文档库 最新最全的文档下载
当前位置:文档库 › 隧洞经济洞泾选择、水力计算及调洪演算计算书

隧洞经济洞泾选择、水力计算及调洪演算计算书

隧洞经济洞泾选择、水力计算及调洪演算计算书
隧洞经济洞泾选择、水力计算及调洪演算计算书

1经济洞径的选择

根据江坪河的实际地形条件为山区河流,河谷狭窄,两岸地形陡峻,山岩坚实,可采故采用隧洞导流,由于每条隧洞的泄流能力有限,加之隧洞的造价比较昂贵,而且根据当前的施工水平,每条隧洞的可宣泄量一般不超过2000~5000m 3/s ,根据确定的设计流量为5100 m 3/s ,由于左、右两岸的地形条件基本相似,施工条件,水流条件基本无差别,故在左、右两岸各设一个导流隧洞。

在进行经济洞径的比较时,按无压洞进行设计。 运用如下公式:

Q μ=Q :河道的下泄流量 m 3/s ;

μ:管道系统的流量系数,一般取值0.6-0.8,取0.7;

A :遂洞的截面面积 m 2 ; Z :上下游水位差 m ;

由上面的公式可转化为:

2

22

2Q Z g A μ= 表1-1 江坪河坝址水位流量关系表

注:水位为黄海基面。

由下泄流量Q=5100m3/s查上表,得到相应的下游水位Z下=305.4m。

已知上游水位及泄流量而流量系数未定,故需用试算法求洞径。先设某一洞径,然后根据上述公式求上游水位,看是否满足已知水位,从而求得最适宜的洞径。

又隧洞最大流速V<20m3/s,则隧洞断面面积W=Q/V,得W>255m2

经估算得270 m2 、280m2 、290m2 对应下列三种洞径尺寸:17×17,18×17 和18×18

现对三种假设进行试算:

方案一:假定隧洞的洞径为17×17,采用无压城门洞型,形式和尺寸如下:

经几何关系计算得到隧洞的断面面

积:2

=

264.75

A m

隧洞洞径不能太小,应校核平均

流速V=Q/W <20m/s,否则流速过高会

使隧洞破坏。

隧洞的面积校核:

V=Q/W=5100/264.75=19.26m/s

<20m/s,所设计的隧洞尺寸符合要求。

所使用的的公式如下:

=

Q:河道的下泄流量m3/s ;

μ:管道系统的流量系数,一般取值0.6-0.8,取0.7;

A :遂洞的截面面积 m 2 ; Z :上下游水位差 m ; 由上面的公式可转化为:

2

22

2Q Z g A μ= 带入数据,计算得到 38.64Z m = 坝顶的超高:d=R+e+A

R :为波浪在坝坡上的设计爬高,m ; e :为风浪引起的坝前水位壅高,m ; A :为安全加高,m ;

安全加高可根据大坝的级别按下表采用。非常运行条件(a )使用于山区,丘陵区;非常运行条件(b )适用于平原区,滨海区。

表1–2 土石坝的安全加高

根据江坪河工程围堰的级别为4级,山区属于非常运行条件(a ),所以得安全加高为取0.30。

由于R 和e 的计算公式很多,主要都是经验和 半经验性的,适用于一定的具体条件,可按SL274—2001《碾压式土石坝设计规范》推荐公式计算确定。对于中,小型土石坝,R+e 的高度可按照坝前水库中风的吹程D 做近视估计,参见下表。

雨棚计算书

钢筋场雨棚棚检算书 1.钢筋场雨棚设计: 雨棚采用轻钢屋面结构,共设4跨,跨度22.5m,进深25m。立柱间距6.25m。立柱采用,160mm φ厚度的钢管。纵梁采用22号工字钢。屋面拱架采用钢管桁架,屋面板采用蓝色钢板。立柱基础利用混凝土料仓隔墙,立柱与基础连接采用地脚螺栓连接.立柱顶部与纵梁采用焊接连接.具体布置形式见附图. mm 850Φ20C 2.雨棚检算: 主要验算雨棚的抗风性能即立柱抗拔能力,是否能满足要求。选取雨棚侧面一个立柱间距进行检算。 ①采用ANSYS 进行模型建立:钢管柱可简化为梁(beam3);其实常数(Real): 222220038.0))008.0216.0(16.0(4 141592654 .3)(4 m d D A =×??×= ?×= π 4544441060)144.016.0(32 )(32 m d D I ?×=?×= ?= π π m h 16.0= ②主拱架采用梁单元BEAM3,内部连杆采用杆构件单元link1参数如下: 主拱架: 222220004.0))003.0205.0(05.0(4 141592654 .3)(4 m d D A =×??×=?×= π 4744441046.2)044.005.0(32 )(32 m d D I ?×=?×= ?= π π m h 05.0= 内部连接杆: 222220004.0))003.0205.0(05.0(4 141592654 .3)(4 m d D A =×??×= ?×= π ③材料参数: 弹性模量: MPa EX 11102×=泊松比:17.0=ν ④约束:钢管柱底部简化为固定端约束。 ⑤荷载计算: a.桂林地区基本风压值为: 2/35.0m kN

