文档库 最新最全的文档下载
当前位置:文档库 › 仪表及控制系统接地方案

仪表及控制系统接地方案

仪表及控制系统接地方案
仪表及控制系统接地方案

仪表及控制系统接地方案仪表及控制系统接地设计

随着电子式仪表,特别是电动三型仪表和分散控制系统(DCS)的应用,仪表系统的接地已经成为仪表工程设计的一个组成部分。仪表及控制系统的可靠性直接影响到生产装置安全、稳定的运行,系统的抗干扰能力是关系到整个系统可靠运行的关键。特别是采用分散控制系统,若不考虑和处理好现场电磁干扰和兼容问题,一方面要求生产制造单位提高系统抗干扰能力;另一方面,要求工程设计、安装施工和使用维护单位引起高度重视。

第一节抗干扰措施

干扰的形成是因为有干扰源的存在。干扰源有内部和外部的,仪表内部的干扰是由于电子线路的热效应和散粒效应所造成的,内部噪声的拟制是仪表电子线路设计者研究解决的问题。仪表使用者关心的是外部噪声,外部噪声有自然界和人为噪声,自然界噪声是闪电等放电现象所形成,认为噪声由无线电波、大功率输电线、产生电火花的设备、电感性负载等所产生。

一、干扰源及其对系统的干扰机制

1、来自空间的辐射干扰,

2、来自信号线引入的干扰;

3、来自接地系统混乱时的干扰;

4、来自计算机内部的干扰;

5、仪表供电线路引入干扰。

二、抗干扰措施

1、隔离;

2、屏蔽;

3、绞线;

4、对电源引入干扰的拟制;

5、雷击保护

第二节典型数字控制系统抗干扰要求及工程设计

一、抗干扰要求

1、采用性能优良的隔离电源,拟制电网引入的干扰;

2、正确选择接地点,完善接地系统:1)、全系统采用统一的接地网;2)信号屏蔽层的接地必须保证单点接地;3)合理选择和敷设信号电缆;4)硬件滤波;5)软件抗干扰措施。

二、工业计算机系统工程化应用的抗干扰设计

工业计算机系统的抗干扰是一个系统工程,要求制造单位设计生产出具有较强抗干扰能力的产品,且有赖于使用部门在工程设计、安装施工和运行维护中予以全面考虑,并结合具体情况进行综合设计,才能保证系统的电磁兼容和运行可靠。在进行具体工程的抗干扰设计时,应注意以下两方面:1)、设备选型;2)综合抗干扰设计。

工业计算机系统工程化应用的电磁兼容性设计是一个系统工程,必须全面综合考虑,并在各个环节上予以高度重视。

第三节接地系统的设计

接地系统的作用:一是保护设备和人身安全,二是抑制干扰。接地系统设计的错误,轻则造成仪表不正常工作,重则造成严重事故。

仪表接地系统有屏蔽接地、本安接地、保护接地、信号回路接地之分。按此分类,若各种接地都单独设置接地系统,在现实中是难以实现的,为此把仪表接地系统分为两大类,保护地和工作地,工作地包括了屏蔽接地、本安接地、和信号回路接地。

一、接地的作用

1)保护接地的作用:保护设备和人身安全。

2)工作接地的作用:保证仪表精确、可靠地正常工作。

(1)信号回路接地;分两种类型:一是仪表、PLC、DCS、计算机系统等电子设备本身结构造成的事实上的接地;一是为抑制干扰而设置接地。

(2)屏蔽接地:抑制电容性耦合干扰,降低电磁干扰的部件的一种有效措施。

在仪表系统中要做屏蔽的接地的有:

a 导线的屏蔽层、排扰线;

b 仪表上的屏蔽接地端子;

c 未作保护接地而起屏蔽作用的金属导线管、金属汇线槽及金属仪表外壳。

(3)本安仪表系统接地。这种接地除了具有抑制干扰的作用外,还有使仪表具有本安性质的措施之一。

本安仪表系统的本安性能是借助于安全栅的隔离和能量限制作用,以保证进入危险的能量限制在安全定额以下,从而达到安全火花型的防爆性能。

二、接地系统的设计

控制室内的仪表接地系统由接地线、接地汇流排、公用连接板、接地体等几部分组成。

接地系统设计中应遵守的原则、接地体的设置以及接地线等有关问题介绍如下:

1、工作接地的原则——单点接地

由于地电位差的存在,如果出现一个以上的接地点就会形成回路,使仪表引入干扰,所以同一信号回路、同一屏蔽层或排扰线只能有根据一个接地点,不能有一个以上的接地点,除了既定接地以外,其他部位应与一切金属构件绝缘。

信号回路的接地位置根据仪表类型决定。有些信号回路,信号源和接收仪表的公共线都要接地,必须把两个接地点作电气隔离。仪表线路中常用隔离变压器来实现。

2、接地体的设置

仪表接地系统的保护接地一般情况下宜和电力系统的接地体共用,不必单独设置接地体。

仪表系统工作接地体的设置有三种处理方式:

单独设置的仪表系统接地体

厂区电气系统接地网

电气系统在不同装置或不同界区分设的接地分配器。

采取何种方式,应根据具体情况决定。

下面几种情况推荐单独设置接地体:

需要单独设置的本质安全仪表系统;

需要单独设置的DCS或计算机系统;

电气系统接地网接地电阻不能满足仪表系统接地要求时;

土壤电阻率高,接地电阻不能达到设计值的场所,例如砂地、岩石或干燥地区;

周围环境存在严重的电磁干扰;

所选用的仪表对躁声相当敏感,抗干扰要求高,如电磁流量计等;

控制室与电力系统接地体距离较远,若共用接地体,会使接地线过长,给施工维护带来不便;

单独设置接地体较为经济合理时。

从抑制干扰的观点,防止电力系统对仪表的干扰,把两个系统的接地完全分开,各自设置接地体,对仪表的防干扰是有利的。但从工程观点看,单独设置接地体比共用接地体投资大,费钢材,占地面积大,安装维护麻烦。一般,除上述特殊情况外,仪表接地系统可以和电力系统共用接地体而不必单独设置。

实际工程设计中,电气专业往往把全厂的地下管道、地下结构、接地体连接成一个统一的接地网,其接地电阻值可达到很小的一个值,这对抑制干扰是很有利的。在这种情况下要把仪表接地系统和电力接地系统完全分开,对于安装和维护是件很麻烦的事,采取共用接地体比较方便。

仪表系统单独设置接地体,也应该把仪表系统的接地体和电力系统的接地体连接起来,以达到电位平衡的目的。

3、接地电阻

接地体或自然接地体的对地电阻和接地线电阻的总和称为接地电阻。

仪表系统的保护接地电阻,一般为4Ω,最高不宜超过10Ω。当设置有高灵敏度接地自动报警装置时,如漏电开关,接地电阻值可大于10Ω。

PLC主要用于开关量的检测控制,它的输入、输出模块大多具有光电隔离功能,因而接地要求相对比较低。用于模拟量检测控制的DCS系统,接地要求相对比较高。几种主要DCS系统的接地要求见下表:

DCS系统牌号制造厂接地电阻附注

CENTUM 日本横河 <10Ω独立设置接地体

TDC-3000 美国Honeywell <5Ω设三个独立的地系统

交流与避雷地

数据公路与主参考地

与之相连的非TDC-3000计算机参考地

PROVOX 美国Fisher 1~3Ω可与厂区地合用

RS3 美国Rosemount <5Ω独立设置接地体,也可与厂区地合用(用于发电厂<1Ω

1/A 美国Foxbro <5Ω独立设置接地体,也可与厂区地合用(用于发电厂<1Ω

TELEPERM 德国 <5Ω独立设置接地体,与保护地分开

当信号回路多点接地时,由于地点位的不同,会在信号传输中引起误差。但也有一些信号回路不接地的浮动工作地系统。

4、接地线的选择和连接

仪表系统的接地连线应使用多股铜芯绝缘电线或电缆,不允许再用裸导线或钢材,这对保证接地系统的质量,提高接地连线的连续性和可靠性有较大的好处。

仪表系统的接地连线,除可引向单独设置的仪表系统接地体、厂区电气系统接地网以外,还可以引向电气系统在不同装置或不同界区分设的接地分配器。

(1)保护接地的接地线接地支线、接地分干线和接地总干线的截面数值选择,见下图:

用途导线截面/mm2

接地支线 1~2.5

接地分干线 4~25

接地总干线 16~100

(2)工作接地的接地线

仪表盘、仪表柜、控制柜上需要接地的仪表,应连接到接地端子或接地汇流排。接地汇流排宜采用25mm×6mm的铜条,应设置绝缘支撑。

仪表盘、仪表柜、控制柜内的接地端子或汇流排,经各自的接地分干线至接地连接板,再由接地总干线与接地体连接。各汇流排、分干线应彼此绝缘。接地连接板应采用铜板制作,且采用绝缘支架固定。接地支线的连接、接地分干线的连接、接地总干线与接地连接板的连接,应设置铜制接线片,并采用铜制紧固件固定。各类接地连线中严禁接入开关或熔断器。

当仪表盘内同时有保护接地和工作接地时,应分别设置供这两类接地的专用汇流排或端子板。各台仪表的保护接地、工作接地分别接至相应的接地汇流排或端子板。盘内的这两类接地汇流排或端子板经各自的分干线引至各自的公用接地板或接地总干线。这两类接地汇流排、分干线、总干线应彼此绝缘。

当仪表系统和电力系统共用接地体时,两个系统的接地汇流排分干线、总干线应彼此绝缘。它们只能在接地体处或公用连接板处作相互连接,绝对不能在这点之前相连接,否则会引入干扰。接地线用色泽标记。在一根接地线上严禁串接多个需要接地的仪表或装置,因为这种做法不安全,一个接头的中断会引起多台仪表脱开接地点。

接地线的连接必须牢靠。接地支线与仪表和接地汇流排的连接为螺栓连接;接地分干线与接地汇流排和公用连接板的连接用焊接或螺栓连接;接地分干线、接地总干线与接地体的连接为焊接。螺栓连接时应装配防松零件。

化工现场通用仪表接地规范知识

接地的自控设备如:仪表盘、仪表柜、仪表箱、DCS/PLC/EDS的机柜和操作站、仪表供电设备、电缆桥架、穿线管、接线盒及铠装电缆的铠装层,以及控制室内的防静电地板。 一般来讲,使用DC24V为电源的现场仪表、变送器等无特殊要求的可不作保护接地。 保护接地的方法 现场仪表桥架、穿线管应每隔30m用接地线与已接地的金属构件相连。特别要指出的是,现场接地绝不能利用储存、输送可燃性介质的金属设备、管道以及与之相连的金属构件进行接地。 控制室的仪表自控设备、机柜、仪表盘等应单独设置保护接地汇流排。其接地体可与电力系统的接地体共用。 仪表保护接地连接线标识颜色为绿色。 二、工作接地 工作接地包括信号回路接地、屏蔽接地、本质安全接地。 1、信号回路接地 在非隔离的信号系统中,应建立一个统一的信号参考点。即进行信号回路接地。通常为直流电源的负极接地。使用非隔离的信号系统设计中一般的首选方法。在运行时,系统受到干扰的情况极其少见。 在隔离的信号系统中,隔离信号可不接地。这里指的隔离是每一个输入/输出信号与其他输入输出信号的电路是绝缘的。做到电源独立、

相互隔离、参考点浮空。在回路较多的系统,不要轻易使用这种方法。 在控制内应设置信号及屏蔽接地汇流排。 接地线颜色标识为黄/绿线。 2、屏蔽接地 电缆的屏蔽层、排扰线应作屏蔽接地。 在强雷击区,室外架空不带屏蔽的普通多芯电缆,备用芯应屏蔽接地。主要是为了避免雷电在信号线路感应出高电压。 现场接线箱内,端子两侧的电缆屏蔽线应在箱内进行跨接。 同一信号回路,同一屏蔽层应该单点接地。 一般屏蔽接地应在控制室一侧接地。 在控制内应设置信号及屏蔽接地汇流排。 接地线颜色标识为黄/绿线。 3、本质安全接地 齐纳安全栅的汇流排必须与直流电源公共端相连(主要是保证当电源故障时能够对危险场所进行保护)。其汇流排或导轨作本安接地。 在控制内应设置本安接地汇流排。 接地线颜色标识为兰/绿线。 工作接地的方法 信号及屏蔽接地汇流排、本安接地汇流排通过各自的接地线接至工作接地汇流排。

