文档库 最新最全的文档下载
当前位置:文档库 › 2019-2020年高中第一册(下)数学二倍角公式的应用

2019-2020年高中第一册(下)数学二倍角公式的应用

2019-2020年高中第一册(下)数学二倍角公式的应用
2019-2020年高中第一册(下)数学二倍角公式的应用

2019-2020年高中第一册(下)数学二倍角公式的应用

目的:要求学生能较熟练地运用公式进行化简、求值、证明,增强学生灵活运用数学知识和

逻辑推理能力。

过程:

一、复习公式:

例一、(板演或提问)化简下列各式:

1. 2.

3.2sin 2157.5? - 1 =

4.4

16sin 2112cos 12sin =π=ππ 5.cos20?cos40?cos80? =

20sin 80cos 40cos 20cos 20sin 8120sin 160sin 8120sin 80cos 80sin 41===

例二、求证:[sin θ(1+sin θ)+cos θ(1+cos θ)]×[sin θ(1-sin θ)+cos θ(1-cos θ)] = sin2θ

证:左边 = (sin θ+sin 2θ+cos θ+cos 2θ)×(sin θ-sin 2θ+cos θ-cos 2θ)

= (sin θ+ cos θ+1)×(sin θ+cos θ -1)

= (sin θ+ cos θ)2 -1 = 2sin θcos θ = sin2θ = 右边

∴原式得证

二、关于“升幂”“降次”的应用

注意:在二倍角公式中,“升次”“降次”与角的变化是相对的。在解题中应视题目的具体情况灵活掌握应用。(以下四个例题可视情况酌情选用)

例三、求函数的值域。(《教学与测试》P115例一)

解:2

1)42sin(222sin 2122cos 1+π+=++=x x x y ——降次 ∵ ∴ 例四、求证:)6

(sin )3cos(cos sin 22α-π-α+πα+α的值是与α无关的定值。 证:)3

cos(cos )]23cos(1[21)2cos 1(21α+πα+α-π--α-=原式 ——降次 )s i n 3

s i n c o s 3(c o s c o s ]2c o s )23[c o s (21απ-απα+α-α-π= )sin cos 2

3cos 21)2cos 2sin 3sin 2cos 3(cos 212αα-α+α-απ+απ= 41)2s i n 43)2c o s 1(412c o s 212s i n 232c o s 41=α-α++α-α+α=

∴)6

(sin )3cos(cos sin 22α-π-α+πα+α的值与α无关

例五、化简:

θ

-θ+θ-θ-+θ-θ-θ-θ+sin cos 1sin cos 1sin cos 1sin cos 1 ——升幂 解:2cos 2sin 22cos 22cos 2sin 22sin 22cos 2sin 22sin 22cos 2sin 22cos 22222θθ-θθθ-θ+θθ-θθθ-θ=原式 )2

s i n 2(c o s 2c o s 2)2c o s 2(s i n 2s i n 2)2c o s 2(s i n 2s i n 2)2s i n 2(c o s 2c o s 2θ-θθθ-θθ+θ-θθθ-θθ= θ-=θ

-=θθ-+θθ+-=θ+θ-=c s c 2s i n 2)s i n c o s 1s i n c o s 1()2t a n 2(c o t 例六、求证:θ

-θ+θ+=θθ-θ+2tan 14cos 4sin 1tan 24cos 4sin 1(P43 例二) ——升幂 证:原式等价于:θ=θ

-θ=θ+θ+θ-θ+2tan tan 1tan 24cos 4sin 14cos 4sin 12 左边θ

+θθθ+θθ=θ++θθ-+θ=2cos 22cos 2sin 22sin 22cos 2sin 2)4cos 1(4sin )4cos 1(4sin 22 =θ=θ+θθθ+θθ=2t a n )

2c o s 2(s i n 2c o s 2)2s i n 2(c o s 2s i n 2右边 三、三角公式的综合运用

例七、利用三角公式化简: (P43—44 例三)

解:原式

10cos )10sin 2310cos 21(250sin )10cos 10sin 31(50sin +?=+=

10cos 40sin 50sin 210cos 10sin 30cos 10cos 30sin 50sin 2=+?= 110cos 80sin 10cos 40sin 40cos 2===

四、作业:课本P47 习题4.7 3

《精编》P73—74 11,12,18,19,23

二倍角公式的应用,推导万能公式

课题十:二倍角公式的应用,推导万能公式 教学第一环节:衔接阶段 回收上次课的教案,检查学生的作业,做判定。 了解家长的反馈意见 通过交流,了解学生思想动态,稳定学生的学习情绪 了解学生上次学习的情况,查漏补缺,为后面的备课方向提供依据 教学第二个环节:教学内容 一、解答本章开头的问题: 令AOB = , 则AB = a cos OA = a sin ∴S 矩形ABCD = a cos ×2a sin = a 2sin2 ≤a 2 当且仅当 sin2 = 1, 即2 = 90, = 45时, 等号成立。 此时,A,B 两点与O 点的距离都是a 2 2 二、半角公式:在倍角公式中,“倍角”与“半角”是相对的 例一、求证:α +α-=αα+=αα-=αcos 1cos 12tan ,2cos 12cos ,2cos 12sin 222 证:1在 α-=α2sin 212cos 中,以代2,2 α代 即得: 2sin 21cos 2α-=α ∴2 cos 12sin 2α-=α 2在 1cos 22cos 2-α=α 中,以代2,2 α代 即得: 12 cos 2cos 2-α=α ∴2cos 12cos 2α+=α 3以上结果相除得:α +α-=αcos 1cos 12tan 2 注意:1左边是平方形式,只要知道2 α角终边所在象限,就可以开平方。 2公式的“本质”是用角的余弦表示2 α角的正弦、余弦、正切 3上述公式称之谓半角公式(大纲规定这套公式不必记忆) α+α-±=αα+±=αα-±=αcos 1cos 12tan ,2cos 12cos ,2cos 12sin 4 还有一个有用的公式:α α-=α+α=αsin cos 1cos 1sin 2tan (课后自己证) 三、万能公式 B C a A O D

