文档库 最新最全的文档下载
当前位置:文档库 › 实验九 差示分光光度法测定维生素B1片的含量

实验九 差示分光光度法测定维生素B1片的含量

实验九   差示分光光度法测定维生素B1片的含量
实验九   差示分光光度法测定维生素B1片的含量

实验九 差示分光光度法测定维生素B 1片的含量

一、实验目的

1.掌握差示分光光度法的基本原理。

2.熟悉标准曲线定量的操作方法。

二、实验原理

(一)差示分光光度法(简称△A 法),它保留了通常的分光光度法简便、快捷、直接读数的优点,又无需事先分离,并能消除干扰。

方法:取两份相等的供试液,分别制成两种不同的化学环境(如在其一中加酸或碱,改变pH 或在其一中加能与供试品发生某种化学反应的试剂),然后将它们稀释至同样浓度后,分置于样品池和参比池中,于适当波长处,测定吸光度的差值(△A )。

应用条件:①供试品在不同的化学环境中以不同的分子形式存在,它们的吸收光谱有显著的差异;②干扰物的吸收不受测定时化学环境的影响,光谱行为不变。

定量依据:设x 、y 分别代表在两种不同的化学环境中供试品的存在形式,它们在测定波长处的吸光度以A x 、A y 表示,背景和干扰的吸收度以A Z 表示,A Z 不受测定时化学环境改变的影响。根据吸光度加和性原则:

即在供试液的一定浓度范围内△A 值与其浓度C 呈线性关系,并消除了A Z 的干扰,可用标准曲线法或对照法定量。

(二)维生素B 1片的测定

维生素B 1分子中具有共轭双键结构,在紫外区有吸收,其紫外吸收随溶液pH 的变化

而变化。在pH7的磷酸盐缓冲液中具有两个吸收峰,在232~233nm 处,%11cm E =345;

在266nm 处,%11cm E =255。在pH2时,最大吸收在246nm 处,%11cm E =425。可用于维生素B 1片的差示分光光度法的测定。

三、实验方法

(一)测定波长的选择

精密称取维生素B 1100mg ,用水溶解并稀释成100ml ,精密量取2ml 二份,分别用缓冲液(pH 7.0)和盐酸液(pH 2.0)稀释成100ml ,以相应溶剂为空白,测定紫外吸收光谱。再将

前者放于参比池,后者放于样品池,绘制差示吸收光谱(见图11)。差示光谱图表明在247nm 处有最大差示吸收值(△A),确定247nm为测定波长。

(二)标准曲线绘制

精密称取干燥至恒重的维生素B1100mg,置100ml量瓶中,

用水溶解并稀释至刻度,摇匀,作为贮备液。精密量取1.0、1.5、

2.0、2.5、

3.0ml贮备液各二份,分别置100ml量瓶中,一份用

缓冲液稀释至刻度;另一份用盐酸溶液稀释至刻度,摇匀。取

上述五组浓度相同,pH不同的溶液,在247nm处分别测定差

示吸收值(△A)。以浓度C为横坐标,以差示吸收值△A为纵坐

标绘制标准曲线或进行回归,求得回归方程和相关系数。

(三)样品测定

取本品20片,精密称定,研细。精密称取适量粉末(约相

当于维生素B1 50mg),置50ml量瓶中,加水溶解并稀释至刻

度,摇匀,滤过,弃去初滤液,精密量取续滤液2ml二份,分

别置100ml量瓶中,分别用缓冲液和盐酸液稀释至刻度,摇匀。

将前者置参比池中,后者置样品池中,在247nm波长处测定差

示吸收值。由标准曲线求得维生素B1,浓度,计算维生素B l片的

标示量%。

本品含维生素B l(C12H17ClN4OS·HCl)应为标示量的90.0%~110.0%。

四、注意事项

1.由于仪器波长可能存在差异,所给测定波长仅供参考,可照“测定波长的选择”项下自行测定。

2.测定标准系列各细溶液的△A时,一定要遵循先稀后浓的原则,尽可能消除测定误差。

五、思考题

1.差示分光光度法的优点是什么?

2.差示分光光度法是怎样消除干扰的?

紫外分光光度法计算

第20章 吸光光度法 思 考 题 1. 什么叫单色光复色光哪一种光适用于朗伯-比耳定律 答:仅具有单一波长的光叫单色光。由不同波长的光所组成光称为复合光。朗伯--比耳定律应适用于单色光。 2. 什么叫互补色与物质的颜色有何关系 答:如果两种适当的单色光按一定的强度比例混合后形成白光,这两种光称为互补色光。当混合光照射物质分子时,分子选择性地吸收一定波长的光,而其它波长的光则透过,物质呈现透过光的颜色,透过光与吸收光就是互补色光。 3. 何谓透光率和吸光度 两者有何关系 答:透光率是指透射光强和入射光强之比,用T 表示 T = t I I 吸光度是吸光物质对入射光的吸收程度,用A 表示,A εbc =,其两者的关系 lg =-A T 4. 朗伯-比耳定律的物理意义是什么 什么叫吸收曲线 什么叫标准曲线 答:朗伯--比耳定律是吸光光度法定量分析的理论依据,即吸光物质溶液对光的吸收程度与溶液浓度和液层厚度之间的定量关系。数学表达式为 lg A T εbc =-= 吸收曲线是描述某一吸光物质对不同波长光的吸收能力的曲线,即在不同波长处测得吸光度,波长为横坐标,吸光度为纵坐标作图即可得到吸收曲线。 标准曲线是描述在一定波长下,某一吸光物质不同浓度的溶液的吸光能力的曲线,吸光度为纵坐标,浓度为横坐标作图即可得到。 5. 何谓摩尔吸光系数质量吸光系数两者有何关系 答:吸光系数是吸光物质吸光能力的量度。摩尔吸光系数是指浓度为 mol ·L ,液层度为1cm 时,吸光物质的溶液在某一波长下的吸光度。用ε表示,其单位 11cm mol L --??。 质量吸光系数是吸光物质的浓度为1g 1L -?时的吸光度,用a 表示。其单位 11cm g L --?? 两者的关系为 εM a =? M 为被测物的摩尔质量。 6. 分光光度法的误差来源有哪些 答:误差来源主要有两方面,一是所用仪器提供的单色光不纯,因为单色光不纯时,朗伯—比耳定律中吸光度和浓度之间的关系偏离线性;二是吸光物质本身的化学反应,其结果同样

紫外-可见分光光度法习题(答案与解析)

