文档库 最新最全的文档下载
当前位置:文档库 › 实验报告 RC一阶电路的响应测试

实验报告 RC一阶电路的响应测试

实验报告 RC一阶电路的响应测试
实验报告 RC一阶电路的响应测试

实验报告

祝金华PB15050984

实验题目:RC 一阶电路的响应测试 实验目的

1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。

2. 学习电路时间常数的测量方法。

3. 掌握有关微分电路和积分电路的概念。

4. 进一步学会用示波器观测波形。 实验原理

1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。

2.图1(b)所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。

3. 时间常数τ的测定方法:

用示波器测量零输入响应的波形如图1(a)所示。

根据一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ

。当t =τ时,Uc(τ)=0.368U m 。

此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632 U m 所对应的时间测得,如图1(c)所示。

(a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应

图 1

4. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下,

当满足τ=RC<<

2

T

时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输

出,这就是一个微分电路。因为此时电路的输出信号电压与输入信号电压的微分成正比。如图2(a)所示。利用微分电路可以将方波转变成尖脉冲。

(a) 微分电路 (b) 积分电路

图2

若将图2(a )中的R 与C 位置调换一下,如图2(b )所示,由 C 两端的电压作为响应输出。当电路的参数满足τ=RC>>

2

T

条件时,即称为积分电路。因为此时电路的输出信号电压与输入信号电压的积分成正比。利用积分电路可以将方波转变成三角波。 实验设备

脉冲信号发生器,双踪示波器,动态电路实验板 预习思考题

1. 什么样的电信号可作为RC 一阶电路零输入响应、 零状态响应和完全响应的激励信号?

方波输出的上升沿可以作为零状态响应的正阶跃激励信号,方波的下降沿作为零输入响应的负阶跃激励信号;正弦信号可以作为完全响应的激励信号。

2. 已知RC 一阶电路R =10K Ω,C =0.1μF ,试计算时间常数τ,并根据τ值的物理意义,拟定测量τ的方案。

τ=RC=10×103×01×10-6=10-3s

3. 何谓积分电路和微分电路,它们必须具备什么条件? 它们在方波序列脉冲的激励下,其输出信号波形的变化规律如何?这两种电路有何作用?

100

10K

实验内容

实验线路板采用HE-14实验挂箱的“一阶、二阶动态电路”,如图3所示,请认清R 、C 元件的布局及其标称值,各开关的通断位置等等。

1. 从电路板上选R =10k Ω,C =0.1μF 组成如图2(b)

所示的RC 充放电电路。u 为信号发生器输出的U P-P =3V 、

f =1KHz 的方波电压信号,并通过两根同轴电缆线,将激励

u

和响应

u c 的信号分别连至示波器的两个输入口Y A 和

Y B 。这时可在示波器的屏幕上观察到激励与响应的变化规律。

改变电容值为1000pF 、6800pF 、0.01μF ,定性地观察

对响应的影响,记录观察到的现象。

2. 令R =100Ω,C =0.01μF 组成如图2(a)所示的微分电路。在同样的方波激励信号(U P-P =3V ,f =1KHz )作用

下,观测并描绘激励与响应的波形。 继续改变R 值为1k Ω,10k Ω,1M Ω,定性地观察对响应的影响。

图3 实验结果

微分电路:R =100Ω C =0.01μF

此图为输出电压:

此图为输入电压: R =1k Ω C =0.01μF

C=0.01μF

R= 1MΩ

C=0.01μF 积分电路

C=0.1μF R=10kΩ

C=0.01μF R=10kΩ

R=10kΩ

C=1000pF、

R=10kΩ

结果分析

根据实验观测结果,归纳、总结积分电路和微分电路的形成条件,阐明波形变换的特征。微分电路形成条件:一个简单的RC串联电路,在方波序列脉冲的重复激励下,当电路的参数τ=R C<

积分电路形成条件:一个简单的RC串联电路,在方波序列脉冲的重复激励下,当电路的参数τ=RC>>T/2,取C两端电压作为响应输出,即为积分电路

通过实验可知,RC电路中,当具备一定的条件时,可以改变电路中的输入波形。并且,在输入波形频率不变的前提下,R值或C值越小,输出波形(三角波、脉冲)越尖锐。相反的,R值或C值越大,输出波形(三角波、脉冲)越平坦

