”,错误的打“×”。每小题3 分,共21分) 1. 孔边应力集中的程度与孔的形状有关,圆孔应力集中程度最高。( ) 2. 已知物体内P 点坐标P (x, y, z ), P '点坐标P '(x+dx, y+dy, z+dz ), 若P 点在x, y, z 方向的位移分别为u, v, w ,则P '点在x 方向的位移为dz z w dy y v dx x u u ??+??+??+ ( ) 3. 任何边界上都可应用圣维南(St. Venant )原理,条件是静力等效。。 ( ) 4. 塑性力学假设卸载时服从初始弹性规律。( ) 5. 弹性力学空间问题应变状态第二不变量为2 2 2 - yz xz xy z y z x y x γγγεεεεεε--++。( ) 6. 弹性力学问题的两类基本解法为逆解法和半逆解法。( ) 7. 全量理论中,加载时应力—应变存在一一对应的关系。( ) 二﹑填空及简答题(填空每小题3分,共23分) 1. 弹性力学平面问题,结构特点是( ),受力特点是( )。 2.求解塑性问题,可将应力——应变曲线理想化,分为5种简单模型,它们分别是( )。 2. 薄板小挠度弯曲中内力弯矩和剪力的量纲分别为( )、( )。 3. 比较Tresca 屈服准则和von Mises 屈服准则的相同点与不同点。(5分) 4. 弹性力学的几何方程是根据什么假设条件推导出来的?(4分) 6.简述弹性力学量纲分析的基本思路。(5分) 三﹑计算题(共56分) 1. 写出圆形薄板轴对称弯曲的弹性曲面方程。若受均布荷载0q 作用,推导(必须有推导过程)出其挠度w 的表达式。(8分) 2. 已知应力函数)(A 2 3 xy x +=?,A 为常数。试求图中所示形状平板的面力(以表面法向和切向应力表示)并在图中标出。(8分)

弹塑性力学讲义应力

第1章 应 力 1. 1 应力矢量 物体受外力作用后,其内部将产生内力,即物体本身不同部分之间相互作用的力。为了描述内力场,Chauchy 引进了应力的重要概念。对于处于平衡状态的物体,假想使用一个过P 点的平面C 将其截开成A 和B 两部分。如将B 部分移去,则B 对A 的作用应以分布的内力代替。考察平面C 上包括P 点在内的微小面积,如图1.1所示。设微面外法线(平面C 的外法线)为n ,微面面积为?S ,作用在微面上的内力合力为?F ,则该微面上的平均内力集度为?F /?S ,于是,P 点的内力集度可使用应力矢量T (n ),定义为 T (n ) =S F s ???0 lim → B ?S A C P n ?F x y z 图1.1 应力矢量定义 在笛卡儿坐标系下,使用e x ,e y 和e z 表示坐标轴的单位基矢量,应力矢量可以表示为 T (n ) = T x e x +T y e y +T z e z (1.1) 式中T x 、T y 和T z 是应力矢量沿坐标轴的分量。

上篇弹性力学第1章应力 8 除进行公式推导外,通常很少使用应力矢量的坐标分量T x、T y 和T z。实际应用 中,往往需要知道应力矢量沿微面法线方向和切线方向的分量,沿法线方向的应力分量称为正应力,沿切线方向的应力分量称为剪应力。 显而易见,应力矢量的大小和方向不仅取决于P点的空间位置,而且还与所取截面的法线方向n有关,即作用在同一点不同法线方向微面上的应力矢量不同。所有这些应力矢量构成该点的应力状态。 由应力矢量的定义并结合作用力与反作用力定律,在同一点,外法线为-n微面上的应力矢量为: T(-n)= -T(n) (1.2) 1.2 应力张量 人们讨论问题常常是在笛卡儿坐标中进行,因此,我们使用六个与坐标面平行的平面从图1.1中P点的邻域截取一个微六面体,如图1.2所示。在这个微六面体中,若微面的外法线方向与坐标正方向一致,则称为正面;若与坐标正方向相反,则称为负面。因此有三个正面和三个负面。 图1.2 一点的应力状态