紫外-可见分光光度法 一、选择题(其中1~14题为单选,15~24题为多选) 1.以下四种化合物,能同时产生B吸收带、K吸收带和R吸收带的是() A. CH2CHCH O B. CH C CH O C. O CH3 D. CH CH2 2.在下列化合物中,π→π*跃迁所需能量最大的化合物是() A. 1,3-丁二烯 B. 1,4-戊二烯 C. 1,3-环已二烯 D. 2,3-二甲基-1,3-丁二烯 3.符合朗伯特-比耳定律的有色溶液稀释时,其最大吸收峰的波长位置() A. 向短波方向移动 B. 向长波方向移动 C. 不移动,且吸光度值降低 D. 不移动,且吸光度值升高 4.双波长分光光度计与单波长分光光度计的主要区别在于() A. 光源的种类及个数 B. 单色器的个数 C. 吸收池的个数 D. 检测器的个数 5.在符合朗伯特-比尔定律的范围内,溶液的浓度、最大吸收波长、吸光度三者的关系是() A. 增加、增加、增加 B. 减小、不变、减小 C. 减小、增加、减小 D. 增加、不变、减小 6.双波长分光光度计的输出信号是() A. 样品吸收与参比吸收之差 B. 样品吸收与参比吸收之比 C. 样品在测定波长的吸收与参比波长的吸收之差 D. 样品在测定波长的吸收与参比波长的吸收之比 7.在紫外可见分光光度法测定中,使用参比溶液的作用是() A. 调节仪器透光率的零点 B. 吸收入射光中测定所需要的光波 C. 调节入射光的光强度 D. 消除试剂等非测定物质对入射光吸收的影响

8.扫描K2Cr2O7硫酸溶液的紫外-可见吸收光谱时,一般选作参比溶液的是() A. 蒸馏水 B. H2SO4溶液 C. K2Cr2O7的水溶液 D. K2Cr2O7的硫酸溶液 9.在比色法中,显色反应的显色剂选择原则错误的是() A. 显色反应产物的ε值愈大愈好 B.显色剂的ε值愈大愈好 C. 显色剂的ε值愈小愈好 D. 显色反应产物和显色剂,在同一光波下的ε值相差愈大愈好 10.某分析工作者,在光度法测定前用参比溶液调节仪器时,只调至透光率为95.0%,测得某有色溶液的透光率为35.2%,此时溶液的真正透光率为() A. 40.2% B. 37.1% C. 35.1% D. 30.2% 11.用分光光度法测定KCl中的微量I—时,可在酸性条件下,加入过量的KMnO4将I—氧化为I2,然后加入淀粉,生成I2-淀粉蓝色物质。测定时参比溶液应选择() A. 蒸馏水 B. 试剂空白 C. 含KMnO4的试样溶液 D. 不含KMnO4的试样溶液 12.常用作光度计中获得单色光的组件是() A. 光栅(或棱镜)+反射镜 B. 光栅(或棱镜)+狭缝 C. 光栅(或棱镜)+稳压器 D. 光栅(或棱镜)+准直镜 13.某物质的吸光系数与下列哪个因素有关() A. 溶液浓度 B. 测定波长 C. 仪器型号 D. 吸收池厚度 14.假定ΔT=±0.50%A=0.699 则测定结果的相对误差为() A. ±1.55% B. ±1.36% C. ±1.44% D. ±1.63% 15.今有A和B两种药物的复方制剂溶液,其吸收曲线相互不重叠,下列有关叙述正确的是() A. 可不经分离,在A吸收最大的波长和B吸收最大的波长处分别测定A和B B. 可用同一波长的光分别测定A和B

GBT17141-1997土壤质量铅、镉的测定石墨炉原子吸收分光光度法

. . 索立德环保服务 方法验证报告 项目名称:铅镉 方法名称:GB/T 17141-1997 土壤质量铅、镉的测定石墨炉原子吸收分光光度法 编写人及日期:_______________ 校核人及日期:_______________ 审核人及日期:_______________

1.目的 采用《土壤质量铅、镉的测定石墨炉原子吸收分光光度法》GB/T 17141-1997对土壤里面的铅、镉的测试进行验证,并对验证结果进行评估。本实验室现有条件与标准方法的规定一致,并按照该方法做基础实验,验证本实验室现有条件下开展该检测项目的适用性。 2.方法原理 采用盐酸-硝酸-氢氟酸-高氯酸消解的方法,使铅、镉溶解于试液,然后将试液注入到石墨炉中。经过预先设定的干燥、灰化、原子化等升温程序使共存基体成分蒸发除去,同时在原子化阶段的高温下铅镉化合物离解为基态原子蒸气,并对空心阴极灯发射的特征谱线(铅283.3nm 镉228.8nm)产生选择性吸收,在选择在最佳条件下,通过背景扣除,测定铅镉的吸光度。3.试剂和材料的验证 3.1试剂的验证 3.2标准物质的验证 3.3材料的验证 无 4.仪器和设备的验证 4.1仪器的验证

设备的验证 4.2 6.样品的验证 6.1 采样方法:HJ/T 166-2004。 6.2 样品运输和保存:用塑料袋采集样品,常温下保存。 6.3 样品制备:将采集的土壤样品(一般不少于500g)混匀后用四分法缩分至100g,缩分至 100g,缩分后的土样经风干后,除去土样中石子和动植物残体等异物,用木棒研压,通过2mm 尼龙筛,混匀。用玛瑙研钵将筛过的土样研磨至全部通过100目尼龙筛,混匀后备用。 6.3.1消解 准确称取0.1~0.3g(精确至0.0002 g)试样于50 mL聚四氟乙烯坩埚中,用水润湿后加入 5mL盐酸,于通风橱的电热板上低温加热,使样品初步分解,待蒸发至约剩2-3 mL左右时,取下稍冷,然后加入5 mL硝酸、4mL氢氟酸、2mL高氯酸,加盖后于电热板上中温加热1 h左右,然后开盖,电热板温度控制在150 ℃,继续加热除硅,为了达到良好的飞硅效果,应经常摇动坩埚。当加热至冒浓厚高氯酸白烟时,加盖,使黑色有机碳化物分解。待坩埚壁上的黑色