心得体会及其它。

1.双波示波器的使用,在一个波形非常尖锐的情况下,可以在一个波形下单独观察。

2.当双波的原点不在同一水平线上,可以调节在同一水平线上,便于观察。需要

3.需要注意接地端对实验电路的影响。

4.实验结果与预测相反,通过实验结果的错误,分析导致错误的原因,进而解决问题。

RC一阶电路的响应测试 实验报告

实验六RC一阶电路的响应测试 一、实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用虚拟示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图6-1(b)所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法 用示波器测量零输入响应的波形如图6-1(a)所示。 根据一阶微分方程的求解得知u c=U m e-t/RC=U m e-t/τ。当t=τ时,Uc(τ)=0.368U m。此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632 U m所对应的时间测得,如图6-1(c)所示。 (a) 零输入响应 (b) RC一阶电路(c) 零状态响应 图 6-1 4. 微分电路和积分电路是RC一阶电路中较典型的电路,它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC T时串联电路,在方波序列脉冲的重复激励下,当满足τ=RC<< 2(T为方波脉冲的重复周期),且由R两端的电压作为响应输出,这就是一个微分电路。因为此时 电路的输出信号电压与输入信号电压的微分成正比。如图6-2(a)

RC一阶电路的响应测试

实验题目RC一阶电路的响应测试 一、实验目的 1.测定RC一阶电路的零输入响应、零状态响应及完全响应。 2.学习电路时间常数的测量方法。 3.掌握有关微分电路和积分电路的概念。 4.进一步学会用示波器观测波形。 二、原理说明 1.动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图2-16(b)所示的RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3.时间常数τ的测定方法: 用示波器测量零输入响应的波形如图2-16(a)所示。 根据一阶微分方程的求解得知u c=U m e-t/RC=U m e-t/τ。当t=τ时,Uc(τ)=0.368U m。此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632U m 所对应的时间测得,如图2-16(c)所示。 τ t t 0.632 c u u U m c u U m

图 2-16 (a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应 4.微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC 串联电路, 在方波序列 脉冲的重复激励下,当满足τ=RC<<2 T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,则该电路就是一个微分电路。因为此时电路的输出信号电压与输入信号电压的微分成正比。如图2-17(a)所示。利用微分电路可以将方波转变成尖脉冲。 图2-17 (a)微分电路 (b) 积分电路 若将图2-17(a)中的R 与C 位置调换一下,如图2-17(b)所示,由 C 两端的 电压作为响应输出,且当电路的参数满足τ=RC>>2 T ,则该RC 电路称为积分 电路。因为此时电路的输出信号电压与输入信号电压的积分成正比。利用积分电路可以将方波转变成三角波。 从输入输出波形来看,上述两个电路均起着波形变换的作用,请在实验过程仔细观察与记录。 三、实验设备 四、实验内容 实验线路板的器件组件,如图2-18所示,请认清R 、C 元件的布局及其标称值,各开关的通断位置等。 1.从电路板上选R =10K Ω,C =6800pF 组成如图2-16(b)所示的RC 充放电电路。u i 为脉冲信号发生器输出的U m =3V 、f =1KHz 的方波电压信号,并通过两根同轴电缆线,将激励源u i 和响应u C 的信号分别连至示波器的两个输入口Y A 和Y B 。这时可在示波器的屏幕上观察到激励与响应的变化规律,请测算出时间常数τ,并用方格纸按1:1 的比例描绘波形。 少量地改变电容值或电阻值,定性地观察对响应的影响,记录观察到的现象。 C

RC一阶电路的响应测试实验报告

? 实验七 RC 一阶电路的响应测试 一、实验目的 1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图7-1(b )所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图7-1(a)所示。 根据一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ 。当t =τ时,Uc(τ)=0.368U m 。 此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632U m 所对应的时间测得,如图13-1(c)所示。 a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应 图 7-1 4. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当 满足τ=RC<< 2 T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,则该电路就是一个微分电路。因为此时电路的输出信号电压与输入信号电压的微分成正比。如图 0.368t t t t 0.6320 000c u u U m c u c u u U m U m U m

