文档库 最新最全的文档下载
当前位置:文档库 › 双向二极管

双向二极管

双向二极管
双向二极管

双向触发二极管

此主题相关图片如下:

双向触发二极管(DIAC)属三层结构,具有对称性的二端半导体器件。常用来触发双向可控硅,在电路中作过压保护等用途。

图1是它的构造示意图。图2、图3分别是它的符号及等效电路,可等效于基极开路、发射极与集电极对称的NPN型晶体管。因此完全可用二只NPN晶体管如图4连接来替代。

双向触发二极管正、反向伏安特性几乎完全对称(见图5)。当器件两端所加电压U低于正向转折电压V(B0)时,器件呈高阻态。当U>V(B0)时,管子击穿导通进入负阻区。同样当U大于反向转折电压V(BR)时,管子同样能进入负阻区。转折电压的对称性用△V(B)表示。△V(B)=V(B0)-V(BR)。一般△V(B)应小于2伏。双向触发二极管的正向转折电压值一般有三个等级:20-60V、

100-150V、200-250V。由于转折电压都大于20V,可以用万用表电阻挡正反向测双向二极管,表针均应不动(RX10k),但还不能完全确定它就是好的。检测它的好坏,并能提供大于250V的直流电压的电源,检测时通过管子的电流不要大于是5mA。用晶体管耐压测试器检测十分方便。如没有,可用兆欧表按图6所示进

行测量(正、反各一次),电压大的一次V(BR)。例如:测一只DB3型二极管,第一次为27.5V,反向后再测为28V,则△V(B)=V(B0)-V(BR)=28V-27.5V=0.5V<2V,表明该管对称性很好。

图7是双向触发二极管与双向可控硅等元件构成的台灯调光电路。通过调节电位器R2,可以改变双向可控硅的导通角,从而改变通过灯泡的电流(平均值)实现连续调光。如果将灯泡换电熨斗、电热褥还可实现连续调温。

该电路在双向可控硅加散热器的情况下,可控负载功率可达500W,各元件参数见图所标注。

双向触发二极管典型应用电路

双向触发二极管是一种压敏负阻器件。在一般情况下,双向触发二极管呈高阻截止状态,当外加电压(不分正负)的幅值大于双向触发二极管的转折电压时,它便会击穿导通。

1.双向触发二极管在可控硅调压电路中的应用

双向触发二极管触发双向可控硅的调压电路是触发二极管的一种典型应用电路。图14-41所示的就是采用这种电路构成的交流调压电路。

当电路接通交流市电后,交流市电便通过负载电阻R1、电位器RP 、电阻R2 向电容器C充电只要电容器C上的充电电压高于双向触发二极管的转折电压.电容器C 便通过限流电阻R1以及双向触发二假管VD1向双向可控硅VS的控制极放电.触发可控硅VS 导通。改变电位器RP的阻值便可改变向C充电的速度.也就改变了双向可控硅的导通角。由于双向触发二极管在正、反电压下均能工作,所以整个电路可以工作于交流电的正、负两个半周。

2 ,过压保护电路

图14 -42 所示的是由双向触发二极管与双向可控硅组成的过压保护电路。电压正常工作时加在双向触发二极管两端的电压小于转折电压. VD1不导通,双向可控硅处于截止状态,负载RL可得到正常的供电。当供电电压超出限定值时,加在双向触发二极管两端的电压便会大于转折电压, VD1导通并触发双向可控硅使其也导通,使负载RL免受过压损害。请问可控硅

BTA16 6008 MAR 622得K极A极控制极分别是哪只脚

可控硅BTA16 “600B”

双向可控硅管脚表号为A1,A2,G 或TM1,TM2,G ,。

三脚朝上,散热器平面朝面,从左至右分别为,

A1,A2,G控制极双向可控硅

A极,K极G控制极(单向可控硅)

控制极信号加在A2-G,但也可以控制信号加在A1-G,这是双向可控硅特点!!!

封装TO-220AB

频率按照规定划分,以便有专业的交流语言:超低频:0.03-300Hz;极低频:300-3000Hz(音频) ;甚低频:3-300KHz;长波:30-300KHz ;中波:300-3000KHz;短波:3-30兆;甚高频:30-300兆;超高频:300-3000兆;特高频:3-30G;极高频:30-300G;远红外:300-3000G。