实验五--分光光度法测定甲醛

实验五:空气中甲醛的测定(酚试剂分光光度法) 实验目的: 掌握甲醛测定方法; 熟练掌握大气采样器和分光光度计的使用; 实验原理: 甲醛的测定方法:分光光度法、气相色谱法、酚试剂分光光度法、乙酰丙酮分光光度法; 空气中的甲醛与3-甲基2-苯并噻唑酮腙酚试剂反应生成嗪,嗪在酸性溶液中被高铁离子氧化形成蓝绿色化合物,颜色深浅与甲醛含量成正比,物质的最大吸收波长为630nm,通过比色定量。当采样体积为10L时最低检出质量浓度为0.01mg/m3。 实验仪器: 分光光度计(在630nm测定);大气采样器;具塞比色管(10ml);分析天平;滴定管;容量瓶;量筒;移液管等 1、吸收液原液:称量0.10g酚试剂[C6H4SN(CH3)C:NNH2·HCl,简称NBTH],加水溶解,倾于100ml具塞量筒中,加水到刻度。放冰箱中保存,可稳定三天。吸收液:量取吸收原液5ml,加95ml水,即为吸收液。采样时,临用现配。 2、1%硫酸铁铵溶液 3、碘溶液[C(1/2I2)=0.1000mol/L] 4、1mol/L氢氧化钠溶液 5、0.5mol/L硫酸溶液:取28ml浓硫酸缓慢加入水中,冷却后,稀释至1000ml。 6、硫代硫酸钠标准溶液[C(Na2S2O3)=0.1000mol/L] 0.5%淀粉溶液:将0.5g可溶性淀粉,用少量水调成糊状后,再加入100ml沸水,并煎沸2~3min至溶液透明确。 7、甲醛标准贮备溶液:取2.8ml含量为36~38%甲醛溶液,放入1L容量瓶中,加水稀释至刻度。此溶液1ml约相当于1mg甲醛。其准确浓度用下述碘量法标定。 实验步骤: 1、样品采集:用一个内装5ml吸收液的大型气泡吸收管,以0.5L/min流量,采气10L。并记录采样点的温度和大气压力。采样后样品在室温下应在24h内分析。 2、甲醛标准贮备溶液的标定:精确量取20.00ml待标定的甲醛标准贮备溶液,置于250ml 碘量瓶中。加入20.00ml[C(1/2I2)=0.1000mol/L]碘溶液和15ml 1mol/L氢氧化钠溶液,放置15min,加入0.5mol/L硫酸溶液,再放置15min,用[C(Na2S2O3)=0.1000mol/L]硫代硫酸钠溶液滴定,至溶液呈现淡黄色时,加入1ml 5%淀粉溶液继续滴定至恰使兰色褪去为止,记录所用硫代硫酸钠溶液体积(V2),ml。同时用水作试剂空白滴定,记录空白滴定所用硫化硫酸钠标准溶液的体积(V1),ml。甲醛溶液的浓度用公式(1)计算:甲醛溶液浓度(mg/ml)=(V1-V2)×N×15/20 (1) 式中:V1――试剂空白消耗[C(Na2S2O3)=0.1000mol/L]硫代硫酸钠溶液的体积,ml; V2――甲醛标准贮备溶液消耗[C(Na2S2O3)=0.1000mol/L]硫代硫酸钠溶液的体积,ml;N――硫代硫酸钠溶液的准确当量浓度; 15――甲醛的当量; 20――所取甲醛标准贮备溶液的体积,ml。 二次平行滴定,误差应小于0.05ml,否则重新标定。 绘制标准曲线: 用1.00μg/ml甲醛标准溶液,按下表制各标准色列管

实验1 高吸光度示差分析法

实验二高吸光度示差分析法 一、目的: 通过标准曲线的绘制及试样溶液的测定,了解高吸光度示差分析法的基本原理,方法优点。掌握721型分光光度计的使用方法。 二、原理: 普通吸光光度法是基于测量试样溶液与试剂空白溶液(或溶剂)相比较的吸光度,从相同条件下所作的标准曲线来计算被测组份的含量,这种方法的准确度一般不会优于1~2%,因此,它不适合于高含量组份的测定。 为了提高吸光光度法测定的准确度,使其适合于高含量组分的测定,可采用高吸光度示差分析法。示差法与普通吸光光度法的不同之处,在于用一个待测组份的标准溶液代替试剂空白溶液作为参比溶液,测量待测量溶液的吸光度。它的测定步骤如下: (1)在仪器没有光线通过时(接受器上无光照射时)调节透光率为0,这与比色法或普通分光光度法相同。 (2)将一个比待测溶液(浓度为C+△C)稍稀的参比溶液(浓度为C)放在仪器光路中,调节透光率为100%。 (3)将待测量溶液(或标准溶液)推入光路中,读取表现吸光度A f。 表观吸光度A f实际上是由△C引起的吸收大小,可表达为: A f=ab△c 上式说明,待测溶液(或标准溶液)与参比溶液的吸光度之差与这两次溶液的浓度差成正比。 无论普通吸光度或高吸光度示差法,只要符合比尔定律,而且测量误差仅仅是由于透光率(或吸光度)读数的不确定所引起的,则可以方便地计算出分析的

误差。 仪器刻度上透光率读数改变数(dT )所引起的浓度误差dc 为绝对误差,它与透光率有关,其关系式容易由比耳定律推得: A f =ab △c=k △c lgT=-A f =-k △c 0.43lnT=-k △c KT dc 43 .0 ·dT 式中k 为标准曲线(A ~C )的斜率。实验中三条曲线的三个k 很接近。根据k 值及上述关系可以计算出实验中各点的绝对误差(假设透光率读数误差为l%,即dT=0.01)。 对于化学工作者来说,更有意义的是浓度的相对误差(c dc ),或者相对百分误差(c dc ×100)。浓度相对百分误差与参比溶液的浓度关系密切。随着有色参比溶液浓度的增加(或A 的增加),相对百分误差也随之减小。当所用参比溶液的A=1.736时,最低的相对百分误差也可减小至0.25%。由此可见了,差示法中高吸光度法可达到容量分析和重量分析的准确度。 三、仪器与试剂 721型分光光度计(附2只1厘米比色皿) 0~10ml 微量滴定管1支(刻度准确至0.005ml ) 25ml 容量瓶×16 0.2500M Cr (NO 3)3 四、实验步骤

实验分光光度法测定铁

实验分光光度法测定铁 The following text is amended on 12 November 2020.