第四章 静水压力计算习题及答案

第四章静水压力计算 一、是非题 1O重合。 2、静止液体中同一点各方向的静水压强数值相等。 3、直立平板静水总压力的作用点与平板的形心不重合。 4、静止水体中,某点的真空压强为50kPa,则该点相对压强为-50kPa。 5、水深相同的静止水面一定是等压面。 6、静水压强的大小与受压面的方位无关。 7、恒定总流能量方程只适用于整个水流都是渐变流的情况。 二、选择题 1、根据静水压强的特性,静止液体中同一点各方向的压强 (1)数值相等 (2)数值不等 (3)水平方向数值相等 (4)铅直方向数值最大 m,则该点的相对压强为 2、液体中某点的绝对压强为100kN/2 m (1)1kN/2 m (2)2kN/2 m (3)5kN/2 m (4)10kN/2 m,则该点的相对压强为 3、液体中某点的绝对压强为108kN/2 m (1)1kN/2 m (2)2kN/2 m (3)8kN/2 m (4)10kN/2 4、静止液体中同一点沿各方向上的压强 (1)数值相等 (2)数值不等 (3)仅水平方向数值相等 5、在平衡液体中,质量力与等压面 (1)重合 (2)平行 (3)正交 6、图示容器中有两种液体,密度ρ2 > ρ1 ,则A、B 两测压管中的液面必为 (1)B 管高于A 管 (2)A 管高于B 管 (3)AB 两管同高。

7、盛水容器a 和b 的测压管水面位置如图(a)、(b) 所示,其底部压强分别为pa和pb。若两容器内水深相等,则pa和pb的关系为 (1)pa>pb (2)pa< pb (3)pa=pb (4)无法确定 8 (1)牛顿 (2)千帕 (3)水柱高 (4)工程大气压 三、问答题 1、什么是相对压强和绝对压强? 2、在什么条件下“静止液体内任何一个水平面都是等压面”的说法是正确的? 3、压力中心D和受压平面形心C的位置之间有什么关系?什么情况下D点与C点重合? 4、图示为几个不同形状的盛水容器,它们的底面积AB、水深h均相等。试说明: (1)各容器底面所受的静水总压力是否相等? (2)每个容器底面的静水总压力与地面对容器的反力是否相等?并说明理由(容器的重量不计)。 四、绘图题 1、绘出图中注有字母的各挡水面上的静水压强分布。

隧洞衬砌结构计算书

隧洞衬砌结构计算书 项目名称___________ 日期________________ 设计者____________ 校对者______________ 一、示意图: 1.依据规范及参考书目: 《水工隧洞设计规范》(DL/T 5195-2004,以下简称《规范》)《水工混凝土结构 设计规范》(SL 191-2008),以下简称《砼规》《隧洞》(中国水利水电出版社,熊启钧编著) 《水工隧洞和调压室水工隧洞部分》(水利电力出版社,潘家铮编著)2.几何参数: 半跨宽度L1 = 2.000 m ;顶拱半中心角α=60.00° 拱顶厚度D1 =0.400 m;拱脚厚度D2 =0.600 m 侧墙厚度D3 =0.600 m;侧墙高度H2 = 4.000 m 隧洞衬砌断面形式:圆拱直墙形 底板厚度D4 =0.600 m 3.荷载信息:0.00 m 6.00 m ;外水压力折减系数β=0.40 Q1=70.00kN/m ;顶部 山岩压力中间值Q3=40.00kN/m ; 侧向山岩压力下侧值Q5= 0.00kN/m ;底部山岩压力中间值 顶拱围岩弹抗系数K1 =500.0 MN/m 3 侧墙围岩弹抗系数K2 =500.0 MN/m 3 底板围岩弹抗系数K3 =500.0 MN/m 3顶拱灌浆压力P d =0.00 kPa;P d 作用半中心角αp =0.00° 其他部 位灌浆压力P e =0.00 kPa 4.分项系数: 基本资料: 内水压力水头H i = 外水压力水头Ho = 顶部山岩压力端部值 侧向山岩压力上侧值 底部山岩压力端部值 Q2= 70.00kN/m Q4= 50.00kN/m

悬挑雨棚设计计算书

厂房雨棚结构设计计算书 一、工程概况 本设计是雨棚结构设计,为组合梁悬挑结构,悬挑宽度3.7米,根部为锚固端。根据实际使用情况,荷载计算不考虑风载;只考虑重力荷载及雨棚雪荷载。单元格计算宽度按照1m计算。 二、荷载计算 1、雪荷载标准值S k =μz S 0=0.3 KN/m2 2、恒载 铝塑板:45.7*2=0.0914 KN/m2 钢龙骨及支撑=0.19 KN/m2 60*30*2方管龙骨:3.7m*2*2.826kg/m=20.90kg 30*30*2方管龙骨:15.9m*1.884kg/m=29.96kg 相当于均布荷载q=0.0194+(20.9+29.96)*10/1000/3.7=0.157 KN/m2 三、荷载组合计算 雪荷载按洞口面积占构架轮廓面积的比率取0.7的系数折减并按照均布荷载计算。 恒+活(雪):q=1.2*0.157+1.4*0.3*1=0.608 KN/m 四、内力计算 1、内力计算模型见附图1。 按照悬臂梁弯矩计算公式:

最大弯矩M max=-1/2 ql2 =-0.5*0.608*3.72 =4.16KN*M 最大剪力V max= ql=0.608*3.7=2.25KN 五、截面验算 60*30*2组合钢梁有关截面特性计算结果如下: 断面面积:A=3.44cm2 *2=6.88 cm2 截面惯性距(单根龙骨)I0=(60*303-56*263)/12=52978.7mm4 I x=2(I0+A*y2)=2(52978.7+344*200*200)=2.76*107 mm4 截面抵抗距I x=2.76*107/215=1.28*105mm3 1、梁强度验算 σMAX=M max/(γ*w)=4.16*106/(1.05*128*103)=30.95<[f]=215满足要求。 τmax= V max/A=2.25*1000/688=3.27<[τ]=125N/mm2满足要求。 2、梁刚度验算: 根据扰度变形有关计算公式 梁变形f=ql4/(8*E*I) =0.125*0.608*37004/(206*1000*2.76*107) =25.05mm<37mm=l*1/100 满足要求。 六、螺栓及焊缝验算: 1、螺栓连接梁端部连接采用螺栓连接,梁端最大弯矩25.15KN*M 则上排螺栓最大平均拉力:

船舶静水力计算设计书

船舶静水力计算设计书 船舶静水力计算设计书 班级: 姓名: 成绩: 完成日期: 同组名单: 一.船舶静水力计算 1.船型简介(船名、线形特点、其他) 2.程序简要说明(开发单位、近似计算方法、程序语言、使用情况及可信度、其他) 3.列表计算指定纵倾(首、尾吃水)情况下,排水量△,浮心Xb,Zb。并在此基础上(按组)绘制费尔索夫曲线、v i-x i曲线和纵向下水曲线。 (1)绘制费尔索夫曲线的步骤 1) 在邦戎曲线上选取若干尾吃水d Ai,和若干首吃水d Fi。构成一族倾斜水线面。 2) 计算每根倾斜水线下的排水体积▽i 及浮心的坐标x Bi。并以首吃水为横坐标,以尾吃水为参数,绘制▽及x B 的辅助曲线图。 3) 读出排水体积▽(20)和浮心纵坐标 X B (0.0)等值线与各首吃水交点对应的尾吃水 4) 在费尔索夫曲线上绘制上述各等值线。

(2)计算vi–xi曲线。 1) 绘制极限破舱水线 在邦戎曲线上绘出核算水线和安全限界线,并在安全限界线的最低点处画水平的极限破舱水线PP,然后在首尾垂线向下取Z≈1.6D-1.5d,并将其3~4等分,过各分点做限界线的切线,得到一组极限破舱水线。 2) 计算各极限破舱水线下体积▽i 及对舯的体积静矩Mi用邦戎曲线分别计算▽, M, ▽i, M i,并用下式计算 vi = ▽i - ▽ xi = (Mi - M) / vi 将结果绘成vi–xi 曲线。

(3)下水曲线计算 1)尾浮前用邦戎曲线计算船舶浮力和浮心。以滑程X为参数,根据龙骨坡度β确定倾斜水线。尾浮以后船体浮力和浮心的计算: 2)尾浮后以滑程X为参数,按龙骨坡度β确定最高倾斜水线。适当选择几个低尾吃水,分别计算船体排水体积和浮心,做辅助图,用浮力对前支架力矩等于重力对前支架力矩确定实际尾吃水和浮力。 二.稳性校核 1.概述(船名、船舶类型,依据规范,航区) 2.船舶主尺度:Loa,Lpp,Lw,B,D,d,f(梁拱),Pe(功率),V(航速),W(货船载重量),Ab(舭龙骨),其他3.稳性计算书使用说明 经校核本船虽满足稳性要求, 但船长应根据装载、天气、水流等情况谨慎驾驶,确保船舶航运安全。 4.各种核算状态稳性总表 序号项目符号及公式单位满载出港满载到港空载出港空载到港 1 载货量 2 平均吃水 3 排水量 4 全船重心高 5 初稳性高 6 修正后初稳性高 7 规范要求初稳性高 8 舱室进水角 9 30度静稳性臂L30 10 规范要求静稳性臂L30’ 11 最大静倾角

隧道结构计算

一.基本资料 惠家庙公路隧道,结构断面尺寸如下图,内轮廓半径为 6.12m ,二衬 厚度为 0.45m 。围岩为 V 级,重度为19.2kN/m3,围岩弹性抗力系数为 1.6×105kN/m3,二衬材料为 C25 混凝土,弹性模量为 28.5GPa ,重度 为 23kN/m 3。考虑到初支和二衬分别承担部分荷载,二衬作为安全储备,对其围岩压力进行折减,对本隧道按照 60%进行折减。求二衬内力,作出内力图,偏心距分布图。 1)V1级围岩,二衬为素混凝土,做出安全系数分布图,对二衬安全性进行验算。 2)V2级围岩,二衬为钢筋混凝土,混凝土保护层厚度 0.035m ,按结构设计原理对其进行配筋设计。 二.荷载确定 1.围岩竖向均布压力:q=0.6×0.45?1 2-S γω 式中: S —围岩级别,此处S=5; γ--围岩重度,此处γ=19.2KN/3m ; ω--跨度影响系数,ω=1+i (m l -5),毛洞跨度m l =13.14+2?0.06=13.26m ,其中0.06m 为一侧平均超挖量,m l =5—15m 时,i=0.1,此处ω=1+0.1?(13.26-5)=1.826。 所以,有:q=0.6×0.451 -52 ??19.2?1.826=151.456(kPa )

此处超挖回填层重忽略不计。 2.围岩水平均布压力:e=0.4q=0.4?151.456=60.582(kPa ) 三.衬砌几何要素 5. 3.1 衬砌几何尺寸 内轮廓线半径126.12m , 8.62m r r == 内径12,r r 所画圆曲线的终点截面与竖直轴的夹角1290,98.996942φφ=?=?; 拱顶截面厚度00.45m,d = 墙底截面厚度n 0.45m d = 此处墙底截面为自内轮廓半径2r 的圆心向内轮廓墙底做连线并延长至与外轮廓相交,其交点到内轮廓墙底间的连线。 外轮廓线半径: 110 6.57m R r d =+= 2209.07m R r d =+= 拱轴线半径: '1200.5 6.345m r r d =+= '2200.58.845m r r d =+= 拱轴线各段圆弧中心角: 1290,8.996942θθ=?=? 5.3.2 半拱轴线长度S 及分段轴长S ? 分段轴线长度: '1 1190π 3.14 6.3459.9667027m 180180S r θ? = = ??=?? '2228.996942π 3.148.845 1.3888973m 180180S r θ?==??=?? 半拱线长度: 1211.3556000m S S S =+= 将半拱轴线等分为8段,每段轴长为: 11.3556 1.4194500m 88 S S ?= ==