检测二极管

一)普通二极管的检测(包括检波二极管、整流二极管、阻尼二极管、开关二极管、续流二极管)是由一个PN结构成的半导体器件,具有单向导电特性。通过用万用表检测其正、反向电阻值,可以判别出二极管的电极,还可估测出二极管是否损坏。 1.极性的判别将万用表置于R×100档或R×1k档,两表笔分别接二极管的两个电极,测出一个结果后,对调两表笔,再测出一个结果。两次测量的结果中,有一次测量出的阻值较大(为反向电阻),一次测量出的阻值较小(为正向电阻)。在阻值较小的一次测量中,黑表笔接的是二极管的正极,红表笔接的是二极管的负极。 2.单负导电性能的检测及好坏的判断通常,锗材料二极管的正向电阻值为1kΩ左右,反向电阻值为300左右。硅材料二极管的电阻值为5 kΩ左右,反向电阻值为∞(无穷大)。正向电阻越小越好,反向电阻越大越好。正、反向电阻值相差越悬殊,说明二极管的单向导电特性越好。 若测得二极管的正、反向电阻值均接近0或阻值较小,则说明该二极管内部已击穿短路或漏电损坏。若测得二极管的正、反向电阻值均为无穷大,则说明该二极管已开路损坏。 3.反向击穿电压的检测二极管反向击穿电压(耐压值)可以用晶体管直流参数测试表测量。其方法是:测量二极管时,应将测试表的“NPN/PNP”选择键设置为NPN状态,再将被测二极管的正极接测试表的“C”插孔内,负极插入测试表的“e”插孔,然后按下“V(BR)”键,测试表即可指示出二极管的反向击穿电压值。 也可用兆欧表和万用表来测量二极管的反向击穿电压、测量时被测二极管的负极与兆欧表的正极相接,将二极管的正极与兆欧表的负极相连,同时用万用表(置于合适的直流电压档)监测二极管两端的电压。如图4-71所示,摇动兆欧表手柄(应由慢逐渐加快),待二极管两端电压稳定而不再上升时,此电压值即是二极管的反向击穿电压。

常用稳压二极管大全,

常用稳压管型号对照——(朋友发的) 美标稳压二极管型号 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7 1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V 需要规格书请到以下地址下载, 经常看到很多板子上有M记的铁壳封装的稳压管,都是以美标的1N系列型号标识的,没有具体的电压值,刚才翻手册查了以下3V至51V的型号与电压的对 照值,希望对大家有用 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9

1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V DZ是稳压管的电器编号,是和1N4148和相近的,其实1N4148就是一个0.6V的稳压管,下面是稳压管上的编号对应的稳压值,有些小的稳压管也会在管体 上直接标稳压电压,如5V6就是5.6V的稳压管。 1N4728A 3.3 1N4729A 3.6 1N4730A 3.9 1N4731A 4.3 1N4732A 4.7 1N4733A 5.1 1N4734A 5.6 1N4735A 6.2 1N4736A 6.8 1N4737A 7.5 1N4738A 8.2 1N4739A 9.1 1N4740A 10 1N4741A 11 1N4742A 12 1N4743A 13

双向触发二极管项目实施方案(申请材料)

双向触发二极管项目实施方案 一、项目总论 (一)项目名称 双向触发二极管项目 (二)规划设计机构 泓域咨询机构 (三)项目建设单位 xxx投资公司 (四)法定代表人 向xx (五)公司简介 成立以来,公司秉承“诚实、信用、谨慎、有效”的信托理念,将“诚信为本、合规经营”作为企业的核心理念,不断提升公司资产管理能力和风险控制能力。本公司秉承“以人为本、品质为本”的发展理念,倡导“诚信尊重”的企业情怀;坚持“品质营造未来,细节决定成败”为质量方针;以“真诚服务赢得市场,以优质品质谋求发展”的营销思路;以科学发展观纵观全局,争取实现行业领军、技术领先、产品领跑的发展目标。

公司在管理模式、组织结构、激励制度、科技创新等方面严格按照科 技型现代企业要求执行,并根据公司所具优势定位于高技术附加值产品的 研制、生产和营销,以新产品开拓市场,以优质服务参与竞争。强调产品 开发和市场营销的科技型企业的组织框架已经建立,主要岗位已配备专业 学科人员,包括科技奖励政策在内的企业各方面管理制度运作效果良好。 管理制度的先进性和创新性,极大地激发和调动了广大员工的工作热情, 吸引了较多适用人才,并通过科研开发、生产经营得以释放,因此,项目 承办单位较好的经济效益和社会效益。公司实行董事会领导下的总经理负 责制,推行现代企业制度,建立了科学灵活的经营机制,完善了行之有效 的管理制度。项目承办单位组织机构健全、管理完善,遵循社会主义市场 经济运行机制,严格按照《中华人民共和国公司法》依法独立核算、自主 开展生产经营活动;为了顺应国际化经济发展的趋势,项目承办单位全面 建立和实施计算机信息网络系统,建立起从产品开发、设计、生产、销售、核算、库存到售后服务的物流电子网络管理系统,使项目承办单位与全国 各销售区域形成信息互通,有效提高工作效率,及时反馈市场信息,为项 目承办单位的战略决策提供有利的支撑。 为了确保研发团队的稳定性,提升技术创新能力,公司在研发投入、 技术人员激励等方面实施了多项行之有效的措施。公司自成立以来,一直 奉行“诚信创新、科学高效、持续改进、顾客满意”的质量方针,将产品 的质量控制贯穿研发、采购、生产、仓储、销售、服务等整个流程中。公