我所认识的弹塑性力学知识交流

我所认识的弹塑性力学 弹塑性力学作为固体力学的一门分支学科已有很长的发展历史,其理论与方法的体系基本完善,并在建筑工程、机械工程、水利工程、航空航天工程等诸多技术领域得到了成功的应用。 一绪论 1、弹塑性力学的概念和研究对象 弹塑性力学是研究物体在载荷(包括外力、温度变化或外界约束变动等)作用下产生的应力、变形和承载能力,包括弹性力学和塑性力学,分别用来研究弹性变形和塑性变形的力学问题。弹性变形指卸载后可以恢复和消失的变形,塑性变形时指卸载后不能恢复而残留下的变形。弹塑性力学的研究对象可以是各种固体,特别是各种结构,包括建筑结构、车身骨架、飞机机身、船舶结构等,也研究量的弯曲、住的扭转等问题。其基本任务在于针对实际问题构建力学模型和微分方程并设法求解它们,以获得结构在载荷作用下产生的变形,应力分布及结构强度等。 2、弹塑性简化模型及基本假定 在弹性理论中,实际固体的简化模型为理想弹性体,它的特征是:一定温度下,应力应变之间存在一一对应关系,而与加载过程以及时间无关。在塑性理论中,常用的简化模型为:理想塑性模型和强化模型。理想塑性模型又分为理想弹塑性模型和理想刚塑性模型;强化模型包括线性强化弹塑性模型、线性强化刚塑性模型和幂次强化模型。弹塑性力学有五个最基本的力学假定,分别为:连续性假定、均匀性

假定、各向同性假定、小变形假定和无初应力假定。 3、研究方法及其与初等力学理论的联系和区别 一般来说,弹塑性力学的求解方法有:经典方法、数值方法、试验方法和实验与数值分析相结合的方法。经典方法是采用数学分析方法求解,一般采用近似解法,例如,基于能量原理的Ritz法和伽辽金法;数值法常用的有差分法、有限元法及边界条件法;实验法是采用机电方法、光学方法、声学方法等来测定应力应变分布规律,如光弹性法和云纹法。 弹塑性力学与初等理论力学既有联系又有区别,如下表所示:表1、弹塑性力学与初等力学理论的联系和区别

应用弹塑性力学习题解答

应用弹塑性力学习题 解答 Revised on November 25, 2020

应用弹塑性力学习题解答 目录 第二章习题答案 设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。 解该平面的法线方向的方向余弦为 而应力矢量的三个分量满足关系 而法向分量满足关系最后结果为 利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。

解求出后,可求出及,再利用关系 可求得。 最终的结果为 已知应力分量为,其特征方程为三次多项式,求。如设法作变换,把该方程变为形式,求以及与的关系。 解求主方向的应力特征方程为 式中:是三个应力不变量,并有公式 代入已知量得 为了使方程变为形式,可令代入,正好项被抵消,并可得关系 代入数据得,, 已知应力分量中,求三个主应力。 解在时容易求得三个应力不变量为, ,特征方程变为 求出三个根,如记,则三个主应力为 记 已知应力分量 ,是材料的屈服极限,求及主应力。 解先求平均应力,再求应力偏张量,,

,,,。由此求得 然后求得,,解出 然后按大小次序排列得到 ,, 已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。 解特征方程为记,则其解为,,。对应于的方向余弦,,应满足下列关系 (a) (b) (c) 由(a),(b)式,得,,代入(c)式,得 ,由此求得 对,,代入得 对,,代入得 对,,代入得 当时,证明成立。 解 由,移项之得 证得

第三章习题答案 取为弹性常数,,是用应变不变量表示应力不变量。 解:由,可得, 由,得 物体内部的位移场由坐标的函数给出,为, ,,求点处微单元的应变张量、转动张量和转动矢量。 解:首先求出点的位移梯度张量 将它分解成对称张量和反对称张量之和 转动矢量的分量为 ,, 该点处微单元体的转动角度为 电阻应变计是一种量测物体表面一点沿一定方向相对伸长的装置,同常利用它可以量测得到一点的平面应变状态。如图所示,在一点的3个方向分别粘贴应变片,若测得这3个应变片的相对伸长为,, ,,求该点的主应变和主方向。 解:根据式先求出剪应变。考察方向线元的线应变,将,,,,,代入其中,可得 则主应变有

相关文档
相关文档 最新文档