二倍角的正弦、余弦和正切公式公开课教案

二倍角的正弦、余弦和正切公式公开课教案 课题:3.1.3 二倍角的正弦、余弦和正切公式 课型:新授课 一、教学目标 1. 知识与技能:(1)会推导二倍角的正弦,余弦,正切公式; (2)灵活运用二倍角公式解决有关的求值,化简,证明等问题。 2. 过程与方法:以两角和的正弦、余弦和正切公式为基础,推导二倍角的正弦、余弦和正切公式,理解推导 过程,掌握其应用。 3. 情感态度价值观:灵活运用有关公式解决相关的数学问题,感受三角问题的有关恒等变换,用联系,发展 的观点看问题。 二、教学重点、难点 教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式; 教学难点:二倍角的理解及其灵活运用. 三、教学过程设计: (一)复习式导入:大家首先回顾一下两角和的正弦、余弦和正切公式, βαβαβαsin cos cos sin )sin(-=- βαβαβαsin cos cos sin )sin(+=+ βαβαβαsin sin cos cos )cos(+=- βαβαβαsin sin cos cos )cos(-=+ βαβαβαtan tan 1tan tan )tan(?+-=- β αβαβαtan tan 1tan tan )tan(?-+=+ 我们由此能否得到sin 2,cos 2,tan 2ααα的公式呢?(学生自己动手,把上述公式中β看成α即可), (二)公式推导: ()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=; ()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-; 思考:把上述关于cos2α的式子能否变成只含有sin α或cos α形式的式子呢? 22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-; 22222cos 2cos sin cos (1cos )2cos 1αααααα=-=--=-. ()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα +=+==--.

三角函数的二倍角公式及应用

三角函数的二倍角公式及应用 一. 考点要求 1、 熟记二倍角的正弦、余弦、正切公式,并能灵活应用; 2、 领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美 3、 公式应用的方法与技巧。 二、公式再现; 1、二倍角公式; sin2a= 2sinacosa 。 cos2a =22cos sin αα- = 22cos 1α-= 21sin α- tan2a= 22tan 1tan αα - 2、降幂公式;2 2cos 1sin ,2 2cos 1cos 22α αα α-= += 三;闯关训练 A 、类型一 公式逆用 逆用公式,换个角度豁然开朗,逆过来看茅塞顿开,这种在原有基础上的变通是创新意识的体现; 1、求下列各式的值 ();??cos15sin151 ()8 s i n 8 c o s 22 2 π π - () ? -?5.22tan 15.22tan 32 ; ()15.22cos 242 -? B 、、类型二----公式正用 从题设条件出发,顺着问题的线索,正用三角公式,通过对信息的感

知、加工、转换,运用已知条件和推算手段逐步达到目的。 2、已知(),5 3 sin -=-απ求α2cos 的值。 3、已知?? ? ??∈-=ππ ααα,2 ,sin 2sin ,求αtan 的值。 C 、、类型三----化简 ()()()2 4441sin cos ;2cos sin a a θθ +-、 四.能力提升; 1, 已知,128,5 4 8 cos παπα <<-=求4 tan ,4 cos ,4 sin α αα的值 2、已知,2 4,1352sin π απα<<=求ααα4tan ,4cos ,4sin 的值。 3、化简 ()() 11 1sin cos cos 2;2; 1tan 1tan x x x θθ--+ 4.x x - 5. 求值:(1)0000sin13cos17cos13sin17+ (2)0 1tan 751tan 75+- (3)2 2 cos sin 8 8 π π - 6.已知a ,β都是锐角,cosa=17 ,cos ()αβ+=11 14 -,求cos β的值。 7、 已知tan()3,tan()5αβαβ+=-=求tan2a 及tan 2β的值。 8、求值0000tan 70tan1070tan10- 9、.已知函数 2cos cos x x x +,求函数f(x)的最小正周期及单调递增区间。 五;高考链接

高中数学北师大版高一必修4试题 3.3.1二倍角公式及其应用

1.函数f (x )=sin x cos x 的最小值是( ) A .-1 B .-12 C.12 D .1 解析:f (x )=12sin 2x ∈ [-12,12 ]. 答案:B 2.已知sin ????π2+α=13 ,则cos(π+2α)的值为( ) A .-79 B.79 C.29 D .-23 解析:∵sin(π2+α)=13,∴cos α=13 . 则cos(π+2α)=-cos 2α=1-2cos 2α =1-29=79. 答案:B 3.已知等腰三角形底角的余弦值为23 ,则顶角的正弦值是( ) A.459 B.259 C .-459 D .-259 解析:令底角为α,顶角为β,则β=π-2α, ∵cos α=23 ,0<α<π, ∴sin α=53 . ∴sin β=sin(π-2α)=sin 2α=2sin αcos α =2×23×53=459 . 答案:A 4.已知θ是第三象限角,若sin 4θ+cos 4θ=59 ,则sin 2θ等于( ) A.223 B .-223 C.23 D .-23 解析:∵sin 4θ+cos 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=1-2 (sin θcos θ)2=59 , ∴(sin θcos θ)2=29 . ∵θ为第三象限角,∴sin θ<0,cos θ<0, ∴sin θcos θ>0,∴sin θcos θ=23 .