二极管的作用

二极管的作用 1、整流 利用二极管单向导电性,可以把方向交替变化的交流电变换成单一方向的脉冲直流电。 2、开关 二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关。利用二极管的开关特性,可以组成各种逻辑电路。 3、限幅 二极管正向导通后,它的正向压降基本保持不变(硅管为0.7V,锗管为0.3V)。利用这一特性,在电路中作为限幅元件,可以把信号幅度限制在一定范围内。 4、续流 在开关电源的电感中和继电器等感性负载中起续流作用。 5、检波 在收音机中起检波作用。 6、变容 使用于电视机的高频头中。 7、显示 用于VCD、DVD、计算器等显示器上。 8、稳压 稳压二极管实质上是一个面结型硅二极管,稳压二极管工作在反向击穿状态。在二极管的制造工艺上,使它有低压击穿特性。稳压二极管的反向击穿电压恒定,在稳压电路中串入限流电阻,使稳压管击穿后电流不超过允许值,因此击穿状态可以长期持续并不会损坏。 9、触发 触发二极管又称双向触发二极管(DIAC)属三层结构,具有对称性的二端半导体器件。常用来触发双向可控硅,在电路中作过压保护等用途。 1、作用:二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。正因为二极管具有上述特性,无绳电话机中常把它用在整流、隔离、稳压、极性保护、编码控制、调频调制和静噪等电路中。电话机里使用的晶体二极管按作用可分为:整流二极管(如1N4004)、隔离二极管(如1N4148)、肖特基二极管(如BAT85)、发光二极管、稳压二极管等。 2、识别方法:二极管的识别很简单,小功率二极管的N 极(负极),在二极管外表大多采用一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极),也有采用符号标志为“P”、“N”来确定二极管极性的。发光二极管的正负极可从引脚长短来识别,长脚为正,短脚为负。 3、测试注意事项:用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。 4、常用的1N4000系列二极管耐压比较如下:型号 1N40011N4002 1N4003 1N4004 1N4005 1N4006 1N4007

二极管的知识点总结

半导体二极管 基本结构 PN 结加上管壳和引线,就成为半导体二极管。电路符号: 伏安特性

主要参数(直流,主要利用它的单向导电性,主要应用于整流、限幅、保护等等。) 1.最大整流电流I F 二极管长期使用时,允许流过二极管的最大正向平均电流。 2.反向击穿电压VBR 二极管反向击穿时的电压值。击穿时反向电流剧增,二极管的单向导电性被破坏,甚至过热而烧坏。 3.反向电流IR 指二极管加反向峰值工作电压时的反向电流。反向电流大,说明管子的单向导电性差,因此反向电流越小越好。反向电流受温度的影响,温度越高反向电流越大。硅管的反向电流较小,锗管的反向电流要比硅管大几十到几百倍。 主要参数(交流) 1.微变电阻 r D r D 是二极管特性曲线上工作点Q 附近电压的变化与电流的变化之 比: D D D i v r ??=

2.二极管的极间电容 势垒电容:势垒区是积累空间电荷的区域,当电压变化时,就会引起积累在势垒区的空间电荷的变化,这样所表现出的电容是势垒电容。扩散电容:为了形成正向电流(扩散电流),注入P 区的少子(电子)在P 区有浓度差,越靠近PN结浓度越大,即在P 区有电子的积累。同理,在N区有空穴的积累。正向电流大,积累的电荷多。这样所产生的电容就是扩散电容CD。 PN结高频小信号时的等效电路 晶体二极管模型

二极管分类按结构材料分: (1)锗二极管 (2)硅二极管 按制作工艺分:

(1)点接触型二极管:pn结面积小,结电容小,用于检波和变频等高频电路。 (2)面接触型二极管:结面积大,用于工频大电流整流电路。 (3)平面型二极管:往往用于集成电路制造工艺中。pn结面积可大可小,用于高频整流和开关电路中。 按功能用途分: (1)硅整流二极管:硅整流二极管除主要应用于电源电路做整流元件外,还可用作限幅、保护、钳位等。(常用整流二极管主要是1n、2cz 系列) (2)检波二极管:检波二极管的结点容小、工作频率高、正向压降小,但允许流过的最大正向电流小、内阻大。多用于小信号、高频率的电路,用作检波、鉴频、限幅。(常用检波二极管主要是2ap系列) (3)稳压二极管:利用稳压二极管的反向击穿特性,用作稳压基准电压、保护、限幅、电平转换等。其中2dw230~2dw232稳压管内部具有温度补偿,电压温度系数低,可用于精密稳压电路。(常用稳压二极管主要是1n、2cw、2dw系列) (4)光敏二极管:利用光敏二极管在光的照射下,反向电流与光照成正比的特性,应用于光电转换及光控、测光等自动控制电路中。(常用硅光敏二极管主要是2cu、2du系列) (5)变容二极管:变容二极管的结电容可以随外加偏压的不同而变化,主要应用于lc调谐、自动频率控制稳频等场合。(常用变容二极管主要是2cc、1n系列)

稳压二极管并联型稳压电路

河北经济管理学校教案 序号:1编号:JL/JW/7.5.1.03 4.18授课主题稳压二极管并联型稳压电路 教学目的1.掌握稳压二极管并联型稳压电源电路的组成及各部分作用 2.能按工艺流程安装与测试稳压二极管并联型稳压电源电路 教学 重点、难点重点:稳压电源的组成及各部分作用 难点:稳压电源安装完成后,各部分参数的测量及故障的解决 教学准备教案,板书,教材 教学过程设计与时间分配 一、课堂导入与提问(10min) 二、讲授新课(55min) 1.直流稳压电源的概念 2.稳压电源中的稳压电路按电压调整元件与负载RL连接方式之不同可分为两种稳压类型 3.简单的直流稳压电源及其结构 4.并联型直流稳压电路的优缺点 5.串联型稳压电路简介 三、课堂小结(15min) 四、布置作业(10min)