很实用的雨篷计算范例

运达中央广场瑞吉南面雨篷系统计算书 设计: 校对: 审核: 批准: 中国建筑装饰集团有限公司 二零一四年九月

目录 瑞吉酒店雨篷系统计算 (1) §1、雨篷面荷载确定[标高:4.5m] (1) §2、雨篷8+1.52PVB+8mm夹胶玻璃面板计算 (3) §3、雨篷支撑钢架结构计算 (7) §4、雨篷支撑钢架结构固定钢梁计算 (14) §5、雨篷支撑钢架结构固定钢梁焊缝强度计算 (19)

瑞吉酒店雨篷系统计算 §1、雨篷面荷载确定[标高:4.5m] 雨篷系统分析包括8+1.52PVB+8mm 夹胶钢化玻璃和3mm 厚铝单板作饰面材料,为保守计算,按玻璃和铝单板自重平均值取,该部位最大计算标高5.0m ,玻璃区域单位面积自重为0.250kN/m 2(该值包括8+1.52PVB+8mm 夹胶钢化玻璃、3mm 铝单板、辅助型材及其它连 接附件,即在8+1.52PVB+8mm 夹胶钢化玻璃的单位面积自重的基础上考虑1.2倍的系数,但不包括支撑钢结构本身的自重,支撑钢结构本身的自重0.30 N/m 2)。 1.1、风荷载计算 根据《建筑结构荷载规范》GB50009-2012,,对于粗糙度为B 类的地区,该处的风压高度变化系数为μz =1.0,阵风风压系数βgz =1.7。 (1)、负风压风荷载体型系数取-1.3时的风荷载(用于顶部面板,为保守计算 现取值-1.3): 根据载荷确定的有关公式可得: =-1.70×1.0×1.3×0.35 =-0.774(kN/m 2) =-1.4×0.774=-1.083(kN/m 2) (2)、正风压风荷载体型系数取+1.3时的风荷载(作用于顶部面板,由于雨棚 属于悬挑结构,为保守计算现取值+1.3): =1.70×1.0×1.3×0.35 =0.774(kN/m 2) 0w w s z gz k μμβ=w 0w w s z gz k μμβ=

重力坝稳定及应力计算书..

5.1重力坝剖面设计及原则 5.1.1剖面尺寸的确定 重力坝坝顶高程1152.00m,坝高H=40.00m。为了适应运用和施工的需要,坝顶必须要有一定的宽度。一般地,坝顶宽度取坝高的8%~10%,且不小于2m。若有交通要求或有移动式启闭设施时,应根据实际需要确定。综合考虑以上因素,坝顶宽度m B10 。 考虑坝体利用部分水中增加其抗滑稳定,根据工程实践,上游边坡坡率n=0~0.2,下游边坡坡率m=0~0.8。故上游边坡坡率初步拟定为0.2,下游边坡坡率初步拟定为0.8。上游折坡点位置应结合应力控制标准和发电引水管、泄洪孔等建筑物的进口高程来定,一般折坡点在坝高的1/3~2/3附近,故初拟上游折坡点高程为1138.20m。下游折坡点的位置应根据坝的实用剖面形式、坝顶宽度,结合坝的基本剖面计算得到(最常用的是其基本剖面的顶点位于校核洪水位处),故初拟下游折坡点高程为1148.50m。 5.1.2剖面设计原则 重力坝在水压力及其他荷载的作用下,主要依靠坝体自重产生的抗滑力维持抗滑稳定;同时依靠坝体自重产生压应力来抵消由于水压力引起的拉应力以满足强度要求。 非溢流坝剖面设计的基本原则是:①满足稳定和强度要求,保证大坝安全;②工程量小,造价低;③结构合理,运用方便;④利于施工,方便维修。 遵循以上原则拟订出的剖面,需要经过稳定及强度验算,分析是否满足安全和经济的要求,坝体剖面可以参照以前的工程实例,结合本工程的实际情况,先行拟定,然后根据稳定和应力分析进行必要的修正。重复以上过程直至得到一个经济的剖面。 5.2重力坝挡水坝段荷载计算 5.2.1基本原理与荷载组合 重力坝的荷载主要有:自重、静水压力、扬压力、泥沙压力、浪压力、动水压力、冰压力、地震荷载等。本次设计取单位长度的坝段进行计算。相关荷载组合见表4.5。 表4.5 荷载组合表 组合情况相关 工况 自 重 静水 压力 扬压 力 泥沙 压力 浪压 力 冰压 力 地震 荷载 动水 压力 土压 力 基本正常√√√√√√

(完整版)XX水库供水隧洞结构计算书.doc

龙洞河水电站有压引水隧洞结构计算书 1工程概况 公明供水调蓄工程供水隧洞是从鹅颈至公明水库连通隧洞L0+387 桩号接往石岩水库的一条供水隧洞,全长 6.397km,桩号为 G0+000~G6+397。根据初步设计报告供水隧洞为 2 级建筑物,设计流量为 10.24m3/s,采用圆型断面,内径为 3.4m。供水隧洞进口底高程为 29.60m,出口底高程为 27.50m,隧洞全段纵坡为 -0.0328%。供水隧洞Ⅱ类围岩 3576m、Ⅲ 类围岩 1836m、Ⅳ类围岩 345m、Ⅴ类围岩 310m。 2设计依据 2.1 规范、规程 《水工隧洞设计规范》( SL279-2002)(以下简称“隧洞规范”) 《水工隧洞设计规范》( DL/T 5195-2004)(电力行业标准,下称“电力隧洞规范”)《水工钢筋混凝土结构设计规范(试行)》(SDJ20-78)(以下简称“砼规” ) 《锚杆喷射混凝土支护技术规范》(GB 50086-2001) 2.2 参考资料 《深圳市公明水库调蓄工程初步设计报告》(深圳市水利规划设计院, 2007.05) 《G-12 隧洞衬砌内力及配筋计算通用程序》 《PC1500 程序集地下结构计算程序使用中的几个问题》(新疆水利厅,张校正) 《取水输水建筑物丛书-隧洞》 《水工设计手册-水电站建筑物》(水利电力出版社, 1989) 《水击理论与水击计算》(清华大学出版社, 1981) 《水力学-下册》(吴持恭,高等教育出版社,1982) 3计算方法 隧洞支护及衬砌结构按新奥法理论进行设计,支护型式采用锚喷支护通过工程类比确 定,喷锚支护类型及其参数参照电力隧洞规范附录 F 表 F.1 选取;衬砌型式采用钢筋混凝 土衬砌。根据隧洞规范 6.1.8 条第 2 点规定,围岩具有一定的抗渗能力、内水外渗可能造 成不良地质段的局部失稳,经处理不会造成危害者,宜提出一般防渗要求,本工程按限制