关于电气与仪表自动化控制系统接地分析探究

关于电气与仪表自动化控制系统接地分析探究 发表时间:2018-01-08T10:32:44.623Z 来源:《基层建设》2017年第27期作者:卢延春[导读] 摘要:先进技术的引进和推广,不但提升了操作的便捷性,而且提升了仪表的精细化管理水平。 身份证号码:45252319640705xxxx 摘要:先进技术的引进和推广,不但提升了操作的便捷性,而且提升了仪表的精细化管理水平。而合理准确的接地是保证集散控制系统运行安全可靠,系统网络通信畅通的重要前提。科技的进步推动了电气自动化的技术的不断创新,自动化控制逐渐向集成化、智能化方向发展,尤其是电动智能仪表和集散控制系统DCS 及可编程控制器的广泛使用,仪表及控制系统的接地成为仪表工程设计的一个相当重要 的组成部分。 关键词:自动化仪表;系统接地前言 随着计算机技术的日益成熟,自动化控制已经成为工业生产不可缺少的一部分。电气自动化技术的不断创新和计算机智能化技术的发展,推动电气自动化控制逐渐向集成化、智能化方向发展,并且得到很好的应用和推广。正确的接地既能抑制外来干扰,又能减小设备对外界的干扰影响。而错误的接地反而会引入干扰,严重时甚至会导致集散控制系统无法正常工作。因此接地问题不仅在系统设计时要周密考虑,在工程安装投运时也必须以最合理的方式加以实现。 一、电气与仪表自动化控制系统概述 电气自动化控制系统主要由PLC 控制模块,通信模块,和中央控制模块组成:PLC 控制模块在电气元件的选择上非常严格,因此在实际应用中具有更稳定的生产性能。PLC控制模块体积小,质量轻,安装容易,操作简便,所以在PLC 的控制系统建立时,消耗时间短,操作便捷,产品的更改和升级更为容易,且PLC 的操作界面非常人性化,更适于推广;通讯模块的主要功能是将数据采集仪器收集到的各种数据存放于存储器中,并通过网络传输到上位机系统,这种通讯系统可以减少很多设备资源的使用,同时保证信息传输中的精确性及稳定性,保障通信信号的实时畅通,如果通讯模块采用光纤进行通信,可以更好的降低传输中的误码率,降低外界因素对通信模块的干扰;中央控制系统是由安装在系统中的微型计算机来实现控制,具有精度高,速度快的特点,在使用中央控制系统进行操控时,能显著提高系统的运行效率,操作的精确性和稳定性。中央控制系统不但可以对传感器所采集的数据进行实时处理,并根据内置的程序,找出相应的解决方式,还可以实现实时报警功能,不间断地对所测数据进行监控,一旦发现设备运行中的异常情况,可以及时的报警并启动相应的预案进行处理,避免了人为操作时的延迟。 这三大模块使自动化控制系统具有以下功能:(1)智能监控自动化控制系统监控设计包括:集中监控、远程监控、现场总线监控。集中监控对控制站的运行和保养比较方便,防护的要求也非常低。但是会增加处理器工作的任务量,降低系统运行的速度;远程监控方够节省安装的费用,能够减少电缆的长度,节省材料,并且能够提高可靠度,其组态也比较的灵活,但是只适用于一些小型的监控系统中;现场总线的监控不仅能够针对已定间隔进行设定相关的功能,还能够针对于不同的间隔采取合理的设计,并且还具有远程监控方式的优势。 电气自动化控制系统对周边的生产生活环境进行监测,采集环境信息一般通过相应的传感器来进行,传感器的类型主要有温度传感器,烟雾传感器等多种类型,传感器得到的信息通过由红外收发模块(主要由信号源及红外收发装置结合组成)进行传输,将所得信号输出到单片机上。通过这样的一种方式,可以在无人的情况下对所处环境进行监测,实现智能控制。 (2)保护功能自动化仪表工程是一项涉及面极广、质量要求极高的综合性工程。具体就是指利用先进的计算机自动化技术、信息信号处理技术、现代电子通信技术,将包括测量仪、信号系统、继电保护、自动装置等在内的仪表设备经过功能的优化组合,以实现对主动监控、自动测量、自动控制、微机保护和调度通信等综合性的自动化控制。 (3)测量功能设备中的指示灯或者音响的信号只能够简单的表征设备的运行状态,如果要精准的了解设备的工作情况,就需要设备仪表对线路进行参数的测量,包括电压、电流以及频率等。在操作的组件与仪表等设备之中都能够通过电脑控制系统所取代,这就实现了微机自动化控制的基础。 除此之外,电气自动化控制系统还能够保护发变组和控制励磁变压器;对 6kV-10KV 的高压厂用电压的快切装置状态进行监视;对380V 低压厂的电源进行监视,控制并且操作低压备自投装置;能够对高压的启变压器进行操作和控制(这种功能主要适合两台机器共同使用的条件下);能够控制柴油发电机组和保安电源等。 二、自动化仪表系统接地的重要性 在石油和化工行业,仪表自动化技术应用广泛,特别是DCS、PLC、ESD、SIS 等系统普遍应用于装置的控制、大型机组的控制和装置的联锁保护系统中。随着大规模集成电路和电子技术的日趋成熟,上述控制系统的硬件和软件已经非常稳定可靠。目前国内使用的控制系统品牌都能满足工艺控制或大型机组保护需求。因此,要努力提高仪表控制系统的可靠性和稳定性,而仪表设备普遍存在绝缘强度低、过电压和过电流耐受能力差、对电磁干扰敏感等弱点,一旦仪表设备收到直接雷击或其附近区域发生雷击,雷电过电压、过电流和脉冲电磁场会通过供电线、仪表信号线、电缆桥架、穿线管等途径到达仪表设备,威胁仪表设备的正常工作和安全运行。如果防护不当,轻则使仪表设备工作失灵,重则使仪表设备永久性损坏,严重时还可能造成人员伤亡、生产事故。 三、自动化仪表接地系统误区及注意事项 自动化控制系统是一个综合的复杂系统,其接地通常包括工作接地、屏蔽接地、防静电接地、防雷接地、保护接地和本安系统接地等多种。自控系统接地的误区突出表现在将系统中的多种接地混合连接,导致各个接地点电位分布不均,不同接地点间存在地电位差,产生地环路电流,影响PLC 逻辑电路和模拟电路的正常工作。如果地环流较大,而PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布将影响PLC 的逻辑运算和数据存贮,造成数据混乱、程序跑飞或死机;而模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。

仪表接地规范标准[详]

1 总则 1.0.1 本规适用于石油化工企业自动控制工程的仪表、PLC、DCS、计算机系统等的接地设计,装置的改造可参照执行。 本规不适用于操作控制室、DCS机房、计算机机房等的防静电接地设计。 1.0.2 接地系统按功能可分为保护接地、工作接地与仪表系统防雷接地。 1.0.3 执行本规时,尚应符合现行有关标准规的要求。 2 保护接地 2.0.1 用电仪表、自控设备的金属外壳和正常不带电的金属部分,由于绝缘破坏而有可能带危险电压时,均应作保护接地。 它们包括:仪表盘、仪表柜、仪表箱、PLC及DCS机柜、操作站及辅助设备、供电盘、供电箱、接线盒、电缆槽、电缆托盘、穿线管、铠装电缆的铠装护层等。 2.0.2 24V或低于24V供电的现场仪表、变送器、就地开关等,若无特殊要求时,可不作保护接地。 2.0.3 安装在非爆炸危险场所的金属表盘上的按钮、信号灯、继电器等小型低压电器的金属外壳,当与已接地的金属表盘框架电气接触良好时,可不作保护接地。 3 工作接地 3.0.1 仪表、PLC、DCS、计算机系统等,应作工作接地。工作接地包括:信号回路接地、屏蔽接地、本质安全仪表系统接地。 3.0.2 当仪表、PLC、DCS、计算机系统等电子设备,需要建立统一的基准电位时,应进行信号回路接地。 3.0.3 当PLC、DCS、计算机系统与模拟仪表联用时,应对模拟系统与数字系统两者提供一个公共的信号回路接地点。 3.0.4 仪表系统中用以降低电磁干扰的部件(如电缆的屏蔽层、排扰线、仪表上的屏蔽接地端子等),应作屏蔽接地。除信号源本身接地者外,屏蔽接地应在控制室侧实施。 3.0.5 本质安全仪表系统中必须接地的本安关联设备,应根据仪表制造厂的要求可靠接地。3.0.6 本质安全仪表系统的信号回路地和屏蔽地,可通过接地汇流与本质安全地连接在一