河北经济管理学校教案 教案内容 一、导入与提问(10min) 举例手机充电器 二、讲授新课(55min) 1.直流稳压电源的概念 直流稳压电源是一种当电网电压变化时,或者负载发生变化时,输出电压能基本保持不变的直流电源 2.稳压电源中的稳压电路按电压调整元件与负载RL连接方式之不同可分为两种稳压类型(1)并联型稳压电路(2)串联型稳压电路 调整元件与负载RL并联,如上图所示 3.简单的直流稳压电源及其结构 (1)第一部分为变压器 它的作用是改变电压 我们接入的市电是交流电,电压有效值是220V,而我们平时用的直流电压较小,并且稳压

就是把原来交流电的负半周整流到正半周,而原正半周仍保持不变 (3)第三部分是一个电容器,为滤波电路 它的作用是对整流后的电流进行滤波,利用电容器的充放电功能,把原来起伏变化较大电压转换成起伏变化较小的电压 (4)第四部分为调整元件部分 它的作用是对输出电压进行稳定,使输出电压为一个稳定的值 它是利用稳压二极管的反向击穿特性,如下图所示为二极管的伏安特性曲线 二极管在反向电压击穿的时候其两端电压能其本保持稳定,即使在通过它的电流发生一些变化时也能基本保持稳定。 在这里我们把稳压二极管与负载并联后,反偏接入电路,调整电压,使其呈反向电击穿状

肖特基二极管与快恢复二极管区别

肖特基二极管和快恢复二极管又什么区别 (他们恢复时间都是很快的): 快恢复二极管是指反向恢复时间很短的二极管(5us以下),工艺上多采用掺金措施,结构上有采用PN结型结构,有的采用改进的PIN结构。其正向压降高于普通二极管(1-2V)(此处为什么不提是什么材料?),反向耐压多在1200V以下。从性能上可分为快恢复和超快恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100纳秒以下。 肖特基二极管是以金属和半导体接触形成的势垒为基础的二极管,简称肖特基二极管(Schottky Barrier Diode),具有正向压降低(0.4--0.5V)(用这个方法可以判断出该器件)、反向恢复时间很短(10-40纳秒),而且反向漏电流较大,耐压低,一般低于150V,多用于低电压场合。 这两种管子通常用于开关电源。 肖特基二极管和快恢复二极管区别:前者的恢复时间比后者小一百倍左右,前者的反向恢复时间大约为几纳秒~! 前者的优点还有低功耗,大电流,超高速~!电气特性当然都是二极管阿~! 快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做整流元件. 肖特基二极管:反向耐压值较低40V-50V,通态压降0.3-0.6V,小于10nS的反向恢复时间。它是具有肖特基特性的“金属半导体结”的二极管。其正向起始电压较低。其金属层除材料外,还可以采用金、钼、镍、钛等材料。其半导体材料采用硅或砷化镓,多为N型半导体。这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。其工作频率可达100GHz。并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。 快恢复二极管:有0.8-1.1V的正向导通压降,35-85nS的反向恢复时间,在导通和截止之间迅速转换,提高了器件的使用频率并改善了波形。快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做整流元件. 想问一下,为何会有反向恢复时间

肖特基二极管讲解

肖特基二极管简介 肖特基二极管(SBD)是肖特基势垒二极管(SchottkyBarrierDiode,缩写成SBD)的简称,是以其发明人肖特基博士(Schottky)命名的半导体器件。肖特基二极管是低功耗、大电流、超高速半导体器件,它不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。 Schottky diode (SBD) is the Schottky barrier diode , is the inventor of the Schottky named semiconductor device. Schottky barrier diode is a low power, high current, super high speed semiconductor devices, instead of using P type semiconductor and the n-type semiconductor contact formation PN junction theory to make, but the use of metal semiconductor contact formation of metal semiconductor junction with the principle of making the. Therefore, SBD is also known as a metal semiconductor (contact) diode or a surface barrier diode, which is a hot carrier diode. 肖特基二极管是半导体器件,以其发明人博士(1886年7月23日—1976年3月4日)命名的,SBD是肖特基势垒二极管(SchottkyBarrierDiode,缩写成SBD)的简称。 SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。

常用稳压二极管技术参数及老型号代换.