玻璃雨棚计算书

巴东县山城汽车商贸中心商住楼幕墙工程 玻璃雨篷 设计计算书 设计: 校对: 审核: 批准: 武汉创高幕墙装饰工程有限责任公司 二〇一五年六月五日

目录 1 计算引用的规范、标准及资料 (1) 1.1 幕墙及采光顶相关设计规范: (1) 1.2 建筑设计规范: (1) 1.3 玻璃规范: (1) 1.4 钢材规范: (2) 1.5 胶类及密封材料规范: (2) 1.6 相关物理性能等级测试方法: (3) 1.7 《建筑结构静力计算手册》(第二版) (3) 1.8 土建图纸: (3) 2 基本参数 (3) 2.1 雨篷所在地区 (3) 2.2 地面粗糙度分类等级 (3) 3 雨篷荷载计算 (3) 3.1 雨篷的荷载作用说明 (3) 3.2 风荷载标准值计算 (4) 3.3 风荷载设计值计算 (6) 3.4 雪荷载标准值计算 (6) 3.5 雪荷载设计值计算 (6) 3.6 雨篷面活荷载设计值 (7) 3.7 雨篷构件恒荷载设计值 (7) 3.8 选取计算荷载组合 (7) 4 雨篷杆件计算 (8) (8) 4.1 悬臂梁的受力分析 (9) 4.2 选用材料的截面特性 (9) 4.3 梁的抗弯强度计算 (9) 4.4 梁的挠度计算 (10) 5 雨篷焊缝计算 (10) 5.1 受力分析 (10) 5.2 焊缝校核计算 (11) 6 玻璃的选用与校核 (11) 6.1 玻璃板块荷载组合计算 (12) 6.2 玻璃板块荷载分配计算 (12) 6.3 玻璃的强度计算 (13) 6.4 玻璃最大挠度校核 (14) 7 雨篷埋件计算(粘结型化学锚栓) (14) 7.1 校核处埋件受力分析 (15) 7.2 锚栓群中承受拉力最大锚栓的拉力计算 (15) 7.3 群锚受剪内力计算 (16) 7.4 锚栓钢材破坏时的受拉承载力计算 (16) 7.5 锚栓钢材受剪破坏承载力计算 (17) 7.6 拉剪复合受力承载力计算 8 附录常用材料的力学及其它物理性能 (18)

静水力计算

COMPASS 静水力计算 SRH11( Ver. 2010 ) 控 制 号 : 1234567 船 名 : 46 设 计 : 制 造 : 计算人员 : 建模日期 : 2014-10-18 计算日期 : 2014-10-21 中 国 船 级 社

垂线间长...............................................................................................................................................13.000m 型 宽................................................................................................................................................... 4.250m 型 深................................................................................................................................................... 1.913m 设计吃水...............................................................................................................................................0.589m 设计纵倾...............................................................................................................................................0.000m 单 位 定 义 ______________________________________________ 长度单位 : 米 [ m ] 重量单位 : 吨 [ t ] 角度单位 : 度 [deg] 坐 标 轴 定 义 ______________________________________________ X 轴 : 向右为正 Y 轴 : 向首为正 Z 轴 : 向上为正 纵倾 : 尾倾为正 横倾 : 右倾为正 _____________________________________________________________________________________________ 本程序可用于计算船舶的静水力数据。

钢雨棚计算书

钢雨棚计算书 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

钢结构雨篷设计计算书 一、计算依据: 1.《建筑结构荷载规范》 2.《钢结构设计规范》GB50017-2015 3.《建筑抗震设计规范》 4.《钢雨篷(一)》07SG528-1图集 二、计算基本参数: 1.本工程位于xx市,基本风压ω0=(kN/m2),考虑到结构的重要性,按50年 一遇考虑乘以系数,故本工程基本风压ω=。 2. 地面粗糙度类别按B类考虑,风压高度变化系数取米处(标高最高处),查荷载规范 知,取:?z=,对于雨篷风荷载向上取μs=,向瞬时风压的阵风系数βz= 。 3. 本工程耐火等级二级,抗震设防六度。 三、结构平面布置 结构平面布置图: 初步估计主梁采用:HN400×200×8×13 次梁采用:HN250×125×6×9 拉压杆采用:Φ152× 钢材均采用Q235级钢