∴sin 2θ=2sin θcos θ=223 . 答案:A 5.已知α为第二象限角,sin α=35 ,则tan 2α=______. 解析:由于α为第二象限角,且sin α=35 , ∴cos α=-45.∴tan α=-34 , ∴tan 2α=2tan α1-tan 2α=2×(-34)1-(-34)2=-321-916 =-247. 答案:-247 6.已知0<α<π2,sin α=45,则sin 2α+sin 2αcos 2α+cos 2α =________. 解析:∵0<α<π2,sin α=45 , ∴cos α=35 . ∴sin 2α+sin 2αcos 2α+cos 2α=sin 2α+2sin αcos α3cos 2α-1 =(45)2+2×45×353×925 -1=20. 答案:20 7.已知sin α=cos 2α,α∈(0,π2 ),求sin 2α的值. 解:∵sin α=1-2sin 2α,即2sin 2α+sin α-1=0, ∴sin α=-1或sin α=12 . 又∵α∈(0,π2),∴sin α=12,α=π6. ∴cos α=32.∴sin 2α=2sin αcos α=2×12×32=32 . 8.在△ABC 中,若cos A =13,求sin 2B +C 2 +cos 2A 的值. 解:sin 2 B + C 2+cos 2A =1-cos (B +C )2+cos 2A =1+cos A 2+2cos 2A -1 =12+12×13+2×(13)2-1=-19.

二倍角公式教案

二倍角公式教案 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

二 倍角的正弦、余弦、正切公式 一、教学目标: 1.学会利用S (α+β) C (α+β) T (α+β)推导出sin2α,cos2α,tan2α. 知道各公式 间的内在联系,认识整个公式体系的生成过程,从而培养逻辑推理能力。 2、记住并能正确运用二倍角公式进行求值、化简、证明;通过综合运用 公式,掌握基本方法,提高分析问题、解决问题的能力。 二、教学重难点: 二倍角的公式的推导及灵活应用,倍角的相对性 三、教学方法: 讨论式教学+练习 五、教学过程 1 复习引入 前面我们学习了和(差)角公式,现在请一位同学们回答一下和角公式的内容: sin (α+β)= cos (α+β)= tan (α+β)= 计算三角函数值时,有些情况中,只用加或减不能满足要求,比如,角α,我们要求它的二倍,三倍,即2α,3α,等等,该如何求呢?今天我们就先来学习二倍角的相关公式。 2 公式推导 在上面的和角公式中,若令β=α,会得到怎样的结果呢?请同学们阅读课本132页——133页,并填写课本中的空白框。(让学生做5分钟) (1)提问: sin2α=sin (α+α)= sin αcos α+cos αsin α= 2sin αcos α cos2α=cos (α+α)= cos αcos α-sin αsin α= cos 2α-sin 2α tan2α= tan (α+α)= tanα+ tanα1-tanαtanα =2tanα1-tan 2α 整理得: sin2α=2sin αcos α cos2α= cos 2α-sin 2α tan2α= 2tanα1-tan 2α (2)提问:对于cos2α= cos 2α- sin 2α,还有没有其他的形式? 利用公式sin 2α + cos 2α=1变形可得: cos2α = cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1 cos2α = cos 2α-sin 2α=(1-sin 2α )-sin 2α =1-2sin 2α 因此:cos2α = cos 2α-sin 2α

高一数学二倍角公式讲解

在高中数学中同学们感到吃力的一部分是三角函数的学习,在这一部分有大量的公式需要同学们熟练记忆,并且在使用的时候不能够混淆。为了方便同学们能够清楚掌握这部分内容,在考试中能够取得好成绩,下面小编给大家整理了高中书序中二倍角公式推导讲解。 正弦二倍角公式: sin2α = 2cosαsinα 推导:sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA 拓展公式:sin2A=2sinAcosA=2tanAcosA^2=2tanA/[1+tanA^2] 1+sin2A=(sinA+cosA)^2 余弦二倍角公式: 余弦二倍角公式有三组表示形式,三组形式等价: 1.Cos2a=Cosa^2-Sina^2=[1-tana^2]/[1+tana^2] 2.Cos2a=1-2Sina^2 3.Cos2a=2Cosa^2-1 推导:cos2A=cos(A+A)=cosAcosA-sinAsinA=cosA^2-sinA^2=2cosA^2-1 =1-2sinA^2