常用稳压二极管技术参数及老型号代换 型号最大功耗 (mW) 稳定电压(V) 电流(mA) 代换型号国产稳压管日立稳压管 HZ4B2 500 3.8 4.0 5 2CW102 2CW21 4B2 HZ4C1 500 4.0 4.2 5 2CW102 2CW21 4C1 HZ6 500 5.5 5.8 5 2CW103 2CW21A 6B1 HZ6A 500 5.2 5.7 5 2CW103 2CW21A HZ6C3 500 6 6.4 5 2CW104 2CW21B 6C3 HZ7 500 6.9 7.2 5 2CW105 2CW21C HZ7A 500 6.3 6.9 5 2CW105 2CW21C HZ7B 500 6.7 7.3 5 2CW105 2CW21C HZ9A 500 7.7 8.5 5 2CW106 2CW21D HZ9CTA 500 8.9 9.7 5 2CW107 2CW21E HZ11 500 9.5 11.9 5 2CW109 2CW21G HZ12 500 11.6 14.3 5 2CW111 2CW21H HZ12B 500 12.4 13.4 5 2CW111 2CW21H HZ12B2 500 12.6 13.1 5 2CW111 2CW21H 12B2 HZ18Y 500 16.5 18.5 5 2CW113 2CW21J HZ20-1 500 18.86 19.44 2 2CW114 2CW21K HZ27 500 27.2 28.6 2 2CW117 2CW21L 27-3 HZT33-02 400 31 33.5 5 2CW119 2CW21M RD2.0E(B) 500 1.88 2.12 20 2CW100 2CW21P 2B1 RD2.7E 400 2.5 2.93 20 2CW101 2CW21S RD3.9EL1 500 3.7 4 20 2CW102 2CW21 4B2 RD5.6EN1 500 5.2 5.5 20 2CW103 2CW21A 6A1 RD5.6EN3 500 5.6 5.9 20 2CW104 2CW21B 6B2 RD5.6EL2 500 5.5 5.7 20 2CW103 2CW21A 6B1 RD6.2E(B) 500 5.88 6.6 20 2CW104 2CW21B RD7.5E(B) 500 7.0 7.9 20 2CW105 2CW21C RD10EN3 500 9.7 10.0 20 2CW108 2CW21F 11A2 RD11E(B) 500 10.1 11.8 15 2CW109 2CW21G RD12E 500 11.74 12.35 10 2CW110 2CW21H 12A1 RD12F 1000 11.19 11.77 20 2CW109 2CW21G RD13EN1 500 12 12.7 10 2CW110 2CW21H 12A3 RD15EL2 500 13.8 14.6 15 2CW112 2CW21J 12C3 RD24E 400 22 25 10 2CW116 2CW21H 24-1

双向触发二极管的应用

双向触发二极管的应用 双向触发二极管亦称二端交流器件( DIAC ),与双向晶闸管同时问世。由于它结构简单、价格低廉,所以常用来触发双向晶闸管,还可构成过压保护等电路。 双向触发二极管的构造、符号及等效电路如图 1 所示。它属于三层构造、具有对称性的二端半导体器件,可等效于基极开路、发射极与集电极对称的 NPN 晶体管。其正、反向伏安特性完全对称,见图 2 。当器件两端的电压 V 小于正向转折电压 V ( BO )时,呈高阻态,当 V > V ( BO )时进入负阻区。同样,当 V 超过反向转折电压 V ( BR )时,管子也能进入负阻区。转折电压的对称性用ΔV ( B )表示,ΔV ( B ) =V ( BO ) -V ( BR )。一般要求ΔV ( B )< 2V 。双向触发二极管的耐压值( V ( BO )大致分 3 个等级: 20 ~ 60V , 100 ~ 150V , 200 ~ 250V 。 下面介绍用兆欧表和万用表检查双向触发二极管的方法。 (1 )将万用表拨于R×1k (或R×10k 档),因为DIAC 的V (BO )值均在20V 以上,所以测量正、反向电都应是无穷大。 (2 )按图3 所示接好电路。由兆欧表提供击穿电压,并用直流电压档测量DIAC 的正向转折电压V (BO 。然后调换DIAC 的电极,测出反向转折电压V (BR )。最后检查转折电压的对称性 实例:选择ZC25 -3 型兆欧表,将500 型万用表拨至50V 档,被测触发二极管为DB3 型,其外形与检波二极管相似,管壳呈天蓝色。主要参数是:V (BO )=35V (典型值),峰值脉冲电流I PK =5mA 。首先用R× 1k 档测量正、反向电阻均为无穷大,然后按图 3 所示分两次测得:V (BO )