阶电路动态响应实验报告

实验二:二阶电路动态响应 学号:27 姓名:李昕怡 成绩: 一、 实验目的 1. 深刻理解和掌握零输入响应、零状态响应及完全响应. 2. 深刻理解欠阻尼、临界阻尼、过阻尼的意义. 3. 研究电路元件参数对二阶电路动态响应的影响. 4. 掌握用Multisim 软件绘制电路原理图的方法. 二、 实验原理及思路 实验原理: 用二阶微分方程描述的动态电路称为二阶电路。 如图所示的RLC 串联电路是一个典型的二阶电路,可以用下述二阶线性常系数微分方程来描述: 22u u u c c c c d d LC RC U dt dt ++= 定义衰减系数(阻尼系数)R L α= ,自由振荡角频率(固有频率)0ω=. 1. 零输入响应. 动态电路在没有外施激励时,由动态元件的初始储能引起的响应,称为零输入响应。 (1) 当R >. (2) 当R . (3) 当R <. 2. 零状态响应. 动态电路的初始储能为零,由外施激励引起的电路响应称为零状态响应.与零输入响应类似,电压电流的变化规律取决于电路结构、电路参数,可以分为过阻尼、欠阻尼、临界阻尼等三种充电过程。 实验思路: 1. 用方波信号作为输入信号,调节方波信号的周期,观测完整的响应曲线.

2. 用可变电阻R 代替电路中的电阻,计算电路的临界阻尼,调整R 的大小,使电路分别处于欠阻尼、临界阻尼和过阻尼的情况,观测电容两端的瞬态电压变化. 3. 测定衰减振荡角频率d ω和衰减系数α.在信号发生器上读出信号的震荡周期T d ,则: 22d d d f T πωπ== 1 2 1ln d h T h α= 其中h 1、h 2分别是两个连续波峰的峰. 三、 实验内容及结果 1. 计算临界阻尼. 1.348R k ≈Ω 仿真. (1)从元器件库中选择可变电阻、电容、电感,创建如图所示电路. (2)将J1与节点0相连,用Multisim 瞬态分析仿真零输入响应(参数欠阻尼、临界阻尼、过阻尼三种情况),观测电容两端的电压,将三种情况的曲线绘制在同一张图上,从上至下分别是:R 1=10%R (欠阻尼),R 1=Ω(临界阻尼),R 1=90%R (过阻尼). (3)将J1与节点4相连,用Multisim 瞬态分析仿真全响应(欠阻尼、临界阻尼、过阻尼三种情况),观测电容两端的电压,将三种情况的曲线绘制在同一张图上,从上至下分别是:R 1=10%R (欠阻尼),R 1=Ω(临界阻尼),R 1=90%R (过阻尼). (4)在Multisim 中用函数发生器、示波器和波特图绘制如图所示的电路图,函数信号发生器设置:方波、频率1kHz 、幅度5V 、偏置5V. 用瞬态分析观测电容两端的电压. R 1=10%R (欠阻尼):

RC一阶电路的响应测试实验内容

实验五 RC一阶电路的响应测试 一、实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及全响应。 2. 掌握有关微分电路和积分电路的概念。 3. 学会时间常数τ的测定方法。 4. 进一步学会用示波器观测波形。 二、原理说明 图5.1所示的矩形脉冲电压波u i可以看成是按照一定规律定时接通和关断的直流电压源U。若将此电压u i加在RC串联电路上(见图5.2),则会产生一系列的电容连续充电和放电的动态过程,在u i的上升沿为电容的充电过程,而在u i的下降沿为电容的放电过程。它们与矩形脉冲电压u i的脉冲宽度t w及RC串联电路的时间常数τ有十分密切的关系。当t w不变时,适当选取不同的参数,改变时间常数τ,会使电路特性发生质的变化。 图5.1 矩形脉冲电压波形图5.2 RC串联电路图 1. RC一阶电路的零状态响应 所有储能元件初始值为0的电路对于激励的响应称为零状态响应。电路的微分方程为:,其解为,式中,τ=RC为该电路的时间常数。 2. RC一阶电路的零输入响应 电路在无激励情况下,由储能元件的初始状态引起的响应称为零输入响应。电路达到稳态后,电容器经R放电,此时的电路响应为零输入响应。电路的微分方程为:,其解为。RC一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长(如图5.3所示),其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法 方法一:在已知电路参数的条件下,时间常数可以直接由公式计算得出,τ=RC。 方法二:对充电曲线(零状态响应),电容的端电压达到最大值的(约0.632)倍时所需要的时间即是时间常数τ。如图5.3(a)所示,用示波器观测响应波形,取上升曲线中波形幅值的0.632倍处所对应的时间轴的刻度,计算出电路的时间常数: 其中,扫描时间是示波器上X轴扫描速度开关“t/div”的大小。是X轴上O、P两点之间占有的格数。而对放电曲线(零输入响应),时间常数是电容的端电压下降到初值的,即约0.368倍时所需要的时间,如图5.3(b)所示。 (a) 零状态响应(b) 零输入响应 图5.3 时间常数τ的测定 方法三:利用时间常数的几何意义求解。在图5.4中,取电容电压u c的曲线上任意一点A,通过A点作切线AC,则图中的次切距