实验十四邻二氮菲分光光度法测定铁的含量 一、实验目的 1.学习吸光光度法测量波长的选择方法; 2.掌握邻二氮菲分光光度法测定铁的原理及方法; 3. 掌握分光光度计的使用方法。 二、实验原理 分光光度法是根据物质对光选择性吸收而进行分析的方法,分光光度法用于定量分析的理论基础是朗伯比尔定律,其数学表达式为:A=εb C 邻二氮菲(又称邻菲罗啉)是测定微量铁的较好试剂,在pH=2~9的条件下,二价铁离子与试剂生成极稳定的橙红色配合物。摩尔吸光系数ε=11000 L·mol-1·cm-1。在显色前,用盐酸羟胺把Fe3+还原为Fe2+。 2Fe3++2NH 2OHHCl→2Fe2++N 2 +4H++2H 2 O+2Cl- Fe2+ + Phen = Fe2+ - Phen (橘红色) 用邻二氮菲测定时,有很多元素干扰测定,须预先进行掩蔽或分离,如钴、镍、铜、铅与试剂形成有色配合物;钨、铂、镉、汞与试剂生成沉淀,还有些金属离子如锡、铅、铋则在邻二氮菲铁配合物形成的pH范围内发生水解;因此当这些离子共存时,应注意消除它们的干扰作用。 三、仪器与试剂 1.醋酸钠:l mol·L-1; 2.盐酸:6 mol·L-1; 3.盐酸羟胺:10%(用时配制); 4.邻二氮菲(%):邻二氮菲溶解在100mL1:1乙醇溶液中; 5.铁标准溶液。 (1)100μg·mL-1铁标准溶液:准确称取(NH 4) 2 Fe(SO 4 ) 2 ·12H 2 0于烧杯中, 加入20 mL 6 mol·L-1盐酸及少量水,移至1L容量瓶中,以水稀释至刻度,摇匀. 6.仪器:7200型分光光度计及l cm比色皿。 四、实验步骤 1.系列标准溶液配制 (1)用移液管吸取10mL100μg·mL-1铁标准溶液于100mL容量瓶中,加入2mL 6 mol·L-1盐酸溶液, 以水稀释至刻度,摇匀. 此溶液Fe3+浓度为10μg·mL-1. (2) 标准曲线的绘制: 取50 mL比色管6个,用吸量管分别加入0 mL,2 mL,4 mL, 6 mL, 8 mL和10 mL10μg·mL-l铁标准溶液,各加l mL盐酸羟胺,摇匀; 经再加2mL邻二氮菲溶液, 5 mL醋酸钠溶液,摇匀, 以水稀释至刻度,摇匀后放置 10min。 2.吸收曲线的绘制 取上述标准溶液中的一个, 在分光光度计上,用l cm比色皿,以水为参比溶液,用不同的波长,从440~560 nm,每隔10 nm测定一次吸光度,在最大吸收波长

第六章 吸光光度法习题

第六章 吸光光度法习题 一、填空题 1、已知某有色络合物在一定波长下用2cm 吸收池测定时其透光度T=0.60。若在相同条件下改用1cm 吸收池测定,吸光度A 为 ,用3cm 吸收池测量,T 为 。 2、测量某有色络合物的透光度时,若吸收池厚度不变,当有色络合物浓度为c 时的透光度为T ,当其浓度为c 3 1时的透光度为 。 3、苯酚在水溶液中摩尔吸收系数ε为131017.6-???cm mol L ,若要求使用1cm 吸收池时的透光度为0.15~0.65之间,则苯酚的浓度应控制在 。 4、某有色络合物浓度为15100.1--??L mol ,以1cm 吸收池在最大吸收波长下的吸光度为0.280,在此波长下该有色物的摩尔吸收系数为 。 6、已知KMnO 4的摩尔质量为1581-?mol g ,其水溶液的 113102.2--???=cm mol L ε。求此波长下质量分数为0.0020%的KMnO 4溶液在3.0cm 吸收池的透光度为 。 7、用普通分光广度法测得标液c 1的透射率为20%,试液透射率为12%。若以示差法测定,以标液c 1作参比,则试液透射率为 。 二、选择题 1、在符合朗伯-比尔定律的范围内,有色物的浓度、最大吸收波长、吸光度三者的关系是( ) A 、增加,增加,增加; B 、减小、不变、减小; C 、减小,增加,增加; D 、增加,不变,减小。 2、测定纯金属钴中锰时,在酸性溶液中以KIO 4氧化Mn 2+成-4Mn 以分光光度法 测定。若测定试样中锰时,其参比溶液为( ) A 、蒸馏水; B 、含KIO 4的试样溶液; C 、KIO 4溶液; D 、不含KIO 4的试样溶液 3、在分光光度分析中,常出现工作曲线不过原点的情况。下列说法中不会引起这一现象的是( ) A 、测量和参比溶液所用吸收池不对称; B 、参比溶液选择不当; C 、显色反应的灵敏度太低; D 、显色反应的检测下限太高。 4、光度分析中,在某浓度下以1.0cm 吸收池测得透光度为T 。若浓度增大1倍,透光度为( ) A 、2T 少; B 、T/2; C 、2T ; D 、T 。 5、用普通分光光度法测得标液1c 的透光度为20%,试液的透光度12%;若以示差分光光度法测定,以1c 为参比,则试液的透光度为( )

差示分光光度法测定高含量的二氧化硅

差示分光光度法测定高含量的二氧化硅 (作者:余建华,毛杏仙本信息发布于2009年08月11日,共有183人浏览) [字体:大中小] 二氧化硅是水泥及原材料化学分析的常检项目,由于材质、含量差别很大,因此关于二氧化硅的测定方法很多。根据二氧化硅含量的不同分为三类,含SiO2量较高(Wsio2≥95%)的材质,多采用重量法;含SiO2为常量(Wsio25%~95%)的,多采用容量法;含SiO2量较低(Wsio2<5%)的,一般采用硅钼蓝比色法测定。这三种方法各有特点,重量法和容量法理论上准确度较高方法可靠,但是整个操作流程相对较复杂,费时费力测定周期长;用比色法测定,适用范围很小。 用硅钼蓝光度法测定高含量SiO2,难于准确测定,主要是由于随SiO2含量的升高在制取母液时硅酸易产生聚合,标准曲线易产生弯曲等,使测定结果受到影响。在这种情况下,应用差示分光光度法,可使测定的准确度大为提高。这一方法的实质,是用已知浓度的标准溶液代替常用的水或空白溶液作参比来绘制工作曲线,也就是借增加参比液的吸光度提高待测溶液的吸光度读数的准确度,从而降低光度法的测定误差。本试验根据待测试样的SiO2含量估算范围不同,采取分段比色、减少称样量、浸取试样时以盐酸逆酸化法避免硅酸聚合、选取2~3个基体成分尽量与试样相近,二氧化硅含量比试样稍低和稍高的标样为参比校准标准曲线等多种手段,消除或减少测量误差,提高测量的准确性和稳定性,实现了常量二氧化硅的快速测定。 1 试验部分 1.1主要试剂与仪器 721型分光光度计;容量瓶;镍坩埚;马弗炉等; 氢氧化钾(分析纯);无水乙醇(分析纯);盐酸(V/V):1/1; 钼酸铵溶液(50g/L):量取500ml蒸馏水于塑料杯中,加入25g钼酸铵,搅拌至完全溶解并过滤,贮于塑料瓶中备用; 钼蓝显色剂:将30g草酸、30g硫酸亚铁铵溶于500ml水中,搅拌溶解后,缓缓的加入l00ml浓硫酸,用水稀释至l000ml,搅拌,备用。 1.2测定方法原理 测定时,调节吸光度至∞;吸光度为零的点用浓度C1稍低于试样溶液的标准溶液来调定。然后测定一系列大于Cl的已知溶液的标准溶液的吸光度,并按浓度与吸光度的对应关系,绘制工作曲线和测定试样溶液的吸光度。 设透过空白溶液、第一个标准溶液(C1)和第二个标准溶液(C2)的光强度依次为I0、I1和I2,对应于C1和C2的吸光度为A1,A3,ε为摩尔吸光系数,根据比耳定律:

第八章 分光光度法

第六章 吸光光度法 一、问答题 1. 摩尔吸收系数的物理意义是什么?其大小和哪些因素有关?在分析化学中κ有何意义? 2. 朗伯-比尔定律的物理意义是什么?什么是透光度?什么是吸光度?二者之间的关系是什么? 3. 为社么物质对光发生选择性吸收? 4. 分光光度计有哪些主要部件?它们各起什么作用? 5 当研究一种新的显色剂时,必须做哪些实验条件的研究?为什么? 6 什么是吸收光谱曲线?什么是标准曲线?它们有何实际意义?利用标准曲线进行定量分析时可否使用透光度T 和浓度c 为坐标? 7 测定金属钴中微量锰时在酸性液中用KIO 3将锰氧化为高锰酸根离子后进行吸光度的测定。若用高锰酸钾配制标准系列,在测定标准系列及试液的吸光度时应选什么作参比溶液? 8 吸光度的测量条件如何选择?为什么?普通光度法与示差法有何异同? 9 光度分析法误差的主要来源有哪些?如何减免这些误差?试根据误差分类分别加以讨论。 10 常见的电子跃迁有哪几种类型? 11 在有机化合物的鉴定和结构判断上,紫外-可见吸收光谱提供信息具有什么特点? 二、计算题 1.以邻二氮菲光度法测定Fe (Ⅱ),称取试样0.500g ,经处理后,加入显色剂,最后定容为50.0mL ,用1.0 cm 吸收池在510 nm 波长下测得吸光度A =0.430,计算试样中的w (Fe)(以 百分数表示);当溶液稀释一倍后透射比是多少?(ε510=1.1×104 ) 2.%0.61%10010 =?=-A T 已知KMnO 4的ε 545 =2.2×103 ,计算此波长下浓度为0.002% (m/v )KMnO 4溶液在3.0cm 吸收池中的透射比。若溶液稀释一倍后透射比是多少? 3. 以丁二酮肟光度法测定镍,若络合物NiDx 2的浓度为1.7×10-5mol ·L -1 ,用2.0cm 吸收 池在470nm 波长下测得的透射比为30.0%。计算络合物在该波长的摩尔吸光系数。 4. 根据下列数据绘制磺基水杨酸光度法测定Fe (Ⅲ)的工作曲线。标准溶液是由0.432g 铁铵矾[NH 4Fe(SO 4)2·12H 2O]溶于水定容到500.0mL 配制成的。取下列不同量标准溶液于50.0mL 容量瓶中,加显色剂后定容,测量其吸光度。 V (Fe(Ⅲ))(mL ) 1.00 2.00 3.00 4.00 5.00 6.00 A 0.097 0.200 0.304 0.408 0.510 0.618 测定某试液含铁量时,吸取试液5.00mL ,稀释至250.0mL ,再取此稀释溶液2.00mL 置于50.0mL 容量瓶中,与上述工作曲线相同条件下显色后定容,测得的吸光度为0.450,计算试液中Fe(Ⅲ)含量(以g/L 表示)。 5. 以PAR 光度法测定Nb ,络合物最大吸收波长为550nm ,ε=3.6×104 ;以PAR 光度法测定 Pb ,络合物最大吸收波长为520nm ,ε=4.0×104 。计算并比较两者的桑德尔灵敏度。 6. 有两份不同浓度的某一有色络合物溶液,当液层厚度均为1.0cm 时,对某一波长的透射

实验十四 土壤中镉的测定-原子吸收分光光度法

实验十四土壤中镉的测定-原子吸收分光光度法 一、实验目的和要求 1、掌握原子吸收分光光度法原理及测定镉的技术。 2、预习第四章固体废物监测中有关金属测定的有关内容。 二、原理 土壤样品用HNO3-HF-HClO4或HCl-HNO3-HF-HClO4混酸体系消化后,将消化液直接喷入空气-乙炔火焰。在火焰中形成的Cd基态原子蒸汽对光源发射的特征电磁辐射产生吸收。测得试液吸光度扣除全程序空白吸光度,从标准曲线查得Cd 含量。计算土壤中Cd含量。 该方法适用于高背景土壤(必要时应消除基体元素干扰)和受污染土壤中Cd的测定。方法检出限范围为—2mgCd/kg。 三、仪器 1.原子吸收分光光度计,空气-乙炔火焰原子化器,镉空心阴极灯。 2.仪器工作条件 测定波长 通带宽度 灯电流 火焰类型空气-乙炔,氧化型,蓝色火焰 四、试剂 1.盐酸:特级纯。 2.硝酸:特级纯。 3.氢氟酸:优级纯。 4.高氯酸:优级纯。

5.镉标准贮备液:称取金属镉粉(光谱纯),溶于25mL(1+5)HNO3(微热溶解)。冷却,移入500mL容量瓶中,用蒸馏去离子水稀释并定容。此溶液每毫升含镉。 6.镉标准使用液:吸取镉标准贮备液于100mL容量瓶中,用水稀至标线,摇匀备用。吸取稀释后的标液于另一100mL容量瓶中,用水稀至标线即得每毫升含5μg镉的标准使用液。 五、测定步骤 1.土样试液的制备:称取—土样于25mL聚四氟乙烯坩埚中,用少许水润湿,加入10mLHCl,在电热板上加热(<450℃)消解2小时,然后加入15mLHNO3,继续加热至溶解物剩余约5mL时,再加入5mLHF并加热分解除去硅化合物,最后加入5mLHClO4加热至消解物呈淡黄色时,打开盖,蒸至近干。取下冷却,加入(1+5)HNO31mL微热溶解残渣,移入50mL容量瓶中,定容。同时进行全程序试剂空白实验。 2.标准曲线的绘制:吸取镉标准使用液0、、、、、分别于6个50mL容量瓶中,用%HNO3溶液定容、摇匀。此标准系列分别含镉0、、、、、μg/mL。测其吸光度,绘制标准曲线。 3.样品测定 (1)标准曲线法:按绘制标准曲线条件测定试样溶液的吸光度,扣除全程序空白吸光度,从标准曲线上查得镉含量。 式中:m——从标准曲线上查得镉含量(μg); W——称量土样干重量(g)。 (2)标准加入法:取试样溶液分别于4个10mL容量瓶中,依次分别加入镉标准使用液(μg/mL)0、、、,用%HNO3溶液定容,设试样溶液镉浓度为c x,加标后试样浓度分别为c x+0、c x+c s、c x+2c s、c x+3c s,测得之吸光度分别为A x、A1、A2、A3。绘制A-C图(图略)。由图知,所得曲线不通过原点,其截距所反映