稳压二极管的使用方法《别下》

稳压二极管工作在反向击穿状态时,其两端的电压是基本不变的。利用这一性质,在电路里常用于构成稳压电路。 稳压二极管构成的稳压电路,虽然稳定度不很高,但却具有简单、经济实用的优点,因而应用非常广泛。 在实际电路中,要使用好稳压二极管,应注意如下几个问题。 1、要注意一般二极管与稳压二极管的区别方法。不少的一般二极管,特别是玻璃封装的管,外形颜色等与稳压二极管较相似,如不细心区别,就会使用错误。区别方法是:看外形,不少稳压二极管为园柱形,较短粗,而一般二极管若为园柱形的则较细长;看标志,稳压二极管的外表面上都标有稳压值,如5V6,表示稳压值为 5.6V;用万用表进行测量,根据单向导电性,用X1K挡先把被测二极管的正负极性判断出来,然后用X10K挡,黑表笔接二极管负极,红表笔接二极管正极,测的阻值与X1K挡时相比,若出现的反向阻值很大,为一般二极管的可能性很大,若出现的反向阻值变得很小,则为稳压二极管。 2、注意稳压二极管正向使用与反向使用的区别。稳压二极管正向导通使用时,与一般二极管正向导通使用时基本相同,正向导通后两端电压也是基本不变的,都约为0.7V。从理论上讲,稳压二极管也可正向使用做稳压管用,但其稳压值将低于1V,且稳压性能也不好,一般不单独用稳压管的正向导通特性来稳压,而是用反向击穿特性来稳压。反向击穿电压值即为稳压值。有时将两个稳压管串联使用,一个利用它的正向特性,另一个利用它的反向特性,则既能稳压又可起温度补偿作用,以提高稳压效果。 3、要注意限流电阻的作用及阻值大小的影响。在稳压二极管稳压电路中,一般都要串接一个电阻R,如图1或2示。该电阻在电路中起限流和提高稳压效果的作用。若不加该电阻即当R=0时,容易烧坏稳压管,稳压效果也会极差。限流电阻的阻值越大,电路稳压性能越好,但输入与输出压差也会过大,耗电也就越多。 4、要注意输入与输出的压差。正常使用时,稳压二极管稳压电路的输出电压等于稳压管反向击穿后两端的稳压值,若输入到稳压电路中的电压值小于稳压管的稳压值,则电路将失去稳压作用,只有是大于关系时,才有稳压作用,

常用稳压管型号参数大全

常用稳压管型号 2009-12-06 22:56 美标稳压二极管型号 TLV4732运算放大器,可饱和输出。当单电源供电时,可作为0V和5V的稳压器。 其他的如LM358等放大器,输出均不能达到0V或者5V,一般为4V。 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7 1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V

1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V 需要规格书请到以下地址下载, https://www.wendangku.net/doc/b518568500.html,/products/Rectifiers/Diode/Zener/ 经常看到很多板子上有M记的铁壳封装的稳压管,都是以美标的1N系列型号标识的,没有具体的电压值,刚才翻手册查了以下3V至51V的型号与电压的对照值,希望对大家有用 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7

1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V

稳压二极管分类

就被二极管所吸收,所以当开关断开时,开关的电弧也就被消除了.这个应用电路在工业上用得比较多,如一些较大功率的电磁吸控制电路就用到它. 4、串联型稳压电路(如图5):在此电路中,串联稳压管BG的基极被稳压二极管D钳定在13V,那么其发射极就输出恒定的12V电压了.这个电路在很多场合下都有应用Transient Voltage Suppressors(TVS)瞬态电压抑制二极管 概述 电压及电流的瞬态干扰是造成电子电路及设备损坏的主要原因,常给人们带来无法估量的损失。这些干扰通常来自于电力设备的起停操作、交流电网的不稳定、雷击干扰及静电放电等,瞬态干扰几乎无处不在、无时不有,使人感到防不胜防。幸好,一种高效能的电路保护器件TVS的出现使瞬态干扰得到了有效抑制TVS(TRANSIENT VOLTAGE SUPPRESSOR)或称瞬变电压抑制二极管是在稳压管工艺基础上发展起来的一种新产品,其电路符号和普通稳压二极管相同,外形也与普通二极管无异,当TVS管两端经受瞬间的高能量冲击时,它能以极高的速度(最高达1*10-12秒)使其阻抗骤然降低,同时吸收一个大电流,将其两端间的电压箝位在一个预定的数值上,从而确保后面的电路元件免受瞬态高能量的冲击而损坏。 TVS的特性及其参数(参数表见附表) https://www.wendangku.net/doc/b518568500.html,S的特性 如果用图示仪观察TVS的特性,就可得到图1中左图所示的波形。如果单就这个曲线来看,TVS管和普通稳压管的击穿特性没有什么区别,为典型的PN结雪崩器件。

但这条曲线只反映了TVS特性的一个部分,还必须补充右图所示的特性曲线,才能反映TVS的全部特性。这是在双踪示波器上观察到的TVS管承受大电流冲击时的电流及电压波形。图中曲线1是TVS管中的电流波形,它表示流过TVS管的电流由1mA 突然上升到峰值,然后按指数规律下降,造成这种电流冲击的原因可能是雷击、过压等。曲线2是TVS管两端电压的波形,它表示TVS中的电流突然上升时,TVS两端电压也随之上升,但最大只上升到VC值,这个值比击穿电压VBR略大,从而对后面的电路元件起到保护作用。 2、TVS的参数 TVS在电路中和稳压管一样,是反向使用的,图2所示为单向TVS的工作曲线图。各参数说明如下: A.击穿电压(VBR):TVS在此时阻抗骤然降低,处于雪崩击穿状态。 B.测试电流(IT):TVS的击穿电压VBR在此电流下测量而得。一般情况下IT取1MA。 C.反向变位电压(VRWM):TVS的最大额定直流工作电压,当TVS两端电压继续上升,TVS将处于高阻状态。此参数也可被认为是所保护电路的工作电压。 D.最大反向漏电流(IR):在工作电压下测得的流过TVS的最大电流。 E.最大峰值脉冲电流(IPP):TVS允许流过的最大浪涌电流,它反映了TVS的浪涌抑制能力。 F.最大箝位电压(VC):当TVS管承受瞬态高能量冲击时,管子中流过大电流,峰值为IPP,端电压由VRWM值上升到VC值就不再上升了,从而实现了保护作用。浪涌过后,随时间IPP以指数形式衰减,当衰减到一定值后,TVS两端电压由VC开始下降,恢复原来状态。最大箝位电压VC与击穿电压VBR之比称箝位因子Cf,表示为Cf= VC /VBR,一般箝位因子仅为1.2~1.4。 G.峰值脉冲功率(PP):PP按峰值脉冲功率的不同TVS分为四种,有500W、600W、1500W和5000W。 最大峰值脉冲功率:最大峰值脉冲功率为:PN=VC·IPP。显然,最大峰值脉冲功