8化工自控仪表标准2-仪表系统接地设计规定

6 联结电阻、对地电阻和接地电阻 6.0.1从仪表设备的接地端子到总接地板之间导体及连接点电阻的总和称为联结电阻。 仪表系统的接地联结电阻不应大于1Ω。 6.0.2接地极的电位与通过接地极流入大地的电流之比称为接地极对地电阻。 6.0.3接地极对地电阻和总接地板、接地总干线及接地总干线两端的连接点电阻之和称为接地电阻。 仪表系统的接地电阻不应大于4Ω。 7 接地联结的规格及结构要求 7.1 接地连接线规格 7.1.1接地系统的导线应采用多股绞合铜芯绝缘电线或电缆。 7.1.2接地系统的导线应根据连接仪表的数量和长度按下列数值选用。 接地连线 1~2.5mm2 接地分干线 4~16mm2 接地干线 10~25mm2 接地总干线 16~50mm2 7.2 接地汇流排、联结板规格 7.2.1接地汇流排宜采用25mm2×6mm2的铜条制作。也可用连接端子组合而成。 7.2.2接地汇总板和总接地板应采用铜板制作。铜板厚度不应小于6mm,长宽尺寸按需要确定。 7.3 接地连接结构要求 7.3.1所有接地连接线在接到接地汇流排前均应良好绝缘;所有接地分干线在接到接地汇总板前均应良好绝缘;所有接地干线在接到总接地板前均应良好绝缘。 7.3.2接地汇流排(汇流条)、接地汇总板、总接地板应用绝缘支架固定。 7.3.3接地系统的各种连接应保证良好的导电性能。接地连线、接地分干线、接地干线、接地总干线与接地汇流排、接地汇总板的连接应采用铜接线片和镀锌钢质螺栓,并采用防松和防滑脱件,以保证连接的牢固可靠。或采用焊接。 接地总干线和接地极的连接部分应分别进行热镀锌或热镀锡。

7.3.4接地系统应设置耐久性的标识。标识的颜色如表7.3.4所示。 表7.3.4接地系统标识的颜色 附录A 仪表系统接地工作注意事项 A.0.1仪表系统接地的施工应严格按照设计要求进行,不能为了方便随便予以更改。对隐蔽工程施工后应及时做好详细记录,并设置标识。 A.0.2 在接地系统的各个连接点,应保证接触牢固可靠,并采取措施确保接触面不致受到污染和机械损伤。 A.0.3 在自动化系统和计算机系统等投运前,应确认其接地工作已完成,符合制造商的要求。 A.0.4经常检查并确保接地通路的完好性。 A.0.5在生产过程中如对个别仪表进行维修会造成接地连接断路时,应事先做好临时性的跨接。 本规定用词说明 本规定条文中要求执行严格程度不同的用词,说明如下: 1表示很严格,非这样做不可的用词 正面词采用“必须”;反面词采用“严禁”。 2表示严格,正常情况下均应这样做的用词 正面词采用“应”;反面词采用“不应”或“不得”。 3表示允许稍有选择,在条件许可时首先应该这样做的用词 正面词采用“宜”;反面词采用“不宜”。 表示有选择,在一定条件下可以这样做,采用“可”。

仪表及控制系统接地知识科普

仪表及控制系统接地知识科普 仪表及控制系统接地不是一个新的论题,很多问题早有结论,也有正确的设计方法。但在部分工程技术人员中,仍存在一些模糊概念和疑虑。接地的作用、接地的分类很多文献都讨论过,由不同的方法可以有不同的分类,都有道理,本文不再讨论。本文主要讨论接地设计怎么做,为什么。 仪表及控制系统接地的目的主要有两个:一是为人身安全和电气设备的运行,包括保护接地、本安接地、防静电接地和防雷接地等;二是为信号传输和抗干扰的工作接地。但二者又是相关的,不能截然分开。 关于仪表系统接地,我国目前还没有制定相应的国家标准。但电气专业关于保护接地、防雷接地的国家标准中的有关规定,是可以参照执行的。 IEC和ISA等国际组织的有关标准提供了很好的参考,特别是信息技术装置功能接地和保护接地通过等电位连接以及合用接地的规定,为设计人员提供了权威的、明确的工程设计依据。 01 保护接地 保护接地是为人身安全和电气设备安全而设置的接地(也称为安全接地),仪表专业的保护接地与电气专业的保护接地一样,属于低压配电系统接地,因此,应按电气专业的有关标准、规范和方法进行。例如:GBJ65-83《工业与民用电力装置的接地设计规范》等。 对于低压配电系统接地,电气专业有一系列比较完善的设计、计算、试验、施工及验收的标准规范,对接地系统的各个环节都有较完整的理论、实验和方法,绝不是某个接地电阻值就可以概括的。 仪表专业用电一般来自不间断电源UPS或电气专业的建筑物配电,大体可分为控制室用电和现场仪表用电。控制室用电一般采用TN-S系统(整个系统中的保护线和中线是分开的)[1]。现场仪表用电一般采用TT系统(分散接地)。 根据等电位连接原则,仪表用电的保护接地应当是电气接地系统。不但建筑物内实施等电

仪器仪表接地的技巧

仪器仪表接地的技巧 仪器仪表行业接地也是有研究的,只有正确的接地才能保证测量精度及人身及设备的安全。今天小编Agitekservice就为大家指出十个小技巧,能帮助您更好地接地。 一、控制系统AC电源应该来自于一个分开的系统,与其他设备和使用分开; 二、电源在设计时应该考虑到初始电流的冲击,至少能承受10个周期; 三、控制系统AC接地应该建立在隔离变压器或UPS上,或者在附近; 四、控制系统工作站AC电源应该使用专门的插座; 五、当连接现场设备电源有几个I/O接口转接器时,应该使用隔离栅条; 六、控制系统AC电源应该由隔离变压器或UPS供给; 七、当AC和DC输入连接到同样的接线排,接线排必以适当的警告标签标出; 八、AC接地线应该与载流线型号相当或大一号; 九、预留一根额外的线或使用一终端盒,以提供测试点。 十、接地系统的电阻必须进行测试,以保证接地能满足控制系统制造商的要求电磁波测试。 仪器仪表接地规定: 1.仪表接地系统分为保护接地和工作接地两种。接地对于抑制干扰信号、保证测量精度、保护人身及设备安全、保证高产稳产具有十分重要的作用。 2.保护接地与装置电气系统接地网相连,一般接地电阻≤4Ω。 3.工作接地包括信号回路接地、屏蔽接地和本安系统接地。其中信号回路接地和屏蔽接地与仪表系统接地网相连接,接地电阻符合制造厂标准;独立设置本安接地系统时,单独的本安接地极与装置电气系统的接地网或其他接地网之间的距离≥5.0m,接地电阻≤1Ω或符合制造厂标准。 4.电缆屏蔽层应在控制室一端接地,接到仪表设备的接地汇流排上,信号屏蔽层在整个电缆连接中应保持连续。 5.接地线采用多股铜芯绞线,采用压接法连接。 6.接地线的绝缘护套颜色宜为黄绿相间色,两端应有标牌表明接地类型。

仪表接地规范

1总则 1.0. 1本规范适用于石油化工企业自动控制工程的仪表、PLG DCS计算机系 统等的接地设计,装置的改造可参照执行。 本规范不适用于操作控制室、DCS机房、计算机机房等的防静电接地设计。 1. 0. 2 接地系统按功能可分为保护接地、工作接地与仪表系统防雷接地。 1.0. 3 执行本规范时,尚应符合现行有关标准规范的要求。 2保护接地 2.0. 1 用电仪表、自控设备的金属外壳和正常不带电的金属部分,由于绝缘破坏而有可能带危险电压时,均应作保护接地。 它们包括:仪表盘、仪表柜、仪表箱、PLC及DCS机柜、操作站及辅助设备、供电 盘、供电箱、接线盒、电缆槽、电缆托盘、穿线管、铠装电缆的铠装护层等。 2.0.2 24V或低于24V供电的现场仪表、变送器、就地幵关等,若无特殊要求时,可不作保护接地。 2.0. 3 安装在非爆炸危险场所的金属表盘上的按钮、信号灯、继电器等小型低压电器的金属外壳,当与已接地的金属表盘框架电气接触良好时,可不作保护接地。 3工作接地 3.0. 1仪表、PLC DCS计算机系统等,应作工作接地。工作接地包括:信号回路接地、屏蔽接地、本质安全仪表系统接地。 3.0. 2当仪表、PLC DCS计算机系统等电子设备,需要建立统一的基准电位时,应进行信号回路接地。 3. 0. 3当PLG DCS计算机系统与模拟仪表联用时,应对模拟系统与数字系统两者提供一个公共的信号回路接地点