分光光度法-生化实验

常用生化实验技术:分光光度法有色溶液对光线有选择性的吸收作用,不同物质由于其分子结构不同,对不同波长光线的吸收能力也不同,因此,每种物质都具有其特异的吸收光谱。有些无色溶液,虽对可见光无吸收作用,但所含物质可以吸收特定波长的紫外线或红外线。分光光度法主要是指利用物质特有的吸收光谱来鉴定物质性质及含量的技术,其理论依据是Lambert和Beer定律。 分光光度法是比色法的发展。比色法只限于在可见光区,分光光度法则可以扩展到紫外光区和红外光区。比色法用的单色光通过滤光片产生,谱带宽度为40~120nm,精度不高,而分光光度法则要求近于真正单色光,其光谱带宽最大不超过3~5nm,在紫外光区可到l nm以下。单色光通过棱镜或光栅产生,具有较高的精度。 一、光的基本知识 光是由光量子组成的,具有二重性,即不连续的微粒性和连续的波动性。波长和频率是光的波动性的特征,可用下式表示: λ=C/υ 式中λ为波长,具有相同的振动相位的相邻两点间的距离叫波长。υ为频率,即每秒钟振动次数。c为光速,等于299 770±4km/s。光属于电磁波。 自然界中存在各种不同波长的电磁波,列成表l-l所示的波谱图。分光光度法所使用的光谱范围在200nm~10μm (1μm=1 000nm)之间。其中200~400nm为紫外光区,400~760nm为可见光区,760~10 000 nm为红外光区。 二、朗伯一比尔(1ambert—Beer)定律 朗伯—比尔定律是比色分析的基本原理,这个定律是讨论有色溶液对单色光的吸收程度与溶液的浓度及液层厚度间的定量关系。此定律是由朗伯定律和比尔定律归纳而得。 1.朗伯定律一束单色光通过溶液后,由于溶液吸收了一部分光能,光的强度就要减弱:若溶液浓度不变,则溶液的厚度愈大(即光在溶液中所经过的途径愈长),光的强度减低也愈显著。 设光线通过溶液前的强度为Io(入射光的强度),通过液层厚为L溶液后.光的强度为I t(透过光的强度),则 表示透过光的强度是入射光强度的几分之几,称为透光度(transmittance),用T表示。透光度随溶液厚度的增

差示分光光度法

4.5 分光光度测定方法 中文词条名:差示分光光度法 英文词条名:differential spectrophotometry 分光光度法中,样品中被测组分浓度过大或浓度过小(吸光度过高或过低)时,测量误差均较大。为克服这种缺点而改用浓度比样品稍低或稍高的标准溶液代替试剂空白来调节仪器的100%透光率(对浓溶液)或0%透光率(对稀溶液)以提高分光光度法精密度、准确度和灵敏度的方法,称为差示分光光度法。差示分光光度法又可分高吸光度差示法,低吸光度差示法,精密差示分光光度法等。 4.5.2 差示分光光度法 吸光度A在0.2-0.8范围内误差最小。超出此范围,如高浓度或低浓度溶 液,其吸光度测定误差较大。尤其是高浓度溶液,更适合用差示法。 一般分光光度测定选用试剂空白或溶液空白作为参比,差示法则选用一已知浓度的溶液作参比。该法的实质是相当于透光率标度放大。 高吸收法在测定高浓度溶液时使用。选用比待测溶液浓度稍低的已知浓度溶液作标准溶液,调节透光率为100%。

低吸收法在测定低浓度溶液时使用。选用比待测液浓度稍高的已知浓度溶液作标准溶液,调节透光率为0。 最精密法是同时用浓度比待测液浓度稍高或稍低的两份已知溶液作 标准溶液,分别调节透光率为0或100%。 设试样浓度为,以溶剂作参比时,其透光率为,吸光度为。若选浓度为(其以溶剂为参比时的透光率为,吸光度为)的已知溶液作参比,调节透光率为100%。根据吸收定律,有: 溶剂作参比时,;(4.14) ;(4.15) 差示法,用已知浓度的溶液作参比时, (4.16) ,(4.17) (4.16)式为差示分光光度法的基本关系式。

GBT 17141-1997 土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法

江西索立德环保服务有限公司 方法验证报告 项目名称:铅镉 方法名称:GB/T 17141-1997 土壤质量铅、镉的测定石墨炉原子吸收分光光度法 编写人及日期:_______________ 校核人及日期:_______________ 审核人及日期:_______________

1.目的 采用《土壤质量铅、镉的测定石墨炉原子吸收分光光度法》GB/T 17141-1997对土壤里面的铅、镉的测试进行验证,并对验证结果进行评估。本实验室现有条件与标准方法的规定一致,并按照该方法做基础实验,验证本实验室现有条件下开展该检测项目的适用性。 2.方法原理 采用盐酸-硝酸-氢氟酸-高氯酸消解的方法,使铅、镉溶解于试液,然后将试液注入到石墨炉中。经过预先设定的干燥、灰化、原子化等升温程序使共存基体成分蒸发除去,同时在原子化阶段的高温下铅镉化合物离解为基态原子蒸气,并对空心阴极灯发射的特征谱线(铅283.3nm 镉228.8nm)产生选择性吸收,在选择在最佳条件下,通过背景扣除,测定铅镉的吸光度。3.试剂和材料的验证 3.3材料的验证

无 4.仪器和设备的验证 6.样品的验证 6.1 采样方法:HJ/T 166-2004。 6.2 样品运输和保存:用塑料袋采集样品,常温下保存。 6.3 样品制备:将采集的土壤样品(一般不少于500g)混匀后用四分法缩分至100g,缩分至100g,