正切二倍角公式: tan2α=2tanα/[1-tanα^2] 推导:tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-tanA^2] 降幂公式: cosA^2=[1+cos2A]/2 sinA^2=[1-cos2A]/2 tanA^2=[1-cos2A]/[1+cos2A] 变式: sin2α=sin^2(α+π/4)-cos^2(α+π/4)=2sin^2(a+π/4)-1=1-2cos^2(α+π/4); cos2α=2sin(α+π/4)cos(α+π/4) 以上就是关于高中数学二倍角公式的分享,对于这些公式同学们要掌握他们的推到过程,认真对应三角图形,参考推导过程进行熟练记忆。最后要强调同学们还是要进行适当的习题训练,加强公式记忆。

高一数学二倍角公式应用

【知识点】由公式:ααααα2222 sin 211cos 2sin cos 2cos -=-=-=,可得降幂(半 角)公式:2 2cos 1sin ;2 1 2cos cos 22 α ααα-= +=。【注意等号两边的角度关系!】 【作业】1、已知5 3 2cos ,542sin -==αα ,则角α所在的象限是( C ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 2. 2 (sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为π的奇函数 3.如果21)4tan(,43)tan(=-=+πββα,那么)4 tan(π α+的值等于( ) A. 1110 B. 112 C. 5 2 D. 2 4、已知α为第三象限角,24sin 25=- α,则tan 2 =α ( ) 4A. 3 4B.3 - 3C.4 3D.4 - 5.在△ABC 中,cos cos sin sin A B A B >,则△ABC 为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法判定 6、若θθθ2sin 21 cos ,31tan 2+=则=( D ) A 、56- B 、54- C 、54 D 、5 6 7、若)8,6(-=a ,则与a 平行的单位向量是 。

8、已知α,β都是锐角,21)cos(,21sin =+= βαα,则βcos 等于 ( ) A.2 1 B. 23 C. 231- D. 213- 9、求值:(1 )0 tan 20tan 4020tan 40++=_____________。 (2)若= -=x x x 44sin cos ,6 则π 2 1 10、一个等腰三角形的一个底角的余弦为2 3 ,那么这个三角形顶角的余弦值是________ 11、若παπα 128,214 cos <<= ,则8sin α= ,8 cos α = 。 12、若2 cos 2sin 1 2sin 2tan 2)(2 x x x x x f --=,则)12(πf =8 13、已知函数x x x y 2 2 cos 2)cos (sin ++=,(1)求函数的递减区间; (2)求函数的最值。 14、已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中(0, )2 π θ∈. (1)求θsin 和θcos 的值;(2 )若sin()2 π θ??-=<<,求cos ?的值. 15 、已知向量5 2 8),2,(),cos ,sin 2()sin ,(cos =∈-==n m 和ππθθθθθ, 求:(1 (2)用角θ +; (3)求)8 2 cos(π θ+ 的值。 解法一:)sin cos ,2sin (cos θ+θ+θ-θ=+n m 22)sin (cos )2sin (cos θ+θ++θ-θ= +n m )sin (cos 224θ-θ+=

最新中职数学授课教案:二倍角公式数学

15.2 二倍角公式 教学案 【学习目标】 1.会推导二倍角的正弦、余弦公式 2.熟记二倍角的正弦、余弦公式及变形公式 3.能够正确应用公式进行简单的三角函数化简,求值等。 【学习重点】:熟记公式并灵活应用 【学习难点】:抓住公式的结构特点,凑配公式形式 【学习过程】: (一)课前检测 化简下列各式(做题前请写出本题可能用到的公式)(5分钟) 1、cos440 cos760-sin440cos140 2、2cos200-2sin200 (二)新知探究 二倍角公式: ____;__________2sin =α ______________________________________________2cos ===α; 由二倍角的正弦、余弦公式可得变形公式: .______________cos ____;__________sin 22==ααsin cos αα= 1cos2α+= ;1cos2α-= ;1sin2α+= ;1sin2α-= ; 1.若3sin ,(,)52 πααπ=∈,则sin2α= ;cos2α= ;tan2α= ; 2.sin22?30/cos22?30/=__________________; 3.22 cos 112π-=_________________; 4.8cos 2π 8sin 2π -=____________________; 小结:1.倍角公式的正用与逆用;2.理解“二倍角”的广义含义即两个角之间二

倍关系如24364824284 αααααααααααα与;与;与;与;与;与分别都是二倍角的关系 (三)能力提升 1、=-2sin 2cos 44 αα32,则cos α=( ) A. 32 B.-3 2 C.35 D.-35 2、已知180°<2α<270°,化简αα2sin 2cos 2-+=( ) A 、-3cosα B 、3cos α C 、-3cos α D 、3sin α-3cos α 3、已知4sin(2),cos45απα-==则 4、已知4sin ,(8,12)85ααππ=-∈,求 sin ,cos ,tan 444ααα的值。 5、已知13cos()cos sin()sin ,( ,2)32παββαββαπ+++=∈,求cos(2)4πα+的值 6.已知5cos 13α=-,4cos 5β=,且(,)2παπ∈,(0,)2 πβ∈,求sin(2)αβ-的值。 小结:1.准确理解二倍角的广义含义;2.灵活与用公式;3.掌握统一角的思想。 (四) 学后反思与总结 本节课你学到了哪些知识?还有哪些困惑?你掌握了哪些题型及解决的方法?