3.0.4 仪表系统中用以降低电磁干扰的部件(如电缆的屏蔽层、排扰线、仪表上的屏蔽接地端子等),应作屏蔽接地。除信号源本身接地者外,屏蔽接地应在控制室侧实施。3.0.5 本质安全仪表系统中必须接地的本安关联设备,应根据仪表制造厂的要求可靠接地。 3.0.6 本质安全仪表系统的信号回路地和屏蔽地,可通过接地汇流与本质安全地连接在一起。 4仪表系统防雷接地 4.0. 1位于多雷击区或强雷击区内的石油化工装置,当控制室内PLG DCS计 算机系统仪表电缆引入处及现场仪表已设置了电涌保护器时,电涌保护器应进行仪表系统防雷接地。 4.0. 2 在强雷击区室外架空敷设且不在金属电缆槽内或穿管的多芯电缆,其备用芯宜作防雷接地。 5接地连接方式和接地电阻要求 5.0。1仪表、PLC DCS计算机系统等电子设备的保护接地,应接至厂区电气系统接地网,接地电阻小于4Q。 5.0. 2仪表、PLC DCS计算机系统等电子设备的工作接地(信号回路接地、屏蔽接地),可按以下两种方式进行: 5.0. 2. 1当厂区电气系统接地网接地电阻值小于4Q,且能满足仪表系统的要 求而仪表制造厂又无特殊要求时,可直接接至厂区电气系统接地网; 5. 0. 2. 2 当厂区电气系统接地网接地电阻值较大或仪表制造厂有特殊要求时, 应独立设置仪表接地系统,接地电阻应小于4Q (或按仪表制造厂要求确定) 5.0.3 一般情况下,仪表回路和系统,应只有一个信号回路接地点。当使用变压器耦合型隔离器或光电耦合型隔离器时,在隔离器两侧也可分别设置信号回路接地点。

自动化仪表控制系统管理制度

第一章总则 第一条为加强电化分公司自动化仪表设备及控制系统的管理工作,控制和优化工艺条件,保障仪表设备安全经济运行,依据国家有关法规及相关管理规定,制定本制度。 第二条本制度适用于电化分公司自动化仪表控制系统的管理。 第三条控制系统主要包括集散控制系统、紧急停车系统、可编程控制器等。 第四条控制系统的日常维护。 (一)系统点检制度 1、仪表设备管理部门应加强对系统的日常维护检查,根据系统的配置情况,制定系统点检标准,并设计相应的点检表格。 2、系统点检应包括以下主要内容: A、主机设备的运行状态。 B、外围设备(包括打印机等)的投用情况和完好状况。 C、各机柜的风扇(包括内部风扇)运转状况。 D、机房、操作室的温度、湿度。 3、点检记录要字迹清楚、书写工整,并定期回收,妥善保管。 (二)系统周检制度 1、仪表设备管理部门(仪表保运单位)应根据设备保养手册的规定,制定周检项目、内容和合理的周期,并做好DCS(PLC)系统周检记录。 2、系统周检应包括如下主要内容: A、确认冗余系统的功能和切换动作是否准确可靠。 B、清洗过滤网。 C、清洗CRT。 D、检查风扇及风扇的保护网。 E、定期清洗打印机。 F、清洗机房内设备的表面灰尘。 G、系统中的电池按期更换。 H、定期对运动机件加润滑油。 I、检查供电及接地系统,确保符合要求。

3、系统周检发现的问题,应及时填写缺陷记录,并立刻组织人员处理解决。 (三)系统硬件管理 1、仪表设备管理部门应有专人负责保养,按规定进行点检、周检和维护。 2、建立系统硬件设备档案,内容应名细到主要插件板,并作好历次设备、卡件变更记录。 3、系统硬件的各种资料要妥善保管,原版资料要归档保存。 4、在线运行设备检修时,要严格执行有关手续,按照规定,做好防范措施。 (四)系统软件管理 1、系统软件和使用软件必须有双备份,并妥善保管在金属柜内;控制系统的密码或键锁开关的钥匙要由专人保管,并严格执行规定范围内的操作内容。软件备份要注明软件名称、修改日期、修改人,并将有关修改设计资料存档。 2、系统软件无特殊情况严禁修改;确需修改时,要严格按照申请、论证手续,主管经理批准后实施。 3、使用软件在正常生产期间不宜修改。按工艺要求确需重新组态时,要有明确的修改方案,并由生产管理部门、工艺车间和仪表负责人共同签字后方可实施并做好安全防范措施。 4、软件各种文本修改后,必须对其他有关资料和备份盘作相应的修改。 5、由通用计算机、工业控制微机组成的控制、数据采集等系统,应执行专机专用,严禁任何人运行和系统无关的软件,以防病毒对系统的侵袭。 6、工艺参数、联锁设定值的修改,要办理联锁工作票后方可进行改动。 7、对重大系统改动时,要按软件开发程序进行,即建立命题,制定方案、组态调试、模拟试验、小样试运行、组态鉴定等过程。通过技术鉴定的软件,要做好文件登记并复制软盘,妥善保存。 (五) 机房管理 1、机房是过程控制计算机系统的重要工作场所和核心部位,要认真做好安全工作,非机房工作人员未经批准严禁进入,进入机房人员应按规定着装。进入机房作业人员必须采取静电释放措施,消除人身所带的静电。 2、机房内应清洁无尘并确保满足以下条件: 温度18-24℃变化率<3℃/hr

仪表接地区别

仪表系统接地分为保护接地、工作接地 一、保护接地 通常需要做接地的自控设备如:仪表盘、仪表柜、仪表箱、DCS/PLC/ED的机柜和操作站、仪表供电设备、电缆桥架、穿线管、接线盒及铠装电缆的铠装层,以及控制室内的防静电地板。 一般来讲,使用DC24V为电源的现场仪表、变送器等无特殊要求的可不作保护接地。 保护接地的方法 现场仪表桥架、穿线管应每隔30m 用接地线与已接地的金属构件相连。特别要指出的是,现场接地绝不能利用储存、输送可燃性介质的金属设备、管道以及与之相连的金属构件进行接地。 控制室的仪表自控设备、机柜、仪表盘等应单独设置保护接地汇流排。其接地体可与电力系统的接地体共用。 仪表保护接地连接线标识颜色为绿色。 二、工作接地 工作接地包括信号回路接地、屏蔽接地、本质安全接地。 1、信号回路接地 在非隔离的信号系统中,应建立一个统一的信号参考点。即进行信号回路接地。通常为直流电源的负极接地。使用非隔离的信号系统这是我在设计中一般的首选方法。在运行时,系统受到干扰的情况极其少见。 在隔离的信号系统中,隔离信号可不接地。这里指的隔离是每一个输入/输出信号与其他输入输出信号的电路是绝缘的。做到电源独立、 相互隔离、参考点浮空。我认为在回路较多的系统,不要轻易使用这种方法。 在控制内应设置信号及屏蔽接地汇流排接地线颜色标识为黄/ 绿线。