肖特基二极管简介

肖特基二极管 简介 肖特基二极管是以其发明人肖特基博士(Schottky)命名的,SBD是肖特基势垒二极管(SchottkyBarrierDiode,缩写成SBD)的简称。SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。 是近年来问世的低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千毫安。这些优良特性是快恢复二极管所无法比拟的。中、小功率肖特基整流二极管大多采用封装形式。 原理 肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因为N 型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度

高的B中向浓度低的A中扩散。显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。随着电子不断从B扩散到A,B表面电子浓度逐渐降低,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。 典型的肖特基整流管的内部电路结构是以N型半导体为基片,在上面形成用砷作掺杂剂的N-外延层。阳极使用钼或铝等材料制成阻档层。用二氧化硅(SiO2)来消除边缘区域的电场,提高管子的耐压值。N型基片具有很小的通态电阻,其掺杂浓度较H-层要高100%倍。在基片下边形成N+阴极层,其作用是减小阴极的接触电阻。通过调整结构参数,N型基片和阳极金属之间便形成肖特基势垒,如图所示。当在肖特基势垒两端加上正向偏压(阳极金属接电源正极,N型基片接电源负极)时,肖特基势垒层变窄,其内阻变小;反之,若在肖特基势垒两端加上反向偏压时,肖特基势垒层则变宽,其内阻变大。 综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别通常将PN结整流管称作结整流管,而把金属-半导管整流管叫作肖特基整流管,近年来,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可节省贵金属,大幅度降低成本,还改善了参数的一致性。 优点 SBD具有开关频率高和正向压降低等优点,但其反向击穿电压比较低,大多不高于60V,最高仅约100V,以致于限制了其应用范围。像在开关电源(SMPS)和功率因数校正(PFC)电路中功率开关器件的续流二极管、变压器次级用100V以上的高频整流二极管、RCD缓冲器电路中用600V~1.2kV的高速二极管以及PFC升压用600V二极管等,只有使用快速恢复外延二极管(FRED)和超快速恢复二极管(UFRD)。目前UFRD的反向恢复时间Trr也在20ns以上,根本不能满足像空间站等领域用1MHz~3MHz的SMPS需要。即使是硬开关为100kHz的SMPS,由于UFRD的导通损耗和开关损耗均较大,壳温很高,需用较大的散热器,从而使SMPS 体积和重量增加,不符合小型化和轻薄化的发展趋势。因此,发展100V以上的高压SBD,一直是人们研究的课题和关注的热点。近几年,SBD已取得了突破性的进展,150V和200V的高压SBD已经上市,使用新型材料制作的超过1kV的SBD也研制成功,从而为其应用注入了新的生机与活力。 结构 新型高压SBD的结构和材料与传统SBD是有区别的。传统SBD是通过金属与半导体接触而构成。金属材料可选用铝、金、钼、镍和钛等,半导体通常为硅(Si)或砷化镓(GaAs)。由于电子比空穴迁移率大,为获得良好的频率特性,故选用N 型半导体材料作为基片。为了减小SBD的结电容,提高反向击穿电压,同时又不使串联电阻过大,通常是在N+衬底上外延一高阻N-薄层。其结构示图如图1(a),图形符号和等效电路分别如图1(b)和图1(c)所示。在图1(c)中,CP是管壳

常用5W稳压二极管参数

常用5W稳压管参数 二极管 1N5333 5W\3.3V 二极管 1N5333A 5W\3.3V 二极管 1N5333B 5W3.3V 二极管 1N5334 5W\3.6V 二极管 1N5335 5W\3.9V 二极管 1N5336 5W\4.3V 二极管 1N5337 5W\4.7V 二极管 1N5338 5W\5.1V 二极管 1N5339 5W\5.6V 二极管 1N5340 5W\6.0V 二极管 1N5341 5W\6.2V 二极管 1N5342 5W\6.8V 二极管 1N5343 5W\7.5V 二极管 1N5344 5W\8.2V 二极管 1N5345 5W\8.7V 二极管 1N5346 5W\9.1V 二极管 1N5347 5W\10V 二极管 1N5348 5W\11V 二极管 1N5349 5W\12V 二极管 1N5350 5W\13V 1N5351 5W\14V 1N5352 5W\15V 1N5353 5W\16V 1N5354 5W\17V 1N5355 5W\18V 1N5356 5W\19V 1N5357 5W20V 1N5358 5W\22V 1N5359 5W\24V 1N5360 5W\25V 1N5361 5W\27V 1N5362 5W\28V 1N5363 5W\30V 1N5364 5W\33V 1N5365 5W\36V 1N5366 5W\39V 1N5367 5W\43V 1N5368 5W\47V 1N5369 5W\51V