高中数学必修四《二倍角的正弦、余弦、正切公式》优秀教学设计

二倍角的正弦、余弦、正切公式 【学习目标】: 1、掌握二倍角公式的推导,能够正确运用公式. 2、通过公式推导,培养学生的逻辑推理能力。 3、发现数学规律,激发学习兴趣,提高综合分析、应用数学的能力。 【学习重点与难点】: 重点:二倍角正弦、余弦、正切公式的推导。 难点:二倍角公式的综合应用。 一、复习两角和的三角公式 二、二倍角公式的推导 利用公式 cos2α可变形为:1. ; 注: 2. 。 1.“二倍角” 是一种相对的数量关系。 如:2α是α的二倍角;α是 的二倍角。 2.二倍角公式是从两角和的三角函数公式中,取两角相等时推导出来,记忆时可联想相应角 公式。 练习1: 练习2: 判断: 三、例题教学(公式正用) 思维小结: 公式正用技巧: 从条件出发,顺着问题的线索,以展开公式的方法使用。 ()=+βαcos ()=+βαsin ()=+βαtan ??,: , ,:有什么发现你得到什么启示即到特殊的两个角相等由一般的问题αββα=+()?=+ααsin ()?=+ααcos ()?=+ααtan 1cos sin 22=+αα 2αcos__sin__24sin )1(=α__sin __cos 2 cos )2(22-=α_________(3)cos 213α=-22tan__(5)tan 31tan __α=-23cos 23sin 3sin )1(ααα=1sin 22cos )2(2-=αα232tan 3(3)tan 21tan 3ααα=-α的值.cos2α、tan2 .求α,135已知sinα例1.),2(ππ∈=sin2α、 (1) 本题求出cos α的值是关键,要注意象限定号; (2)在求tan2α时,直接用切化弦 也可先求出tan α=sin αcos α,再求tan2α=2tan α1-tan 2α 的值.

高一数学三角函数二倍公式

黄冈中学高一数学三角函数二倍角公式 1、二倍角的正弦、余弦、正切 在和角公式S(α+β)、C(α+β)、T(α+β)中,令α=β就可以得出对应的二倍角的三角函数公式. 点拨:(1)倍角公式是和角公式的特例.(2)因为sin2α+cos2α=1所以公式C2α还可变形为:cos2α=2cos2α-1或 cos2α=1-2sin2α. (3)公式成立的条件:C2α中α∈R;S2α中α∈R;T2α中α≠(k∈Z)时,显然tanα的值不存在,但tan2α的值是存在的,这时求tan2α的值可利用诱导公式,即: . (4)理解二倍角的含义:二倍角公式不仅可运用于将2α作为α的2倍的情况,还可以运用于 诸于将4α作为2α的2倍,将α作为的2倍;将作为的2倍;将3α作为的2倍;将 的2倍等等情况. (5)注意公式的逆用:例如: 2、半角的正弦、余弦、正切:在倍角公式cos2α=1-2sin2α、cos2α=2cos2α-1中以α代替2α, 以代替α,即得:cosα=1-2sin2,cosα=2cos2-1,所以有 即得: 称之为半角公式

点拨:(1)半角公式中正、负号的选取由所在象限确定. (2)称公式为降幂公式. (3)可看做的半角;可看做3α的半角;可看做α的半角;2α可看做4α的半角等等. (4)公式成立的条件为:α≠2kπ+π(k∈Z). (5)k∈Z. 说明:半角公式不要求记忆. 3、积化和差与和差化积公式:将公式S(α+β)加上S(α-β)即可得: ,另外将公式S(α+β)减去S(α-β)、C(α+β)加上C(α-β)、C(α+β)减去C(α-β)可得出另三个公式,即得积化和差公式如下: 在上述公式中令α+β=θ,α-β=φ可得以下和差化积公式: 点拨:(1)积化和差公式的推导,用了“解方程组”的思想,和差化积公式的推导用了“换元”的

二倍角公式的应用推导万能公式

教材:续二倍角公式的应用,推导万能公式 目的:要求学生能推导和理解半角公式和万能公式,并培养学生综合分析能力。 过程: 一、解答本章开头的问题:(课本 P3) 令∠AOB = θ , 则AB = a cos θ OA = a sin θ ∴S 矩形ABCD = a cos θ×2a sin θ = a 2sin2θ≤a 2 当且仅当 sin2θ = 1, 即2θ = 90?,θ = 45?时, 等号成立。 此时,A,B 两点与O 点的距离都是a 2 2 二、半角公式 在倍角公式中,“倍角”与“半角”是相对的 例一、求证:α +α -= αα+=αα-=αcos 1cos 12tan ,2cos 12cos ,2cos 12sin 222 证:1?在 α-=α2sin 212cos 中,以α代2α,2 α 代α 即得: 2s i n 21c o s 2α-=α ∴2 cos 12sin 2α-=α 2?在 1cos 22cos 2-α=α 中,以α代2α,2 α 代α 即得: 12 c o s 2c o s 2-α=α ∴2cos 12cos 2α+= α 3?以上结果相除得:α +α -=αcos 1cos 12tan 2 注意:1?左边是平方形式,只要知道2 α 角终边所在象限,就可以开平方。 2?公式的“本质”是用α角的余弦表示2 α 角的正弦、余弦、正切 3?上述公式称之谓半角公式(大纲规定这套公式不必记忆) 4?还有一个有用的公式:α α -= α+α=αsin cos 1cos 1sin 2tan (课后自己证) B C a θ A O D