2、屏蔽接地电缆的屏蔽层、排扰线应作屏蔽接地。在强雷击区,室外架空不 带屏蔽的普通多芯电缆,备用芯应屏蔽接地。主 要是为了避免雷电在信号线路感应出高电压。现场接线箱内,端子两侧的电缆屏蔽线应在箱内进行跨接。同一信号回路,同一屏蔽层应该单点接地。一般屏蔽接地应在控制室一侧接地。在控制内应设置信号及屏蔽接地汇流排。 接地线颜色标识为黄/ 绿线。 3、本质安全接地齐纳安全栅的汇流排必须与直流电源公共端相连(主要是保证当电源故障时能够对危险场所进行保护)。其汇流排或导轨作本安接地。 在控制内应设置本安接地汇流排。接地线颜色标识为兰/ 绿线。工作接地的方法信号及屏蔽接地汇流排、本安接地汇流排通过各自的接地线接至工作接地汇流排。 九十年代以来,一些相关规定都明确指出,当电气专业把建筑物、装置的金属支撑、钢结构、金属管道、屋顶架构等全部接地后,仪表工作接地可与电气专业合用接地装置。这样可减小雷击伤害,降低干扰。当电气专业未作这种接地连接时,仪表工作接地应采用单独接地体接地。接地体应与电气接地体不小于5m 的距离。接地电阻应不大于 4 欧姆。

石油化工仪表接地设计规范

石油化工仪表接地设计规范 1范围 本规范规定了仪表接地分类、接地方法、接地系统、接地连接方法、接地系统接线、接地电阻等内容。 本规范规定的仪表及控制系统接地种类有:保护接地、工作接地、本质安全系统接地(以下简称:本安系统接地)、防静电接地和防雷接地。 本规范适用于石油化工企业新建及扩建项目的仪表及自动控制系统工程的仪表、分散型控制系统(DCS)、可编程序控制系统(PLC)、工业控制计算机系统(IPC)、安全仪表系统(SIS)、火灾及可燃气体和有毒气体检测系统(FGS)、过程控制计算机系统(PCCS)等的接地系统设计。改造设计可参照执行。 2接地分类 2.1保护接地 2.1.1 保护接地(也称为安全接地)是为人身安全和电气设备安全而设置的接地。仪表及控制系统的外露导电部

分,正常时不带电,在故障、损坏或非正常情况时可能带危险电压,对这样的设备,均应实施保护接地。 2.1.2 低于36V供电的现场仪表,可不做保护接地,但有可能与高于36V电压设备接触的除外。 2.1.3 当安装在金属仪表盘、箱、柜、框架上的仪表,与已接地的金属仪表盘、箱、柜、框架电气接触良好时,可不做保护接地。 2.2 工作接地 2.2.1 仪表及控制系统工作接地包括:仪表信号回路接地和屏蔽接地。本规定中的工作接地,均指仪表及控制系统工作接地。 2.2.2 隔离信号可以不接地。这里的“隔离”是指每一输入信号(或输出信号)的电路与其它输入信号(或输出信号)的电路是绝缘的、对地是绝缘的,其电源是独立的、相互隔离的。 2.2.3 非隔离信号通常以直流电源负极为参考点,并接地。信号分配均以此为参考点。 2.2.4 仪表工作接地的原则为单点接地,信号回路中应避免产生接地回路,如果一条线路上的信号源和接收仪表都不可避免接地,则应采用隔离器将两点接地隔离开。

仪表防爆及接地系统施工方案(中英)

仪表防爆及接地系统施工方案 Construction Scheme for Instrument Explosionproof and Earthing System 1 编制说明: 在现代工业生产装置中,许多易燃、易爆、易挥发的工艺介质出现在生产流程中,防爆施工对装置的安全运行非常重要;各种工艺参数的检测、显示和控制都实现了自动化、集中化、智能化,特别是集散控制系统(DCS)的广泛应用,对仪表接地系统的要求越来越高。正确完成仪表接地系统,对保证设备及人身安全,保证装置安全运行意义重大。 为了高速优质地完成装置防爆及接地施工任务,特编制本方案。 2编制依据: 2.1设计施工图及其它设计文件。 2.2现行《自动化仪表工程施工及验收规范》。 2.3现行的《电气装置安装工程施工及验收规范》。 2.4现行《自动化仪表工程质量检验评定标准》。 2.5厂商提供的产品安装使用说明书等技术文件。 2.6公司《质量保证手册》、《质量体系子程序》及其支撑性文件。 3.工程概况 工程概况应包括:工程名称、地点、规模、特点、范围、主要技术参数、主要实物工程量、工期要求及投资等。 4.防爆施工: Explosion-proof Construction: 4.1一般规定: General Regulations: 4.1.1爆炸和火灾危险区域使用的电气、仪表设备的防爆形式及配线方式必须符合设计要求,并满足使用区域的防爆等级规定。 The style of explosion-proof and wiring for electric equipment and instrument equipment, which used in explosion and fire dangerous areas, must accord with the design requirement and content

中控DCS系统 控制系统接地规程

1.目的 为保护人身和控制系统的安全以及抑制干扰,特制定本规程。 2.接地分类 2.1分类 接地按其功能可分为保护接地、工作接地、本安系统接地、防静电接地和防雷接地等。 2.2保护接地 2.2.1保护接地(也称为安全接地)是为人身安全和电气设备安全而设置的接地。凡控制 系统的机柜、操作台、仪表柜、配电柜、继电器柜等用电设备的金属外壳及控制设备正常不带电的金属部分,由于各种原因(如绝缘破坏等)而有可能带危险电压者,均应作保护接地。 2.2.2低于36V供电的现场仪表,如无特殊要求可不做保护接地,但有可能与高于36V电 压设备接触的除外。 2.2.3当安装在金属仪表盘、箱、柜、框架上的按钮、信号灯、继电器等小型低压电器的 金属外壳,与已接地的金属仪表盘、箱、柜、框架电气接触良好时,可不做保护接地。 2.3工作接地 2.3.1仪表及控制系统工作接地包括:仪表信号回路接地和屏蔽接地。 2.3.2隔离信号可以不接地。这里的“隔离”是指每一输入信号(或输出信号)的电路与 其它输入信号(或输出信号)的电路是绝缘的、对地是绝缘的,其电源是独立的、相互隔离的。 2.3.3非隔离信号通常是以直流电源负极为参考点,并接地。信号分配均以此为参考点。 2.3.4仪表工作接地的原则为单点接地,信号回路中应避免产生接地回路,如果一条线路 上的信号源和接收仪表都不可避免接地,则应采用隔离器将两点接地隔离开。 2.4本安系统接地 2.4.1隔离式安全栅不需要专门接地。 2.4.2齐纳式安全栅应设置接地连接系统。 2.4.3齐纳式安全栅的本安系统接地与仪表信号回路接地不应分开。