缩分后的土样经风干后,除去土样中石子和动植物残体等异物,用木棒研压,通过2mm尼龙筛,混匀。用玛瑙研钵将筛过的土样研磨至全部通过100目尼龙筛,混匀后备用。 6.3.1消解 准确称取0.1~0.3g(精确至0.0002 g)试样于50 mL聚四氟乙烯坩埚中,用水润湿后加入 5mL盐酸,于通风橱内的电热板上低温加热,使样品初步分解,待蒸发至约剩2-3 mL左右时,取下稍冷,然后加入5 mL硝酸、4mL氢氟酸、2mL高氯酸,加盖后于电热板上中温加热1 h 左右,然后开盖,电热板温度控制在150 ℃,继续加热除硅,为了达到良好的飞硅效果,应经常摇动坩埚。当加热至冒浓厚高氯酸白烟时,加盖,使黑色有机碳化物分解。待坩埚壁上的黑色有机物消失后,开盖,驱赶白烟并蒸至内容物呈粘稠状。视消解情况,可再补加2 mL硝酸、2mL氢氟酸、1 mL高氯酸,重复以上消解过程。取下坩埚稍冷,加入1mL(1+1)硝酸溶液,温热溶解可溶性残渣,全量转移至25.00 mL 容量瓶中,加入3mL 5%磷酸氢二铵冷却后用水定容至标线,摇匀。 6.4样品质控样制备: 6.4.1 空白试样的制备:用去离子水代替试样,采用和试液制备相同的步骤和试剂,制备全程序 空白溶液,并按相同条件进行测定。每批样品至少制备2个以上的空白溶液。 6.4.2 质控试样的制备:称取质控样,按样品制备步骤进行制备。 7.分析步骤 7.1曲线建立 于一组6个100.0mL容量瓶中,依次加入0.00mL、0.50mL、1.00mL、2.00mL 、3.00mL、 4.00mL、 5.00mL浓度为1mg/L铅标准使用液,再依次加入0.00mL、0.10mL、0.20mL、0.30mL 、 0.40mL、0.50mL、0.60 mL浓度为500μg/L镉标准使用液,加入12ml 5%磷酸氢二铵,再分别 7.2 曲线的测定 调整好仪器条件,将标准曲线系列点上机测定吸光度。 7.3样品的测定 上机测定样品的吸光度。 8.结果计算与表示

实验一-紫外分光光度法测定苯甲酸

实验一紫外分光光度法测定苯甲酸 一、实验目的 学习、了解紫外分光光度法原理 了解紫外分光光度计的结构和使用方法 二、实验原理 当辐射能(光)通过吸光物质时,物质的分子对辐射能选择性的吸收而得到的光谱称为分子吸收光谱。分子吸收光谱的产生与物质的分子结构、物质所在状态、溶剂和溶液的PH等因素有关。分子吸收光谱的强度与吸光物质的浓度有关。表示物质对光的吸收程度,通常采用“吸光度”这一概念来量度。 根据朗伯-比尔定律,在一定的条件下,吸光物质的吸光度A 与该物质的浓度C和液层厚度成正比。即A= LC 因此,只要选择一定的波长测定溶液的吸光度,即可求出该溶液浓度,这就是紫外-可见分光光度计的基本原理。 在碱性条件下,苯甲酸形成苯甲酸盐,对紫外光有选择性吸收,其吸收光谱的最大吸收波长为225nm。因此,采用紫外分光光度计测定苯甲酸在225nm处的吸收度就能进行定量分析。 三、仪器与主要试剂 TU-1810紫外可见分光光度计1cm石英比色皿 0.1M氢氧化钠溶液 苯甲酸(AR) 四、实验步骤 1、苯甲酸标准溶液的制备 称取苯甲酸(105℃烘干)100mg,用0.1M氢氧化钠溶液100ml溶解后,转入1000ml容量瓶中,用蒸馏水稀释至刻度.此溶液1ml含0.1mg 苯甲酸. 2、制作苯甲酸吸收曲线,选择最大吸收波长 ①移取苯甲酸标准溶液4.00ml于50ml容量瓶中,用0.01M氢氧化钠溶液定容,摇匀,此溶液1ml含苯甲酸8ug. 以氘灯为光源,用0.01M氢氧化钠溶液作为参比,改变测量波长(从210-240nm)测量8ug/ml苯甲酸的吸光度. ②以波长为横坐标,吸光度为纵坐标,绘制苯甲酸的紫外吸收曲线,并找出最大的吸收波长 (是否是225nm). 3﹑样品的测定 ①取10.00ml苯甲酸样品,放入50ml容量瓶中,用0.01M氢氧化钠

分光光度法测定

分光光度法測定[Co(NH3)5Cl]2+的水合反應機制的研究 王淩華 (中原大學化三甲學號04101248) 摘要:根據beer’s law,吸收度與濃度成正比及一級反應反應速率通式可求得反應速率,通過反應速率之間的關係對比[Co(NH3)5Cl]2+水合反應可能的反應機制,從而得出其正確的反應原理。 關鍵字:分光光度計;鈷錯合物;反應速率;一級反應 1 簡介 錯合物在我們生活不可缺少在工業生産中,我們可以通過生成配合物來改變物質的溶解度,從而與其它離子分離或是消除分析實驗中會對結果造成干擾的因素,比如配位催化、制鏡、提取金屬、材料先驅物、硬水軟化等;在生物學中,很多生物分子都是配合物,並它們可與重金屬離子配合,使其轉化為毒性很小的配位化合物,從而達到解毒的目的。因此我們通過分光光度法測得Co化合物水解的反應速率,控制反應的溫度、濃度等條件,根據反應可能的機制對比可知Co錯合物水解的具體步驟,從而真正認識此類反應的本質,達到控制此類反應的結果,用以簡化工業生産。 2 原理 2.1 [Co(NH3)5Cl]2+的製備