三、万能公式 例二、求证:2tan 12tan 2tan ,2tan 12tan 1cos ,2tan 12tan 2sin 2 222α -α =αα+α-=αα+α= α 证:1?2tan 12tan 22cos 2sin 2cos 2sin 21 sin sin 2 22α+α=α+ααα= α=α 2?2tan 12tan 12cos 2sin 2sin 2cos 1 cos cos 2 2 2222α+α-=α+αα-α= α=α 3?2 tan 12tan 22sin 2cos 2cos 2sin 2cos sin tan 2 22α-α=α-ααα= α α=α 注意:1?上述三个公式统称为万能公式。(不用记忆) 2?这个公式的本质是用半角的正切表示正弦、余弦、正切 即:)2(tan α f 所以利用它对三角式进行化简、求值、证明, 可以使解题过程简洁 3?上述公式左右两边定义域发生了变化,由左向右定义域缩小 例三、已知 5cos 3sin cos sin 2-=θ-θθ +θ,求3cos 2θ + 4sin 2θ 的值。 解:∵5cos 3sin cos sin 2-=θ-θθ +θ ∴cos θ ≠ 0 (否则 2 = - 5 ) ∴53tan 1 tan 2-=-θ+θ 解之得:tan θ = 2 ∴原式57 2 122421)21(3tan 1tan 24tan 1)tan 1(32 22222=+??++-=θ+θ?+θ+θ-= 四、小结:两套公式,尤其是揭示其本质和应用(以万能公式为主) 五、作业:《精编》P73 16 补充: 1.已知sin α + sin β = 1,cos α + cos β = 0,试求cos2α + cos2β的值。(1)

运用二倍角公式解题的六技巧

运用二倍角公式解题的五技巧 二倍角公式变化多姿,在求值以及恒等变换中应用很广。若熟练掌握二倍角公式以及变通公式并能灵活运用,则往往能出奇制胜,获得新颖别致的解法。 一、二倍角公式的直接运用 例1 若1 sin cos 3 αα+=,0απ<<,求sin 2cos 2αα+的值。 分析:由条件式两边平方,可求得sin 2α的值。注意到22 cos 2cos sin ααα=- (cos sin )(cos sin )αααα=+-,还需求c o s s i n α α-的值,于是先求22(cos sin )(sin cos )4sin cos αααααα-=+-的值, 然后开方,从而要进一步界定α的范围。 解:由1 sin cos 3 αα+= 两边平方得112sin cos 9αα+=,所以4sin cos 9αα=-。又 0απ<<,所以sin 0α>,cos 0α<,所以α为钝角。所以8 sin 22sin cos 9 ααα==-, cos sin αα-= 3 ==- ,所以22cos 2cos sin ααα=-(cos sin )(cos sin )αααα=+ -1(3=?=,从 而sin 2cos 2αα+=。 点评:挖掘隐含得到α 为钝角是解题的一个重要环节。注意导出公式 21sin 2(sin cos )ααα±=±。 二、二倍角公式的逆用 例2 求tan cot 8 8 π π -的值。 解:tan cot 8 8 π π -sin cos 88cos sin 8 8 πππ π =-2 2sin cos 8 8cos sin 88 π π ππ -= cos 41sin 24 π π-= 2cot 24π=-=-。 点评:本题通分后逆用正弦与余弦的二倍角公式,从而转化为特殊角函数的求值问题。 三、二倍角公式的连用 例3 求cos12cos 24cos 48cos96 的值. 分析:242 12=? ,48224=? ,96248=? ,联想二倍角的正弦公式αααcos sin 22sin =,若逐步逆用将是一条通途. 解:cos12cos 24cos 48cos96 sin12cos12cos 24cos 48cos96sin12 = sin19216sin12= sin12116sin1216 -==- 。 点评:对形如αααα1 2cos 4cos 2cos cos -n 的求值问题可考虑此法.若逆用诱导公式ααπcos )2sin(=±可知74cos 72cos 7cos πππ14 5sin 143sin 14sin π ππ-=,即对于正弦之 积或正弦余弦混合积的求值问题先利用诱导公式转化为余弦之积的形式利用此法求解. 四、整体配对使用二倍角公式 例4.求值: 78sin 66sin 42sin 6sin 分析:本题可按例2的点评部分所说的方法处理,这里介绍整体构造法.

二倍角公式公开课教案

二倍角的正弦、余弦、正切公式 一、教学目标: 1.学会利用S (α+β) C (α+β) T (α+β)推导出sin2α,cos2α,tan2α. 知道各公式 间的内在联系,认识整个公式体系的生成过程,从而培养逻辑推理能力。 2.记住并能正确运用二倍角公式进行求值、化简、证明;通过综合运用 公式,掌握基本方法,提高分析问题、解决问题的能力。 二、教学重难点: 二倍角的公式的推导及灵活应用,倍角的相对性 三、教学过程 1、复习引入 前面我们学习了和(差)角公式,现在请同学们回忆一下和角公式的内容: sin (α+β)= cos (α+β)= tan (α+β)= 2、新科探究 探究一、在上面的和角公式中,若令β=α,会得到怎样的结果呢? sin2α=sin (α+α)= sin αcos α+cos αsin α= 2sin αcos α cos2α=cos (α+α)= cos αcos α-sin αsin α= cos 2α-sin 2α tan2α= tan (α+α)= α α - α α = α - α 整理得: sin2α=2sin αcos α cos2α= cos 2α-sin 2α tan2α= α - α 注意:要使tan2α= α - α 有意义,α须满足α∈﹛α∣α≠ k π+ π , 且α≠ π+ π ﹜ 学以致用 提问:对于cos2α的求解还有没有其它的办法 探究二、cos2α的变形式 利用公式sin 2α + cos 2α=1变形可得: cos2α = cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1 cos2α = cos 2α-sin 2α=(1-sin 2α )-sin 2α =1-2sin 2α 因此:cos2α = cos 2α-sin 2α 1例.2tan ,2cos ,2sin ),20(,54cos 的值求若αααπαα<<=