四、荷载计算 1、风荷载 垂直于雨篷平面上的风荷载标准值,按下列公式计算: W k = ?z ?s ?z Wo ················ 式中: W k ---风荷载标准值 (kN/m2); ?z---瞬时风压的阵风系数;βz= ?s---风荷载体型系数;参照07GSG528-1图集说明条,向上取μs=,向下取μs=。 ?z---风荷载高度变化系数;按《建筑结构荷载规范》GB5009-2012取值μz=; W o---基本风压(kN/m2) ,查荷载规范,北海市风压取 W o =(kN/m2) 正风:Wk+=×××= kN/m2 负风:Wk-=×()××= kN/m2 简化为作用在主梁上的集中荷载,荷载作用面积A=×=㎡ 正风时,W k1=×= kN/m 负风时,W k2=×=m 2、恒荷载 07GSG528-1图集说明条,正风时,雨篷玻璃永久荷载 kN/m2,负风时取 kN/m2。 简化为作用在主梁上的集中荷载,荷载作用面积A=×=㎡ 正风时的雨篷玻璃永久荷载:×= KN/m 负风时的雨篷玻璃永久荷载:×= KN/m 次梁HN250×125×6×9,每米重,自重g次1=m。简化成在主梁上的集中荷载, G次=×= KN/m 主梁HN400×200×8×13,每米重66kg,自重g主=m。 正风时恒载的集中荷载G1=+= 负风时恒载的集中荷载G2=+= 3、活荷载 07GSG528-1图集说明条,钢雨篷活荷载标准值取 kN/m2 简化为作用在主梁上的集中荷载,荷载作用面积A=㎡ Q=×= KN/m 雨篷活荷载考虑满跨布置。 4、施工或检修荷载S q2 施工或检修荷载标准值为,沿雨篷宽度每隔一米取一个集中荷载,并布置在最不利位置。简化为在主梁上的集中力,主梁间距S=5080。近似取P=5×=。

隧道结构力学分析计算书

有限元基础理论与 ANSYS应用 —隧道结构力学分析 专业: 姓名: 学号: 指导教师: 2014年12月

隧道结构力学分析

目录 目录 (2) 1. 问题的描述........................................................ 错误!未定义书签。 2. 建模.................................................................... 错误!未定义书签。 2.1 定义材料....................................................................... 错误!未定义书签。 2.2 建立几何模型............................................................... 错误!未定义书签。 2.3 单元网格划分 (5) 3. 加载与求解 (6) 3.1 施加重力加速度 (6) 3.2 施加集中力、荷载位移边界条件 (6) 4. 后处理 (8) 4.1 初次查看变形结果 (8) 4. 2 除去受拉弹簧网格.............. (9) 4.3 除去弹簧单元网格 (10) 4. 4 查看内力和变形结果 (11) 4. 5 绘制变形图 (12) 5. 计算结果对比分析 (14) 6. 结语 (14) 7. 在做题过程中遇到的问题及解决方法 (16) 8. 附录 (16)

山岭隧道结构力学分析 1.问题的描述 已知双线铁路隧道总宽为13.3米,高为11.08米,以III级围岩深埋段为例,隧道而衬厚度为35cm,带仰拱,采用钢筋混凝土C30=25kN/m3,弹性模量为31GPa,泊松比为0.2,。该段该隧道的埋深为5米,围岩平均重度为23kN/m3,侧压力系数为0.3,计算围岩高度为6.588m,地层弹性抗力系数为500MPa/m。 试分析结构的应力和变形 图1双线铁路隧道断面(cm)

钢筋溷凝土雨蓬计算书

雨蓬计算书一、基本资料 1.设计规范: 《建筑结构荷载规范》(GB50009—2001) 《混凝土结构设计规范》(GB50010—2002) 《砌体结构设计规范》(GB50003—2001)2.设计参数: 几何信息 类型: 雨篷 梁宽b b: 250mm 梁高h b: 450mm 挑板宽L: 1000mm 梁槛高h a: 0mm 梁槛宽b a: 0mm 墙厚b w: 250mm 板下沉h0: 100mm 板斜厚h1: 0mm 板净厚h2: 100mm 上翻板高h3: 200mm 上翻板厚t1: 80mm 悬挑长度t2: 0mm 第一排纵筋至梁近边距离a s: 30mm 荷载信息 板端集中活载标准值P k: 1.00kN/m 板上均布活载标准值q k: 0.70kN/m2 板上均布恒载标准值g k: 0.80kN/m2 混凝土容重L: 28.00kN/m3 恒载分项系数G: 1.20 活载分项系数Q: 1.40 指定梁上抗倾覆荷载G r: 100.00kN/m 墙体容重W: 5.50kN/m3 过梁上墙高H w: 2550mm 墙洞宽l n: 3600mm 墙洞高h n: 0mm 梁伸入墙内D l: 500mm 墙洞下墙高h w: 2550mm 材料信息 混凝土等级: C30 混凝土强度设计值f c: 14.30N/mm2 主筋级别: HRB335(20MnSi) 主筋强度设计值f y: 300N/mm2 箍筋级别: HPB235(Q235) 强度设计值f yv: 210N/mm2 墙体材料: 砌块 砌体抗压强度设计值f: 1.700N/mm2

100 80 200 100 1000 250450 二、计算过程 1.计算过梁截面力学特性 根据混凝土结构设计规范式7.6.3-1过梁截面 W t = b 2 6 (3h - b ) = 2502 6 ×(3×450 - 250) = 11458333mm 3 cor = 2(b cor + h cor ) = 2×(250 - 30 × 2 + 450 - 30 × 2) = 1160mm 过梁截面面积 A = b b h b = 250×450 = 112500mm 2 2.荷载计算 2.1 计算x 0 x 0 = 0.13l 1, L 1 = b w x 0 = 32.50mm 2.2 倾覆荷载计算 g T = L ( h 1 + 2h 2 2) = 28.00×(0 + 2×1002 ) = 2.80kN/m 2 q T = G (g k + g T ) + Q q k = 1.20×(0.80 + 2.80) + 1.40×0.70 = 5.300kN/m 2 P T = G g F + Q P k = 1.20×0.45 + 1.40×1.00 = 1.94kN/m 倾覆力矩 M OV = 12 q T (L + x 0)2 + P T (L + x 0) = 12 ×5.30×(1000 + 32.50)2/106 + 1.94×(1000 + 32.50)/103 = 4.83kN·m 2.3 挑板根部的内力计算 M Tmax = M OV = 4.83kN·m V Tmax = q T L + p T = 5.30×1000/103 + 1.94 = 7.24kN/m 2.4 计算过梁内力 因为墙体材料是砌块,所以 h w0 = min(h w ,l n /2) = min(2550,3600/2) = 1800mm