阶动态电路的响应测试实验报告

一阶动态电路的响应测试实验报告 1.实验摘要 1、研究RC电路的零输入响应和零状态响应。用示波器观察响应过程。电路参数:R=100K、C=10uF、Vi=5V 2.从响应波形图中测量时间常数和电容的充放电时间 2.实验仪器 5V电源,100KΩ电阻,10uF电容,示波器,导线若干 2.实验原理 (1)RC电路的零输入响应和零状态响应 (i)电路中某时刻的电感电流和电容电压称为该时刻的电路状态。t=0时,电容电压uc(0)称为电路的初始状态。 (ii)在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应,它取决于初始状态和电路特性(通过时间常数τ=RC来体现),这种响应时随时间按指数规律衰减的。 (iii)在零初始状态时仅由在t0时刻施加于电路的激励引起的响应称为零状态响应,它取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。 (iiii)线性动态电路的完全响应为零输入响应和零状态响应之和动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利

用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的 2.时间常数τ的测定方法: 用示波器测量零输入响应的波形,根据一阶微分方程的求解得知uc=Um*e-t/RC=Um*e-t/τ,当t=τ时,即t为电容放电时间,Uc(τ)=。 此时所对应的时间就等于τ。亦可用零状态响应波形增加到所对应的时间测得,即电容充电的时间t. (2)测量电容充放电时间的电路图 如图所示,R=100KΩ,us=5V,c=10uF,单刀双掷开关A. 4实验步骤和数据记录 (i)按如图所示的电路图在连接好电路,测量电容C的两端电压变化,即一阶动态电路的响应测试。 (ii)用示波器测量电容两端的电压,示波器的测量模式调整为追踪。(iii)打开电源开关,将开关和电压源端相接触,使电容充电,用示波器记录电容充电时的电压变化。 (iiii)将开关和另一端相接触,使电容放电,用示波器记录电容放电时的电压变化。 充电时波形图

一阶电路响应电路实验报告

一个简单的RC串联电路,在方波序列脉冲的重复激励下若满足t=RC< > T/2, 则该RC电路称为积分电路。因为此时电路的输出电压uc与输入电压ui的积分成正比。利用积分电路可以将方波转变成三角 波。 三. 实验设备 电阻,周期方波激励,电容 四. 实验内容及数据 4.1 调节示波器输出电压为5Vpp、f=2KHz的方波。

4.2 令R= 1KQ,C= 0.01μF,组成如图(4)所示的微分电路。在同样的方波激励信号作用下,观测并描绘响应的波形,测定时间常数τ。分别减小R或C的值,定性地观察对响应的影响。 4.2.1图像: 4.2.2测定时间常数τ: 由实验原理可知,当时,,对图像测量可知 由图像测量得τ=10.1

4.2.3.1减小R至500Ω: 由图像可知τ小于10,τ随着R减小而减小4.2.3.2 减小C至5nF: 由图像可知τ小于10,τ随着C减小而减小

4.3令R= 1KQ,C= 0.033μF,组成如图(5)所示的积分电路。观察并描绘响应的波形,测定时间常数τ。分别增大R或C的值,定性地观察对响应的影响。 4.3.1 图像: 4.3.2测定时间常数τ: 由实验原理可知,当时,,对图像测量可知 由图像测量得τ=32

4.3.3.1减小R至500Ω: 由图像可知τ小于32,τ随着R减小而减小4.3.3.2 减小C至15nF: 由图像可知τ小于32,τ随着C减小而减小

RC一阶电路的响应测试实验报告

RC一阶电路的响应测试实验报告 一、实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4.进一步学会用示波器观测波形。 二、实验环境 电容、面包板、单刀双掷开关、导线若干、电阻、示波器、VICTOR VC890D万用电表、CPC-型电路基础实验箱 三、实验原理与步骤 1.检查元器件的好坏 2.面包板上搭建电路图 3. 一阶RC电路的时域响应 用一阶微分方程描述的电路,称为一阶动态电路。一阶动态电路通常是由一个(或若干个)电阻元件和一个动态元件(电容或电感)组成。一阶动态电路时域分析的步骤是建立换路后的电路微分方程,求满足初始条件微分方程的解,即电路的响应。 一阶RC电路 R1=10千欧U1=5V C1=10uF