1N5370 5W\56 1N5371 5W\60V 1N5372b 5W\62V 1N5373 5W\68V 1N5374 5W\75V 1N5375 5W\82V 1N5376 5W\87V 1N5377 5W\91V 1N5378 5W\100V 1N5379 5W\110 1N5380 5W\120V 1N5381 5W\130V 1N5382 5W\140V 1N5383 5W\150V 1N5384 5W\160V 1N5385 5W\170V 1N5386 5W\180V 1N5387 5W\190V 1N5388 5W 200V

双向触发二极管 DB6

Feature s 1. V BO : 60V (TYP) 2. Breakover voltage range: 56 to 70V Applications Functioning as a trigger diode with a fixed voltage reference, the DB 6 can be used in conjunction with triacs for simplified gate control circuits or as a starting element in fluorescent lamp ballasts. Absolute Maximum Ratings (Limiting values) Parameter Symbol Value Unit Repetitive peak on-state current (tp=20μs F=120 Hz) I TRM 2 A Operating junction temperature range T j -40 ~ +125 ℃ Storage temperature range T stg -40 ~ +125 ℃ Electrical Characteristics (T j =25℃ unless otherwise specified) Parameter Symbol Test Conditions Value Unit MIN. 56 TYP . 60 Breakover voltage* V BO MAX. 70 V Breakover voltage symmetry |V BO1-V BO2| MAX. ±5 V Dynamic breakover voltage* △V V BO and V F at 10mA MIN. 10 V Output voltage* V O see diagram 2(R=20Ω) MIN. 5 V Breakover current* I BO MAX. 50 μA Rise time* tr see diagram 3 MAX. 2 μs Leakage current* I R V R =0.5V BO max MAX. 10 μA *Applicable to both forward and reverse directions. **Connected in parallel to the device.

2CW56稳压二极管串并联伏安特性研究

实验项目名称:2CW56稳压二极管串并联伏安特性研究__________ 一、实验目的 1,了解稳压二极管的工作特性2, 了解稳压二极管串并联伏安特性 二、实验器材 电流表(6mA)、电压表(15V)、两个2CW56稳压二极管、滑动变阻器1000门、限流电阻(2000 )、稳压电流源(15V),各种功能开关及导线若干 二、实验原理 稳压二极管是一种单向导电性的半导体元件。二极管的正向电流与电压、反向电流与电压之间的关系可用I?V特性曲线表示,如图21. 2。从图中可看出,给二极管两端加以正向电压,二极管表现为一个低阻值的非线性电阻,当正向电压超过某一数值(该电压值称门坎电压)时,正向电流随电压增加而迅速增大。实验表明,迅速增大的电流值有一最大限度,这个最大限度称为二极管的最大正向电流。给二极管两端加以反向电压,二极管表现为一个高阻值电阻。当电压增大到一定值时,反向电流会突然增大,这时对应的反向电压称为反向击穿电压。在含有二极管的非线性电阻电路中,二极管的伏安特性曲线对电路分析起着重要的作用。 6 2CW56伏安曲线 用伏安法测电阻有电流表内接法和外接法:

(1)电流表内接法 如右图所示,电流表内接法。电流表测出的电 流I 就是通过待测电阻 &的电流l x ,但电压表测出 的电压U 应等于R x 两端的电压U x 与电流表内阻R A 上的电压U A 之和。 R 由此式可知,电阻的测量值 R 测比实际值R x 要大, A 是由于电流表内接带来的误差, R x 称为接入误差。在粗略测量的情况下,一般在R x ?? R A (如R x 为几千欧)时用“内接法”。 (2)电流表外接法 由此式可知,电阻的测量值 R 测比实际值R x 要小,x 是由于电流表外接带来的接入误 R V 差。在粗略测量的情况下,一般在 R x 「:: R V (如R x 为几欧或几十欧)时用“外接法”。 四、实验步骤 1、2CW56反向偏置0?7V 左右时阻抗很大,拟采用电流表内接测试电路为宜;反向 偏置电压进入击穿段,稳压二极管内阻较小 (估计为R=8/0.008=1^1 ),这时拟采用电流表 外接测试电路。,测试电路图见图1-4o 2CW56正向偏置 拟采用电流表外接接测试电路为宜 如图1.-5. 图1-4稳压二极管反向伏安特性测试电路 图1-5稳压二极管正向伏安特性测试电路 实验过程 1,按图接线,开始按电流表内接法,改变滑动变阻器阻值。当观察到电流开始增加, 并有迅速加快表现时,说明 2CW56已开始进入反向击穿过程,这时将电流表改为外接式。 u U X U A 厂 二 R x R A 二 R x (1 R A ) R x 如上图所示,电流表外接法.电压表测出的电压 U 就是R x 两端的电压U x ,但电流表 测出电流I 应等于 l x 与l v 之和。 U x U x l x I V 1x (1 J') I x (4-3 ) (4-2)

相关文档
相关文档 最新文档