船舶静水力曲线计算

船舶静水力曲线计算 一、船舶静水力曲线计算任务书 1、设计课题 1)800t油船静水力曲线图绘制 2)9000t油船静水力曲线图绘制 3)86.75m简易货船静水力曲线图绘制 4)5200hp拖船静水力曲线图绘制 5)7000t油船静水力曲线图绘制 6)12.5m多功能工作艇静水力曲线图绘制 2、设计任务 船舶静水力曲线的计算是在完成船舶静力学课程的教学任务下,按照静水力曲线计算课程设计的要求,在提供所设计船舶全套型线图纸的前提下,完成静水力曲线的计算和绘制。 3、计算方法 (1)计算机程序计算 (2)手工计算(包括:梯形法、辛氏法、乞氏法等)。 本课程设计计算以梯形法为例,因其原理相同,其余方法在此不做介绍,可参考教材和相关书籍。 4、完成内容 静水力曲线计算书一份及静水力曲线图一张(用A3坐标纸) 二、船舶静水力曲线计算指导书 本静水力曲线计算指导书以内河20t机动驳计算实例为例。 (一)前言 静水力曲线是表达船在静水正浮各种吃水情况下的各浮性及初稳性系数,并作为稳性计算、纵倾计算及其他计算的基础。通过计算可得到船舶的各项性能参数,其主要内容见表1。

表1 静水力曲线图的内容 (二)设计前的准备和已知条件 1、设计前的预习与准备 静水力曲线计算,首先是要熟悉所计算船的主尺度及各船型参数,然后是熟悉各类计算公式,选用计算方法。其次是进行计算,按计算结果绘制曲线图,最后进行检验和修改,完成静水力曲线的计算任务。 2、已知条件 20t内河机动驳型线图一套,梯形法表格一套,见静水力曲线计算书。 (三)设计的主要任务 1、计算公式 A=ι[(y0+y1+······+y n-1+y n)- 1 2 (y0+y n)] 梯形法基本式 A=ι[(y0+y1)+(y1+y2)+······+(y n-1+y n) ] 梯形法变上限积分式 式中:ι—等分坐标间距。注:y1表示各站号的纵坐标值(i=1,···,n) 2、静水力曲线计算表格及算例 在实际的计算中,采用下述表格很方便。表中附20t内河机动驳计算实例,供同学自己推演。

钢雨棚计算书

钢结构雨篷设计计算书 一、计算依据: 1.《建筑结构荷载规》 2.《钢结构设计规》GB50017-2015 3.《建筑抗震设计规》 4.《钢雨篷(一)》07SG528-1图集 二、计算基本参数: 1.本工程位于xx市,基本风压ω0=0.750(kN/m2),考虑到结构的重要性,按50年 一遇考虑乘以系数1.0,故本工程基本风压ω=1.0x0.75=0.75(kN/m2)。 2. 地面粗糙度类别按B类考虑,风压高度变化系数取5.0米处(标高最高处),查荷载规 知,取: z=1.00,对于雨篷风荷载向上取μs=-2.0,向瞬时风压的阵风系数βz=1.70 。 3. 本工程耐火等级二级,抗震设防六度。 三、结构平面布置 结构平面布置图: 初步估计主梁采用:HN400×200×8×13 次梁采用:HN250×125×6×9 拉压杆采用:Φ152×5.0 钢材均采用Q235级钢

四、荷载计算 1、风荷载 垂直于雨篷平面上的风荷载标准值,按下列公式(1.1)计算: W k = βz μs μz Wo ················(1.1) 式中: W k ---风荷载标准值 (kN/m2); βz---瞬时风压的阵风系数;βz=1.70 μs---风荷载体型系数;参照07GSG528-1图集说明5.1.4条,向上取μs=-2.0,向下取μs=1.0。 μz---风荷载高度变化系数;按《建筑结构荷载规》GB5009-2012取值μz=1.0; W o---基本风压(kN/m2) ,查荷载规,市风压取 W o =0.750(kN/m2) 正风:Wk+=1.70×1.0×1.0×0.75=1.28 kN/m2 负风:Wk-=1.70×(-2.0)×1.0×0.75=-2.55 kN/m2 简化为作用在主梁上的集中荷载,荷载作用面积A=5.08×1.1=5.59㎡ 正风时,W k1=1.28×5.59=7.12 kN/m 负风时,W k2=-2.55×5.59=-14.25kN/m 2、恒荷载 07GSG528-1图集说明5.1.1条,正风时,雨篷玻璃永久荷载0.8 kN/m2,负风时取0.3 kN/m2。简化为作用在主梁上的集中荷载,荷载作用面积A=5.08×1.1=5.59㎡ 正风时的雨篷玻璃永久荷载:0.8×5.59=4.47 KN/m 负风时的雨篷玻璃永久荷载:0.3×5.59=1.68 KN/m 次梁HN250×125×6×9,每米重29.7kg,自重g次1=0.30KN/m。简化成在主梁上的集中荷载,G次=0.30×5.08=2.53 KN/m 主梁HN400×200×8×13,每米重66kg,自重g主=0.66KN/m。 正风时恒载的集中荷载G1=2.53+4.47=7.00KN 负风时恒载的集中荷载G2=2.53+1.68=4.21KN 3、活荷载 07GSG528-1图集说明5.1.2条,钢雨篷活荷载标准值取0.5 kN/m2 简化为作用在主梁上的集中荷载,荷载作用面积A=5.59㎡ Q=0.5×5.59=2.80 KN/m 雨篷活荷载考虑满跨布置。 4、施工或检修荷载S q2 施工或检修荷载标准值为1.0KN,沿雨篷宽度每隔一米取一个集中荷载,并布置在最不利位置。简化为在主梁上的集中力,主梁间距S=5080。近似取P=5×1.0=5.0KN。