零状态响应曲线 如图所示电路中,若uc(0-)=0,t=0时开关S1由1打向3,直流电源经R 向C 充电,此时,电路的响应为零状态响应。 电路的微分方程为: 解: 式中, =RC 为该电路的时间常数。 若开关由1打向2,电容器经R 放电,此时的电路响应为零输入响应 零输入状态响应状态 电路的微分方程为: 解: 4.记录电容两端电压充放电的变化 s c c du RC u U dt +=() 1t c S u t U e τ??=- ???—0c c du RC u dt +=()() 0t t c c S u t u e U e ττ--+==

实物图(充、放电过程) 5..整理仪器 四、实验总结 1.从图中看出,无论是零状态响应还是零输入响应,其响应曲线都是按照指数规律变化的,变化的快慢由时间常数决定,即电路瞬态过程的长短由决定。大,瞬态过程长;小,瞬态过程短。 2.面包板外两侧是按照4、3、4组联通的,在做实验的时候忘记了,使电阻与导线并联,电流不经过电阻。 3.在连接示波器的探头时4,连接的x通道的探头,却在示波器上按成只显示y 通道的信号,致使一直未出现本实验的波形图。

rc一阶电路的响应测试实验报告

RC一阶电路的响应测试 实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 实验电路 原理说明 1. 电路中某时刻的电感电流和电容电压称为该时刻的电路状态。t=0时电感的初始电流iL (0)和电容电压uc(0)称为电路的初始状态。 在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应称为,它取决于初始状态和电路特性 (通过时间常数τ=RC来体现),这种响应时随时间按指数规律衰减的。 在零初始状态时仅由在t0时刻施加于电路的激励引起的响应称为零状态响应,它取 决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。线性动态电路的完全响应为零输入响应和零状态响应之和。 含有耗能元件的线性动态电路的完全响应也可以为暂态响应与稳态响应之和,实践中认为暂态响应在t=5τ时消失,电路进入稳态,在暂态还存在的这段时间就成为“过渡过程”。 2. CC电接通与断开的过渡过程是基本相同的。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图9-1(b)所示。 根据一阶微分方程的求解得知uc=Ume 如图9-1(c)所示。 -t/RC=Ume-t/τ。当t=τ时,Uc(τ)=0.368Um。此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632Um所对应的时间测得, 1

uuUmUm tt 00 c ucRUmUm 0.632 uc0.368t t 00 (b) 零输入响应 (a) RC一阶电路(c) 零状态响应 图9-1 4. 微分电路和积分电路是RC一阶电路中较典型的电路,它对电路元件参数和输入信号的周期有着特定的要求。一个简单的RC串联电路,在方波序列脉冲的重复激励下,当满足τ=RC<>T 2,则该RC电路称为积分电路。因为此时电路的输出信号电压与输入信号电压的积分成正比。 2

实验报告rc一阶电路的响应测试

实验报告 祝金华PB 实验题目:RC 一阶电路的响应测试 实验目的 1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 实验原理 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图1(b)所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图1(a)所示。 根据一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ 。当t =τ时,Uc(τ)=。此时所对 应的时间就等于τ。亦可用零状态响应波形增加到 U m 所对应的时间测得,如图1(c)所示。 (a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应 图 1 4. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当满足τ=RC<< 2 T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输

RC一阶电路的响应测试实验报告

实验七 RC 一阶电路的响应测试 一、实验目的 1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图7-1(b )所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图7-1(a)所示。 根据一阶微分方程的求解得知 u c =U m e -t/RC =U m e -t/τ。当 t =τ时,Uc(τ)=。此时所 对应的时间就等于τ。亦可用零状态响应波形增加到所对应的时间测得,如图13-1(c)所示。 a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应 图 7-1 4. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信0.368t t C t t 0.6320 000+ c u u U m c u c u u u U m U m U m