二倍角公式的两个特殊变式及应用

高考数学复习点拨:二倍角公式的两个 特殊变式及应用 二倍角公式的两个特殊变式及应用 浙江周宇美 一、变式 变式1:sin2=sin2(+)-cos2(+) =2sin2(+)-1 =1-2cos2(+). 变式2:cos2=2sin(+) cos(+)=2sin(+) sin(-). 以上两个变式的形式与二倍角正、余弦形式恰相反,角度变为(+).其实证明只需运用诱导公式再结合倍角公式即可解决.由sin2=-cos(2+)=-cos2(+),及cos2= sin2(+),再用倍角公式即可. 二、应用 变式1、2主要用于题中含有2与±问题的转化. 例1 已知cos(+)=,求. 分析:本题只需将sin2及sin(-),运用变式及诱导公式转化成cos(+)形式即可解决问题. 解:∵cos(+)=,由变式1,得 sin2=1-2cos2(+)=. sin(-)=cos(+)=.

∴ 原式=. 例2 已知sin(+x)sin(-x)=,x∈(,),求sin4x的值. 分析:本题只需求cos2x即可,又由变式2并结合题意即可 解决. 解:由变式2,得 cos2x=2sin(+x)sin(-x)=,又2x∈(,2), ∴ sin2x=-=-. ∴ sin4x=2sin2xcos2x=-. 例3 已知x∈(-,),且sin2x=2sin(x-),求x的值. 分析:将角2x与x-统一即可,又运用变式1即可达到目的.解:由变式1,原方程可化为 1-2cos2(x+)=-cos(x+). 解得cos(x+)=1或cos(x+)=-. 又x∈(-,), ∴x+=0或x+=, ∴ x=-或x=-.

三角形的2倍角公式

三角形二倍角公式 复习两角和与差的正弦、余弦、正切公式 如何求得sin 2α? 二倍角的正弦公式: sin2A =2sinAcosA 二倍角的余弦公式: cos2A =cos 2A -sin 2A =2cos 2A -1=1-2sin 2A 二倍角的正切公式: tan2A = 22tan A 1tan A - 例1、求值: (1)00sin 2230'cos2230' (2)00sin15sin75 (3)22sin cos 88π π - (4)20 01tan 75tan 75 - (5)sin cos cos cos 48482412πππ π (6)22cos 18π-

例2、口答: cos__sin__24sin )1(=α __sin __cos 2cos )2(22-=α __ tan 1tan__23tan )3(2-=α 对公式的再认识: (1) 适用范围:二倍角的正切公式有限制条件: A ≠kπ+2π且A ≠k 2π+4 π (k ∈Z ); (2) 公式特征:二倍角公式是两角和的正弦、余弦和正切公式之特例;二倍角关系是相对的。 (3) 公式的灵活运用:正用、逆用、变形用。 例3、设α∈(2 π,π),sin α=1213, 求2α的正弦、余弦和正切。

例4、试用完全平方式表示下列各式 (1)1sin 2α+ (2)1sin 2α- (3)1cos 2α+ (4)1cos 2α- 例5、化简: (1) 1cos 1cos αα+- (2) α∈(-2π,0) (3) α∈(π,32π) (4) α∈(32 π,2π) 小结:

《二倍角的三角函数》公开课教学设计【高中数学必修4(北师大版)】

《§3二倍角的三角函数》教学设计 教材通过通过两角和的正、余弦函数,推导得出二倍角的三角函数,在温故知新中锻炼学生对知识的迁移能力。 【知识与能力目标】 1、理解二倍角公式的推导; 2、灵活掌握二倍角公式及其变形公式; 3、能综合运用二倍角公式进行化简、计算及证明。 【过程与方法目标】 通过两角和的正、余弦函数,推导得出二倍角的三角函数。 【情感态度价值观目标】 通过推导二倍角三角函数的过程,培养学生温故知新的能力。 【教学重点】 二倍角公式的推导。 【教学难点】 能综合运用二倍角公式进行化简、计算及证明。 电子课件调整、相应的教具带好、熟悉学生名单、电子白板要调试好。 一、复习导入。 回顾两角和的正弦、余弦、正切函数。 ()sin αβ+=sin cos cos sin αβαβ+()cos αβ+=cos cos sin sin αβαβ -