隧道衬砌台车结构计算书

隧道衬砌台车结构计算 书 The manuscript was revised on the evening of 2021

XXXXXXXXXX引水隧道项目衬砌台车计算书 编制: 校核: 审核: 2017年10月

xxxxx项目衬砌台车计算书 1、《xxxxx施工图设计》 2、《衬砌台车结构设计图》 3、《钢结构设计规范》(GB 50017-2003) 4、《混凝土结构设计规范》(GB 50010-2002) 2. 概况 xxxxx隧道衬砌模板系统及台车布置图如下图。隧道二衬模板由一顶模、两侧模组成,模板均由6mm钢板按照二衬外轮廓线卷制而成。顶模模板拱架环向主肋采用I10工字钢,加工成R=1447mm,L=3650mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm;侧模模板拱架环向肋板采用1524mm长的I14工字钢,侧模环向肋板在隧洞腰线以上部分加工成加工成R=1447mm,L=527mm的圆弧拱形,腰线以下加工成R=3327mm,L=997mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm。 衬砌台车由顶拱支撑、台车门架结构、走行系统、顶升系统及侧模支撑系统组成,纵向共9m长。顶拱支撑采用H200×200×立柱,纵向焊接通长的∠45*45*6的角钢组成钢桁架,焊接于台车门市框架主横梁上,支撑顶模。衬砌台车门式框架立柱采用H200×200×型钢、横梁、纵梁均采用I20a工字钢焊接组成,其节点处焊接1cm厚的三角连接钢板缀片进行加固。本衬砌台车与顶拱支撑焊接为一个整体。进行顶模的安装及拆除时,在轨道两侧支垫20*20*60cm的枕木,枕木上安放千斤顶进行台车和顶拱支撑系统的整体升

公寓楼地下车库出入口玻璃雨棚计算书

公寓楼地下车库出入口玻璃雨棚 结 构 计 算 书 2014年9月

---- 设计信息----- 钢梁钢材:Q235 梁跨度(m): 8、500 梁平面外计算长度(m): 3、000 钢梁截面:箱形截面: B*H*T1*T2=200*250*6*6 容许挠度限值[υ]: l/400 = 21、250 (mm) 强度计算净截面系数:1、000 计算梁截面自重作用: 计算 简支梁受荷方式: 竖向单向受荷 荷载组合分项系数按荷载规范自动取值 ----- 设计依据----- 《建筑结构荷载规范》(GB 50009-2012) 《钢结构设计规范》(GB 50017-2003)

----- 简支梁作用与验算----- 1、截面特性计算 A =5、2560e-003; Xc =1、0000e-001; Yc =1、2500e-001; Ix =4、9210e-005; Iy =3、4881e-005; ix =9、6761e-002; iy =8、1464e-002; W1x=3、9368e-004; W2x=3、9368e-004; W1y=3、4881e-004; W2y=3、4881e-004; 2、简支梁自重作用计算 梁自重荷载作用计算: 简支梁自重(KN): G =3、5071e+000; 自重作用折算梁上均布线荷(KN/m) p=4、1260e-001; 3、梁上恒载作用 荷载编号荷载类型荷载值1 荷载参数1 荷载参数2 荷载值2 1 1 0、79 0、00 0、00 0、00 4、梁上活载作用 荷载编号荷载类型荷载值1 荷载参数1 荷载参数2 荷载值2 1 1 0、79 0、00 0、00 0、00

计算书

1非溢流坝段设计计算 1.1设计校核洪水位的确定 由堰流公式 相应洪水位= 堰顶高程+ H0 H0=1.05H d B=Q/q n=B/b 式中:Q--流量m3/s B--溢流堰孔口宽m H0--堰顶以上作用水头 G--重力加速度9.8m3/s m—流量系数 n—孔口数 H d—堰面曲线定型设计水头 B—溢流孔的净宽 b—孔口净宽 q—单宽流量 --侧收循系数,根据闸墩厚度及墩头形状而定, =1, =0.95,m=0.502,q=60㎡/s,b=5m,堰顶高程=1057.00m 计算成果见表: 表5.2 堰顶高程 1.2坝顶高程的确定 坝顶高程分别按设计和校核两种情况,用以下公式进行计算:

波浪要素按官厅公式计算。公式如下: 1/3 1/121022000.0076gh gD v v v -??= ???...............................① 1/3.75 1/2.15022000.331gL gD v v v -??= ??? ...............................② 2 12z h H h cth L L ππ= ...............................③ 库水位以上的超高h ?: 1c z h h h h ?=++ 式中1h --波浪高度,m z h --波浪中心线超出静水位的高度,m c h --安全超高,m(查规范得,设计情况取0.3m,校核情况取0.2m) o v --计算风速。水库为正常蓄水位和设计洪水位时,宜用相应洪水期多年 平均最大风速的1.5~2.0倍,取19m/s ,校核洪水位时,宜用相应洪水期多年平均最大风速,15 m/s D-风区长度;取800m L--波长;M H--坝前水深 1.2.1.1 设计情况下 gD/v 02=9.8×800/192=21.72,在20—250之间,故h 的累积频率为5%的波高,带入①中, 9.8×h 5%/192=0.0076×19-1/12×(9.81×800/192)1/3 得h 5%=0.55m 查《混凝土重力坝设计规范》表B.6.3得 h 5%/hm=1.95 hm=0.55/1.95=0.282m h 1%/hm=2.42 h 1%=0.282×2.42=0.682m 将各值带入②得

相关文档