号的周期有着特定的要求。一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当满足τ=RC<< 2 T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,则该电路就是一个微分电路。因为此时电路的输出信号电压与输入信号电压的微分成正比。如图7-2(a)所示。利用微分电路可以将方波转变成尖脉冲。 (a)微分电路 (b) 积分电路 图7-2 若将图7-2(a)中的R 与C 位置调换一下,如图13-2(b)所示,由 C 两端的电压作为响应输出,且当电路的参数满足τ=RC>> 2 T ,则该RC 电路称为积分电路。因为此时电路的输出信号电压与输入信号电压的积分成正比。利用积分电路可以将方波转变成三角波。 从输入输出波形来看,上述两个电路均起着波形变换的作用,请在实验过程仔细观察与记录。 四、实验内容 实验线路板的器件组件,如图7-3所示,请认清R 、C 元件的布局及其标称值,各开关的通断位置等。 1. 从电路板上选R =10K Ω,C =6800pF 组成如图13-1(b)所示的RC 充放电电路。u i 为脉冲信号发生器输出的U m =3V 、f =1KHz 的方波电压信号,并通过两根同轴电缆线,将激励源u i 和响应u C 的信号分别连至示波器的两个输入口Y A 和Y B 。这时可在示波器的屏幕上观察到激励与响应的变化规律,请测算出时间常数τ,并用方格纸按1:1 的比例描绘波形。 少量地改变电容值或电阻值,定性地观察对响应的影响,记录观察到的现象。 C

rc一阶电路的响应测试实验报告

r c一阶电路的响应测试实验 报告 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

RC一阶电路的响应测试 实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 实验电路 原理说明 1. 电路中某时刻的电感电流和电容电压称为该时刻的电路状态。t=0时电感的初始电流iL (0)和电容电压uc(0)称为电路的初始状态。 在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应称为,它取决于初始状态和电路特性 (通过时间常数τ=RC来体现),这种响应时随时间按指数规律衰减的。 在零初始状态时仅由在t0时刻施加于电路的激励引起的响应称为零状态响应,它取 决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。线性动态电路的完全响应为零输入响应和零状态响应之和。 含有耗能元件的线性动态电路的完全响应也可以为暂态响应与稳态响应之和,实践中认为暂态响应在t=5τ时消失,电路进入稳态,在暂态还存在的这段时间就成为“过渡过程”。 2. CC电接通与断开的过渡过程是基本相同的。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图9-1(b)所示。 根据一阶微分方程的求解得知uc=Ume 如图9-1(c)所示。 -t/RC=Ume-t/τ。当t=τ时,Uc(τ)=。此时所对应的时间就等于τ。亦可用零状态响应波形增加到所对应的时间测得, 1

uu UmUm tt 00 c ucR UmUm t 00 (b) 零输入响应 (a) RC一阶电路 (c) 零状态响应 图 9-1 4. 微分电路和积分电路是RC一阶电路中较典型的电路,它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC串联电路,在方波序列脉冲的重复激励下,当满足τ=RC<>T 2,则该RC电路称为积分电路。因为此时电路的输出信号电压与输入信号电压的积分成正比。 2

实验报告RC一阶电路的响应测试

实验报告 祝金华PB15050984 实验题目:RC一阶电路的响应测试 实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 实验原理 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图1(b)所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图1(a)所示。 根据一阶微分方程的求解得知u c =U m e-t/RC=U m e-t/τ。当t=τ时,Uc(τ)=0.368U m 。此 时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632 U m 所对应的时间测得,如图1(c)所示。

(a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应 图 1 4. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当满足τ=RC<< 2 T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输 出,这就是一个微分电路。因为此时电路的输出信号电压与输入信号电压的微分成正比。如图2(a)所示。利用微分电路可以将方波转变成尖脉冲。 (a) 微分电路 (b) 积分电路 图2 若将图2(a )中的R 与C 位置调换一下,如图2(b )所示,由 C 两端的电压作为响应输出。当电路的参数满足τ=RC>> 2 T 条件时,即称为积分电路。因为此时电路的输出信号电压与输入信号电压的积分成正比。利用积分电路可以将方波转变成三角波。 实验设备 脉冲信号发生器,双踪示波器,动态电路实验板 预习思考题 1. 什么样的电信号可作为RC 一阶电路零输入响应、 零状态响应和完全响应的激励信号? 方波输出的上升沿可以作为零状态响应的正阶跃激励信号,方波的下降沿作为零输入响应的负阶跃激励信号;正弦信号可以作为完全响应的激励信号。 2. 已知RC 一阶电路R =10K Ω,C =0.1μF ,试计算时间常数τ,并根据τ值的物理意义,拟定测量τ的方案。