二、探究新知。 将上述公式里的β换成α,结果是什么? 二倍角公式: 对于 2C α 能否有其它表示形式? 公式中的角是否为任意角? 注意: ①二倍角公式的作用在于用单角的三角函数来表达二倍角的三角函数,它适用于二倍角与单角的三角函数之间的互化问题。 ②二倍角公式不仅限于2α是α的二倍的形式,其它如4α是2α的两倍,α/2是α/4的两倍,3α是3α/2的两倍,α/3是α/6的两倍等,所有这些都可以应用二倍角公式。因此,要理解“二倍角”的含义,即当α=2β时,α就是β的二倍角。凡是符合二倍角关系的就可以应用二倍角公式。 ③二倍角公式是从两角和的三角函数公式中,取两角相等时推导出来,记忆时可联想相应角公式。 三、例题解析。 12cos ,(,)sin cos tan 21322 α αππααα=-∈已知,求,,的值。 例题1 ()tan αβ+=tan tan 1tan tan αβαβ +-sin 22sin cos ααα=22cos 2cos sin ααα=-22tan tan 2,()1tan 242 k k ααααα=≠+≠+-πππ且πR α∈R α∈2cos 22cos 1αα=-2cos 212sin αα = -

二倍角的正弦、余弦和正切公式

二倍角的正弦、余弦和正切公式(基础) 【学习目标】 1.能从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式,并了解它们之间的内在联系. 2.能熟练运用二倍角公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式.但不要求记忆),能灵活地将公式变形并运用. 3.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想、方程思想等在三角恒等变换中的作用. 【要点梳理】 要点一:二倍角的正弦、余弦、正切公式 1.二倍角的正弦、余弦、正切公式 2sin 22sin cos ()S αααα=? 22222cos 2cos sin () 2cos 112sin C αααααα =-=-=- 22 2tan tan 2()1tan T αα αα = - 要点诠释: (1)公式成立的条件是:在公式22,S C αα中,角α可以为任意角,但公式2T α中,只有当 2 k π απ≠ +及()4 2 k k Z π π α≠ + ∈时才成立; (2)倍角公式不仅限于2α是α的二倍形式,其它如4α是2α的二倍、 2α是4 α 的二倍、3α是 32 α 的二倍等等都是适用的.要熟悉多种形式的两个角的倍数关系,才能熟练地应用好二倍角公式,这是灵活运用公式的关键. 如:2 cos 2 sin 2sin α α α=; 1 1 sin 2sin cos ()2 2 2 n n n n Z α α α ++=∈ 2.和角公式、倍角公式之间的内在联系 在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式,它们的内在联系如下:

最新两角和与差及二倍角公式经典例题及答案

:两角和与差及其二倍角公式知识点及典例 知识要点: 1、两角和与差的正弦、余弦、正切公式 C(α-β):cos(α-β)= ; C(α+β):cos(α+β)= ; S(α+β):sin(α+β)= ; S(α-β):sin(α-β)= ; T(α+β):tan(α+β)= ; T(α-β):tan(α-β)= ; 2、二倍角的正弦、余弦、正切公式 2S α:sin2α= ; 2T α:tan2α= ; 2C α:cos2α= = = ; 3、在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。 如T(α±β)可变形为: tan α±tan β=___________________; tan αtan β= = . 考点自测: 1、已知tan α=4,tan β=3,则tan(α+β)=( ) 711 A 、 711 B 、- 713 C 、 7 13D 、- 2、已知cos ????α-π6+ sin α=4 5 3,则 sin ????α+7π6的值是( ) A .-235 B.235 C .-45 D.4 5 3、在△ABC 中,若cos A =45,cos B =5 13 ,则cos C 的值是( ) A.1665 B.5665 C.1665或5665 D .-1665 4、若cos2θ+cos θ=0,则sin2θ+sin θ的值等于( ) A .0 B .±3 C .0或 3 D .0或 ±3 5 、三角式2cos55°-3sin5° cos5° 值为( ) A.3 2 B.3 C .2 D .1 题型训练 题型1 给角求值 一般所给出的角都是非特殊角,利用角的关系(与特殊角的联系)化为特殊角 例1求[2sin50sin10(1)]???+. 变式1:化简求值:2cos10sin 20.cos 20 ?? ? - 题型2给值求值 三角函数的给值求值问题解决的关键在于把“所求角”用“已知角”表示.如()()ααββαββ=+-=-+,2()() ααβαβ=++-, 2()() αβαβα=+--, 22 αβαβ++=? ,()( ) 222αββ ααβ+=--- 例2 设cos ????α-β2=-19 ,sin ????α2-β=2 3,其中α∈????π2,π,β∈????0,π2,求cos(α+β). 变式2:π3π33π5 0π,cos(),sin(),4445413 βααβ<< <<-=+=已知求sin(α+β)的值. 题型3给值求角 已知三角函数值求角,一般可分以下三个步骤:(1)确定角所在的范围;(2)求角的某一个三角函数值(要求该三角函数应在角的范围内严格单调);(3)求出角。 例3已知α,β∈(0,π),且tan(α-β)=12, tan β=-1 7 ,求2α-β的值. 变式3:已知tan α= 17,tan β= 1 3 ,并且α,β 均为锐角,求α+2β的值. 题型4辅助角公式的应用 ()sin cos a x b x x θ+=+ (其中θ角所在的象限由a , b 的符号确定,θ角的值由 tan b a θ= 确定) 在求最值、化简时起着重要作用。 例4求函数2 5f (x )sin x cos x x =- x R )∈的单调递增区间? 变式4(1)如果()()sin 2cos()f x x x ??=+++是奇函数,则tan ?= ; (2)若方程sin x x c -=有实数解,则c 的取值范围是___________. 题型5公式变形使用 二倍角公式的升幂降幂

相关文档
相关文档 最新文档