防静电接地 2.5.1安装DCS、PLC、SIS等设备的控制室,应考虑防静电接地。 2.5.2已经做了保护接地的仪表和设备,不必再另做防静电接地。 2.6防雷接地 2.6.1当仪表及控制系统的信号线路从室外进入室内后,如需要设置防雷接地连接的场合, 应实施防雷接地连接。 2.6.2仪表及控制系统防雷接地应与电气专业防雷接地系统共用,但不得与独立避雷装置 共用接地装置。 3.接地方法 3.1仪表及控制系统的接地应采用共用接地系统进行等电位连接;在无法满足等电位接地 的情况下,可以将保护接地和工作接地分类汇总后单独接地。 3.2控制系统的接地原则为单点接地,即整个控制系统通过唯一的接入点组合到接地系统 中去。采用等电位接地方式时,控制系统在接地网上的接入点应和防雷地、大电流或高电压设备的接入点保持不小于10米的距离;采用单独接地方式时,单独接地体与其他电气专业接地体应相距10米以上,和独立的防直击雷接地体须相距20米以上。 3.3仪表电缆槽、电缆保护金属管应做保护接地,可直接焊接或用接地线连接在附近已接 地的金属管道上,并应保证接地的连续和可靠,但不得接至输送可燃物质的金属管道。 仪表电缆槽、电缆保护金属管的连接处,应进行可靠的导电连接。 3.4各工作接地在汇总之前不应与保护接地混接。 3.5工作接地的连线,包括各接地线、接地干线、接地汇流排等,在接至总接地板之前, 除正常的连接点外,都应当是绝缘的。工作接地最终与接地体或接地网的连接应从总接线板单独接线。 3.6信号屏蔽电缆的屏蔽层接地应为单点接地,应根据信号源和接收仪表的不同情况采用 不同接法。当信号源接地时,信号屏蔽电缆的屏蔽层应在信号源侧接地,否则,信号屏蔽电缆的屏蔽层应在信号接收仪表一侧接地。 3.7齐纳式安全栅的本安系统接地应汇总至工作接地汇总板。 3.8齐纳式安全栅的接地汇流排或接地导轨必须与直流电源的负极相连。 3.9齐纳式安全栅的接地连接导线宜为两根导线。

仪表防爆及接地系统施工方案

仪表防爆及接地系统施工方案 1.编制说明: 在现代工业生产装置中,许多易燃、易爆、易挥发的工艺介质出现在生产流程中,防爆施工对装置的安全运行非常重要;各种工艺参数的检测、显示和控制都实现了自动化、集中化、智能化,特别是集散控制系统(DCS)的广泛应用,对仪表接地系统的要求越来越高。正确完成仪表接地系统,对保证设备及人身安全,保证装置安全运行意义重大。 为了高速优质地完成装置防爆及接地施工任务,特编制本方案。 2.编制依据: 2.1设计施工图及其它设计文件。 2.2现行《自动化仪表工程施工及验收规范》。 2.3现行的《电气装置安装工程施工及验收规范》。 2.4现行《自动化仪表工程质量检验评定标准》。 2.5厂商提供的产品安装使用说明书等技术文件。 2.6公司《质量保证手册》、《质量体系子程序》及其支撑性文件。 3.工程概况: 工程概况应包括:工程名称、地点、规模、特点、范围、主要技术参数、主要实物工程量、工期要求及投资等。 4.防爆施工: 4.1一般规定: 4.1.1爆炸和火灾危险区域使用的电气、仪表设备的防爆形式及配线方式必须符合设计要求,并满足使用区域的防爆等级规定。 4.1.2安装在爆炸和火灾危险区域的仪表、电气设备和材料,必须具有符合现行国家或行业标准中规定的防爆质量技术鉴定文件和防爆产品出厂合格证书。设备、材料的外观应无损伤和裂纹。 4.1.3在爆炸和火灾危险场所使用的防爆电气、仪表设备,应有铭牌和防爆标志,并在铭牌上标明国家授权的部门所发给的防爆合格证编号。 4.1.4在爆炸和火灾危险场所安装的正压通风的仪表盘(箱)、接线箱及电气、仪表设备、除本质安全型外,应有“电源未切断不得打开”的标志。 4.1.5仪表电气线路采用的电缆沟、汇线槽、保护管和仪表连接管路在穿越不同防爆等级的爆炸和火灾区域的分隔间壁时,在分隔间壁外,必须做充填密封。 4.2设备安装 4.2.1采用正压通风防爆的防爆仪表盘(箱),接线箱,安装后应保证箱内压力维持在不低于设计规定的压力值,当有低压力其联锁或报井装置时,其动

仪表及控制系统接地

仪表及控制系统接地不是一个新的论题,很多问题早有结论,也有正确的设计方法。但在部分工程技术人员中,仍存在一些模糊概念和疑虑。接地的作用、接地的分类很多文献都讨论过,由不同的方法可以有不同的分类,都有道理,本文不再讨论。本文主要讨论接地设计怎么做,为什么。 仪表及控制系统接地的目的主要有两个:一是为人身安全和电气设备的运行,包括保护接地、本安接地、防静电接地和防雷接地等;二是为信号传输和抗干扰的工作接地。但二者又是相关的,不能截然分开。 关于仪表系统接地,我国目前还没有制定相应的国家标准。但电气专业关于保护接地、防雷接地的国家标准中的有关规定,是可以参照执行的。 IEC和ISA等国际组织的有关标准提供了很好的参考,特别是信息技术装置功能接地和保护接地通过等电位连接以及合用接地的规定,为设计人员提供了权威的、明确的工程设计依据。 1保护接地 保护接地是为人身安全和电气设备安全而设置的接地(也称为安全接地),仪表专业的保护接地与电气专业的保护接地一样,属于低压配电系统接地,因此,应按电气专业的有关标准、规范和方法进行。例如:GBJ65-83《工业与民用电力装置的接地设计规范》等。 对于低压配电系统接地,电气专业有一系列比较完善的设计、计算、试验、施工及验收的标准规范,对接地系统的各个环节都有较完整的理论、实验和方法,绝不是某个接地电阻值就可以概括的。

仪表专业用电一般来自不间断电源UPS或电气专业的建筑物配电,大体可分为控制室用电和现场仪表用电。控制室用电一般采用TN-S系统(整个系统中的保护线和中线是分开的)[1]。现场仪表用电一般采用TT系统(分散接地)。根据等电位连接原则,仪表用电的保护接地应当是电气接地系统。不但建筑物内实施等电位连接,石油化工装置一般还采用全装置等电位连接。 接地工程应当按电气专业的标准规范和方法来设计。有的设计将UPS供电的仪表系统的保护接地分离出来单独设置接地系统,这是不适宜的。多数UPS 的两路供电中的一路是不经过变压器隔离而直接切换输出的,这就不可能具备单独设置接地系统的条件。另外,建筑物内的其他配电系统(如照明配电、维修配电等)是电气专业的低压配电系统,并不是UPS出来的仪表电源。这样,在同一建筑物内有两个接地系统,而且不能避免发生被同时接触的事件,这就违反了电气专业规范中“能同时触及的外露导电部分应接至同一接地系统”的配电系统接地规定。既无法实现两个接地系统的完全隔离,同时也无法实现建筑物内的等电位连接,形成不安全因素。 2仪表工作接地 仪表及控制系统工作接地的目的是抗干扰,对此问题很多文献都论述得很清楚,从理论、实践及方法上都是正确的、可行的。本文不再重复。仪表及控制系统工作接地从工程上可分为屏蔽接地、仪表信号接地等。 2.1屏蔽接地 仪表屏蔽接地分两种。一种是电缆保护管、电缆槽等接地。这类接地应与装置电气接地网相连,属于等电位连接。另一种为信号屏蔽电缆接地,应根据信号源和接收仪表的不同情况采用不同接法。例如:常用的变送器内部电路