[Co(NH3)5Cl]2+的製備是通過在[Co(NH3)4CO3]NO3的溶液中分別加入一定量的鹽酸、氨水、鹽酸,其中配合基團分別被取代之後生成[Co(NH3)5Cl]2+的沉澱析出從而得到產物,反應方程式如下: [Co(NH3)4CO3]+ 3)4(H2O)Cl]2+ + CO2 + Cl- (1) [Co(NH3)4(H2O)Cl]2+ + NH33)5(H2O)]3+ + Cl- (2) [Co(NH3)5(H2O)]3+ [Co(NH3)5Cl]2+↓+ H2O + 3H+ (3) 2.2 水和反應可能的反應機制 反應方程式:[Co(NH3)5Cl]2+ + H2O → [Co(NH3)5(H2O)] 3+ + Cl-(4)在鈷錯和物的水合反應在酸性條件下,以H2O取代Cl-的反應機制一般來説,[Co(NH3)5Cl]2+的水合反應機制可能有3種可能情況。 一种是S N1离解机理,即在反应中首先是Co- Cl键断裂, Cl-配体离去, 而后H2O分子很快进入配合物中Cl-配体的位置; [Co(NH3)5Cl]2+的反應速率R= k1[Co(NH3)5Cl]2+ (5) 一种是S N2缔合机理,在这种反应中水分子首先进入配合物形成短暂的七配位中间体,然后中间体很快失去Cl-而形成产物。 [Co(NH3)5Cl]2+反應速率R= k2[Co(NH3)5Cl]2+[H2O] (5) 由於反應在水溶液中進行, 水作為溶劑其濃度與[ Co(NH3)5Cl] 2+的濃度相比是大大過量的,在實際反應中所消耗的水是非常小的, 故可認為在反應過程中水的濃度保持不變為一常數。 [Co(NH3)5Cl]2+反應速率R= k o bs[Co(NH3)5Cl]2+ (k o bs = k2[H2O]) (6) 第三種是酸催化反應由H+加到Cl-上H+與Cl-結合後,Co-HCl鍵斷裂,HCl脫離此錯合物,而空出的配位座由H2O取代。

荧光分光光度分析法

第一章荧光分光光度分析法 1.1概述 1.1.1 基本原理 由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态,这些处于激发态的分子是不稳定的,在返回基态的过程中将一部分的能量又以光的形式放出,从而产生荧光。 不同物质由于分子结构的不同,其激发态能级的分布具有各自不同的特征,这种特征反映在荧光上表现为各种物质都有其特征荧光激发和发射光谱,因此可以用荧光激发和发射光谱的不同来定性地进行物质的鉴定。 在溶液中,当荧光物质的浓度较低时,其荧光强度与该物质的浓度通常有良好的正比关系,即IF=KC,利用这种关系可以进行荧光物质的定量分析,与紫外-可见分光光度法类似,荧光分析通常也采用标准曲线法进行。 1.1.2 基本结构 图1 荧光分光光度计工作原理示意图 (1)光源:为高压汞蒸气灯或氙弧灯,后者能发射出强度较大的连续光谱,且在300nm~400nm 范围内强度几乎相等,故较常用。 (2)激发单色器:置于光源和样品室之间的为激发单色器或第一单色器,筛选出特定的激发光谱。 (3)发射单色器:置于样品室和检测器之间的为发射单色器或第二单色器,常采用光栅为单色器。筛选出特定的发射光谱。

(4)样品室:通常由石英池(液体样品用)或固体样品架(粉末或片状样品)组成。测量液体时,光源与检测器成直角安排;测量固体时,光源与检测器成锐角安排。(5)检测器:一般用光电管或光电倍增管作检测器。可将光信号放大并转为电信号。 1.1.3 仪器操作规程 1.1.3.1 开机 a. 确认所测试样液体或固体,选择相应的附件。 b. 先开启仪器主机电源,预热半小时后启动电脑程序RF-5301PC,仪器自检通过后,即可正常使用。 1.1.3.2 测样 (1)spectrum模式 a. 在“Acquire Mode”中选择“Spectrum”模式。 ?对于做荧光光谱的样品,“Configure”中“Parameters”的参数设置如下:“Spectrum Type”中选择Emission;给定EX波长;给定EM的扫描范围(最大范围220nm—900nm);设定扫描速度;扫描间隔;狭缝宽度,点击“OK”完成参数的设定。 ?对于做激发光谱的样品,“Configure”中“Parameters”的参数设置如下:“Spectrum Type”中选择Excitation;给定EM波长;给定EX的扫描范围(最大范围220nm—900nm);设定扫描速度;扫描间隔;狭缝宽度,点击“OK”,完成参数的设定。 b. 在样品池中放入待测的溶液,点击“Start”,即可开始扫描。 c. 扫描结束后,系统提示保存文件。可在“Presentation”中选择“Graf” “Radar” “Both Axes Ctrl+R”来调整显示结果范围;在“Manipulate” 中选择“Peak Pick”来标出峰位,最后在“Channel”中进行通道设定。 d. 述操作步骤对固体样品同样适用。 (2)Quantitative模式 a. 在“Acquire Mode”中选择“Quantitative”模式。 b. “Configure”中“Parameters”的参数设置如下: Method 选择“Multi Point Working Curve” ;“Order of Curve” 中选择“1st和

紫外分光光度计实验报告

UV-2550紫外分光光度计的使用和分光光度法测定对苯二酚姓名:XXX 专业:有机化学学号:312070303004 时间:2012.10.21 1.目的 (1)了解UV-2550紫外光谱仪的基本使用方法。 (2)了解测定对苯二酚的紫外光谱实验方法。 2. 试剂和仪器 2.1试剂: 标准溶液0.10m g/mL,准确称取0.25g对苯二酚溶于250ml容量瓶中,用水稀释至刻度,从中取出10ml于100ml容量瓶中,用水稀释至刻度,摇匀;pH=4.1的乙酸-乙酸钠缓冲溶液。 2.2 仪器: UV-2550型分光光度计。 3. 实验步骤 3.1 测量波长的选择 用吸量管吸取5.0ml对苯二酚标准溶液于25ml容量瓶中,加入0.5ml pH=4.1的乙酸-乙酸钠缓冲溶液,用二次蒸馏水定容,振荡混匀。15分钟后用1cm比色皿,275-330nm波长范围, 进行扫描。从吸收曲线上读出对苯二酚的最大吸收波长λmax。 3.2 对苯二酚含量的测定 (1)标准曲线的制作 在6个25ml容量瓶中,用吸量管分别加入0,1.0, 2.0, 3.0,4.0,5.0ml 对苯二酚标准溶液,加入0.5ml pH=4.1的乙酸-乙酸钠缓冲溶液,用二次蒸馏水定容,振荡混匀。用1cm比色皿,以试剂空白为参比溶液,在最大吸收波长处,用光度模块作标准曲线。 (2)试样中对苯二酚含量的测定 准确吸取一定体积的样品于40ml容量瓶中,加入0.5ml pH=4.1乙酸-乙酸钠,用水稀释至刻度,摇匀。在光度模块中直接读出试样中对苯二酚含量。 4. 实验结果 4.1 测量波长的选择 从吸收曲线上读出对苯二酚的最大吸收波长λmax=288.80。 见图1 吸收曲线 4.2 对苯二酚含量的测定 (1)标准曲线的制作 见图2 标准曲线 (2)试样中对苯二酚含量的测定 对苯二酚含量0.354 相对误差为11.5%

相关文档
相关文档 最新文档