实验十二《RC一阶电路的响应测试》

实验十二 RC 一阶电路的响应测试 一、实验目的 1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图12-1(b )所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图12-1(a)所示。 根据一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ 。当t =τ时,Uc(τ)=0.368U m 。 此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632U m 所对应的时间测得,如图12-1(c)所示。 (a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应 图 12-1 τ τ 0.368t t t t 0.6320 000c u u U m c u c u u U m U m U m

4. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当满足τ=RC<< 2 T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,则该电路就是一个微分电路。因为此时电路的输出信号电压与输入信号电压的微分成正比。如图12-2(a)所示。利用微分电路可以将方波转变成尖脉冲。 (a)微分电路 (b) 积分电路 图12-2 若将图12-2(a)中的R 与C 位置调换一下,如图12-2(b)所示,由 C 两端的电压作为响应输出,且当电路的参数满足τ=RC>> 2 T ,则该RC 电路称为积分电路。因为此时电路的输出信号电压与输入信号电压的积分成正比。利用积分电路可以将方波转变成三角波。 从输入输出波形来看,上述两个电路均起着波形变换的作用,请在实验过程仔细观察与记录。 四、实验内容 实验线路板的器件组件,如图12-3所示,请认清R 、C 元件的布局及其标称值,各开关的通断位置等。 1. 从电路板上选R =10K Ω,C =6800pF 组成如图12-1(b)所示的RC 充放电电路。u i 为脉冲信号发生器输出的U m =3V 、f =1KHz 的方波电压信号,并通过两根同轴电缆线,将激励源u i 和响应u C 的信号分别连至示波器的两个输入口Y A 和Y B 。这时可在示波器的屏幕上观察到激励与响应的变化规律,请测算出时间常数τ,并用方格纸按1:1 的比例描绘波形。 少量地改变电容值或电阻值,定性地观察对响应的影响,记录观察到的现象。 2. 令R =10K Ω,C =0.1μF ,观察并描绘响应的波形,继续增大C 之值,定性地观察对响应的影响。 C

浙江大学实验报告 一阶RC电路的瞬态响应过程实验研究

三墩职业技术学院实验报告课程名称:电子电路设计实验指导老师:成绩:__________________ 实验名称:一阶RC电路的瞬态响应过程实验研究实验类型:探究类同组学生姓名:__ 一、实验目的二、实验任务与要求 三、实验方案设计与实验参数计算(3.1 总体设计、3.2 各功能电路设计与计算、3.3完整的实验电路……) 六、实验调试、实验数据记录七、实验结果和分析处理 八、讨论、心得 一、实验目的 1、熟悉一阶RC电路的零状态响应、零输入响应过程。 2、研究一阶RC电路在零输入、阶跃激励情况下,响应的基本规律和特点。 3、学习用示波器观察分析RC电路的响应。 4、从响应曲线中求RC电路的时间常数。 二、实验理论基础 1、一阶RC电路的零输入响应(放电过程) 零输入响应:

电路在无激励情况下,由储能元件的初始状态引起的响应,即电路初始状态不为零,输入为零所引起的电路响应。 (实际 上是 电容器C 的 初始电压经电阻R 放电过程。) 在图1中,先让开关K 合于位置a ,使电容C 的初始电压值0)0(U u c =-,再将开关K 转到位置b 。 电容器开始放电,放电方程是 可以得出电容器上的电压和电流随时间变化的规律: 衰减到1/e (36.8%))0(u c 所需要的 式中τ=RC 为时间常数,其物理意义是 时间,反映了电路过渡过程的快慢程度。τ越大,暂态响应所持续的时间越长,即过渡过程的时间越长;反之,τ越小,过渡过程的时间越短。时间常数可以通过相 应的衰减曲线来反应,如图2。由于经过5τ时间后,已经衰减到初态的1%以 下,可以认为经过5τ时间,电容已经放电完毕。 图2 2、一阶RC 电路的零状态响应(充电过程) 所谓零状态响应是指初始状态为零,而输入不为零所产生的电路响应。一阶RC 电路在阶跃信号激励下的零状态响应实际上就是直流电源经电阻R 向C 充电的过程。在图1所示的一阶电路中,先让开关K 合于位置b ,当t = 0时,将开关K 转到位置a 。 电容器开始充电,充电方程为 图1 ) 0(0≥=+t dt du RC u C C ) 0()0()(0≥- =- =---t e R U R e u t i t RC t C C τ ) (u t C )0()0()(0≥==- - -t e U e u t u t RC t C C τ )(u t C 装 订