仪表接地规范

1 总则 1.0.1 本规范适用于石油化工企业自动控制工程的仪表、PLC、DCS、计算机系统等的接地设计,装置的改造可参照执行。 本规范不适用于操作控制室、DCS机房、计算机机房等的防静电接地设计。 1.0.2 接地系统按功能可分为保护接地、工作接地与仪表系统防雷接地。 1.0.3 执行本规范时,尚应符合现行有关标准规范的要求。 2 保护接地 2.0.1 用电仪表、自控设备的金属外壳和正常不带电的金属部分,由于绝缘破坏而有可能带危险电压时,均应作保护接地。 它们包括:仪表盘、仪表柜、仪表箱、PLC及DCS机柜、操作站及辅助设备、供电盘、供电箱、接线盒、电缆槽、电缆托盘、穿线管、铠装电缆的铠装护层等。 2.0.2 24V或低于24V供电的现场仪表、变送器、就地开关等,若无特殊要求时,可不作保护接地。 2.0.3 安装在非爆炸危险场所的金属表盘上的按钮、信号灯、继电器等小型低压电器的金属外壳,当与已接地的金属表盘框架电气接触良好时,可不作保护接地。 3 工作接地 3.0.1 仪表、PLC、DCS、计算机系统等,应作工作接地。工作接地包括:信号回路接地、屏蔽接地、本质安全仪表系统接地。 3.0.2 当仪表、PLC、DCS、计算机系统等电子设备,需要建立统一的基准电位时,应进行信号回路接地。 3.0.3 当PLC、DCS、计算机系统与模拟仪表联用时,应对模拟系统与数字系统两者提供一个公共的信号回路接地点。 3.0.4 仪表系统中用以降低电磁干扰的部件(如电缆的屏蔽层、排扰线、仪表上的屏蔽接地端子等),应作屏蔽接地。除信号源本身接地者外,屏蔽接地应在控制室侧实施。 3.0.5 本质安全仪表系统中必须接地的本安关联设备,应根据仪表制造厂的要求可靠接地。3.0.6 本质安全仪表系统的信号回路地和屏蔽地,可通过接地汇流与本质安全地连接在一

接地设计规范

石油化工仪表接地设计规范 关键词:石油化工仪表接地设计规范 1范围 本规范规定了仪表接地分类、接地方法、接地系统、接地连接方法、接地系统接线、接地电阻等内容。 本规范规定的仪表及控制系统接地种类有:保护接地、工作接地、本质安全系统接地(以下简称:本安系统接地)、防静电接地和防雷接地。 本规范适用于石油化工企业新建及扩建项目的仪表及自动控制系统工程的仪表、分散型控制系统(DCS)、可编程序控制系统(PLC)、工业控制计算机系统(IPC)、安全仪表系统(SIS)、火灾及可燃气体和有毒气体检测系统(FGS)、过程控制计算机系统(PCCS)等的接地系统设计。改造设计可参照执行。 2接地分类 2.1保护接地 2.1.1 保护接地(也称为安全接地)是为人身安全和电气设备安全而设置的接地。仪表及控制系统的外露导电部分,正常时不带电,在故障、损坏或非正常情况时可能带危险电压,对这样的设备,均应实施保护接地。 2.1.2 低于36V供电的现场仪表,可不做保护接地,但有可能与高于36V电压设备接触的除外。 2.1.3 当安装在金属仪表盘、箱、柜、框架上的仪表,与已接地的金属仪表盘、箱、柜、框架电气接触良好时,可不做保护接地。 2.2 工作接地 2.2.1 仪表及控制系统工作接地包括:仪表信号回路接地和屏蔽接地。本规定中的工作接地,均指仪表及控制系统工作接地。 2.2.2 隔离信号可以不接地。这里的“隔离”是指每一输入信号(或输出信号)的电路与其它输入信号(或输出信号)的电路是绝缘的、对地是绝缘的,其电源是独立的、相互隔离的。 2.2.3 非隔离信号通常以直流电源负极为参考点,并接地。信号分配均以此为参考点。 2.2.4 仪表工作接地的原则为单点接地,信号回路中应避免产生接地回路,如果一条线路上的信号源和接收仪表都不可避免接地,则应采用隔离器将两点接地隔离开。 2.3本安系统接地 2.3.1 采用隔离式安全栅的本质安全系统,不需要专门接地。 2.3.2 采用齐纳式安全栅的本质安全系统则应设置接地连接系统。 2.3.3 齐纳式安全栅的本安系统接地与仪表信号回路接地不应分开。 2.4防静电接地 2.4.1 安装DCS、PLC、SIS等设备的控制室、机柜室、过程控制计算机的机房,应考虑防静电接地。这些室内的导静电地面、活动地板、工作台等应进行防静电接地。 2.4.2 已经做了保护接地和工作接地的仪表和设备,不必要另做防静电接地。 2.5防雷接地 2.5.1 当仪表及控制系统的信号线路从室外进入室内后,需要设置防雷接地连接的场合,应实施防雷接地连接。 2.5.2 仪表及控制系统防雷接地应与电气专业防雷接地系统共用,但不得与独立避雷

石油化工企业自动化仪表系统的接地方式

石油化工企业自动化仪表系统的接地方式 1.制定自动化仪表系统的接地规范的意义 自动化仪表系统的接地规范主要适用于石油化工企业新建及扩建项目的仪表及自动控制系统工程的仪表、分散型控制系统(DCS)、可编程序控制系统(PLC)、工业控制计算机系统(IPC)、安全仪表系统(SIS)、火灾及可燃气体和有毒气体检测系统(FGS)、过程控制计算机系统(PCCS)等的接地系统设计。改造设计可参照执行。执行本规范时,尚应符合国家现行有关强制性标准规范的要求。 2.接地方式 2.1保护接地。低于36V供电的现场仪表,可不做保护接地,但有可能与高于36V电压设备接触的除外。当安装在金属仪表盘、箱、柜、框架上的仪表,与己接地的金属仪表盘、箱、柜、框架电气接触良好时,可不做保护接地。 2.2工作接地。仪表及控制系统工作接地包括:仪表信号回路接地和屏蔽接地。本规定中的工作接地,均指仪表及控制系统工作接地。隔离信号可以不接地。这里的“隔离”是指每一输入信号(或输出信号)的电路与其它输入信号(或输出信号)的电路是绝缘的、对地是绝缘的,其电源是独立的、相互隔离的。非隔离信号通常以直流电源负极为参考点,并接地。信号分配均以此为参考点。 2.3本安系统接地。采用隔离式安全栅的本质安全系统,不需要专门接地。采用齐纳式安全栅的本质安全系统则应设置接地连接系统。齐纳式安全栅的本安系统接地与仪表信号回路接地不应分开。 2.4防静电接地。安装DCS,PLC,SIS等设备的控制室、机柜室、过程控制计算机的机房,应考虑防静电接地.这些室内的导静电地面、活动地板、工作台等应进行防静电接地。己经做了保护接地和工作接地的仪表和设备,不必再另做防静电接地。 2.5防雷接地。当仪表及控制系统的信号线路从室外进入室内后,

相关文档
相关文档 最新文档