RC一阶电路的响应测试实验报告

R C一阶电路的响应测试实验报告 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

实验六RC一阶电路的响应测试 一、实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用虚拟示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图6-1(b)所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法 用示波器测量零输入响应的波形如图6-1(a)所示。 根据一阶微分方程的求解得知u c=U m e-t/RC=U m e-t/τ。当t=τ时,Uc(τ)=。此时所对应的时间就等于τ。亦可用零状态响应波形增加到 U m所对应的时间测得,如图6-1(c)所示。 (a) 零输入响应 (b) RC一阶电路 (c) 零状态响应 图 6-1 4. 微分电路和积分电路是RC一阶电路中较典型的电路,它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC T时串联电路,在方波序列脉冲的重复激励下,当满足τ=RC<< 2(T为方波脉冲的重复周期),且由R两端的电压作为响应输出,这就是一个微分电路。因为此时

一阶电路的响应测试

实验十RC一阶电路的响应测试 一、实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图1-10-1(b)所示的RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图1-10-1(a)所示。 根据一阶微分方程的求解得知u c=U m e-t/RC=U m e-t/τ。当t=τ时,Uc(τ)=0.368U m。此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632U m所对应的时间测得,如图1-10-1 (c)所示。 (a) 零输入响应(b) RC一阶电路(c) 零状态响应 图1-10-1 4. 微分电路和积分电路是RC一阶电路中较典型的电路,它对电路元件参数和输入信

号的周期有着特定的要求。一个简单的 RC 串联电路,在方波序列脉冲的重复激励下, 当满足τ=RC<< 2 T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,这就是一个微分电路。因为此时电路的输出信号电压与输入信号电压的微分成正比。如图1-10-2(a)所示。利用微分电路可以将方波转变成尖脉冲。 (a) 微分电路 (b) 积分电路 图1-10-2 若将图1-10-2(a)中的R 与C 位置调换一下,如图1-10-2(b)所示,由 C 两端的电压作为响应输出。当电路的参数满足τ=RC>> 2 T 条件时,即称为积分电路。因为此时电路的输出信号电压与输入信号电压的积分成正比。利用积分电路可以将方波转变成三角波。 从输入输出波形来看,上述两个电路均起着波形变换的作用,请在实验过程仔细观察与记录。 三、实验设备 四、实验内容 根据实验表格1选择对应的电阻、电容组成如图1-10-1(b)所示的RC 充放电电路。u 为脉冲信号发生器输出的U m =3V 、f =100Hz 的方波电压信号,并通过两根同轴电缆线,将激励源u 和响应u c 的信号分别连至示波器的两个输入口Y A 和Y B 。这时可在示波器的屏幕上观察到激励与响应的变化规律,请测算出时间常数τ,并按1:1 的比例描绘波形。 u T

RC一阶电路的响应测量

受控源的研究 1、 实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用虚拟示波器观测波形。 二、实验仪器 数字万用表、模拟电路实验箱(AEDK-AEC)、导线、电容、电阻、面包板、示波器(DS1052E)、信号发生器(EE1641D)等。 3、 实验概述 1、实验原理 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图6-1(b)所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法 用示波器测量零输入响应的波形如图6-1(a)所示。 根据一阶微分方程的求解得知uc=Ume-t/RC=Ume-t/τ。当t=τ时,Uc(τ)=0.368Um。此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632 Um所对应的时间测得,如图6-1(c)所示。

(a) 零输入响应 (b) RC一阶电路 (c) 零状态响应 图 6-1 4. 微分电路和积分电路是RC一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC串联电路, 在方波序列脉冲的重复激励下, 当满足τ=RC<<时(T为方波脉冲的重复周期),且由R两端的电压作为响应输出,这就是一个微分电路。因为此时 电路的输出信号电压与输入信号电压的微分成正比。如图6-2(a)所示。利用微分电路可以将方波转变成尖脉冲。 (a) 微分电路 (b) 积分电路 图6-2 若将图6-2(a)中的R与C位置调换一下,如图6-2(b)所示,由 C两端的电压作为响应输出。当电路的参数满足τ=RC>>条件时,即称为积分电路。因为此时电路的输出信号电压与输入信号电压的积分成正比。利

相关文档
相关文档 最新文档