文档库 最新最全的文档下载
当前位置:文档库 › 工业冷水机制冷系统载冷剂的种类及选用分析

工业冷水机制冷系统载冷剂的种类及选用分析

工业冷水机制冷系统载冷剂的种类及选用分析
工业冷水机制冷系统载冷剂的种类及选用分析

1.载冷剂是指在间接制冷系统中用以传送冷量的中间介质。载冷剂在蒸发器中被制冷剂冷却后,

送到冷却设备中,吸收被冷却物体或环境的热量,再返回蒸发器被制冷剂重新冷却,如此不断的循环,以达到连续制冷的目的。载冷剂传递冷量是依靠显热作用,而不像别的制冷剂那样靠蒸发潜热来实现制冷。

2.用于工业用冷水机的载冷剂种类很多,根据它的工作温度可以分为三类:1、水,适用于0℃

以上的制冷装置,如空调、风冷冷水机、水冷冷水机、螺杆式冷水机、开放式冷水机;2、盐水溶液,如氯化钠、氯化钙等水溶液,适用于一般中温制冷装置;3、有机溶液,如二氯甲烷(R30)、三氯乙烯,以及一氟三氯甲烷(R11)等,适用于低温制冷装置;

3.而我们在给各行业专用冷水机选择制冷剂时,应考虑到一下这些因素:

1)载冷剂在工作温度下应处于液体状态,其凝固温度应低于工作温度,沸点应高于工作温度;

2)热容要大,在传递一定的冷量时,可使流量小。因而可以提高循环的经济性,或减少输送载冷剂的

泵功率消耗和管道的材料消耗;

3)密度小。载冷剂的密度小可使循环泵功率减小;

4)粘度小。采用粘度小的载冷剂可使流动阻力减小,因而循环功率减小;

5)化学稳定好。载冷剂应在工作稳定下不分解,不与空气中的氧气起化学变化,不发生物理化学性质

的变化;

6)不腐蚀冷水机组和管道;

7)载冷剂应不燃烧、不爆炸、无毒、对人体无害;

8)价格低廉,便于获得;

4.不论是制冷剂的选择,还是载冷剂的选择,最重要一点是要保证不燃烧、不爆炸、无毒、对人

体无害。我相信,上海冷库的液氨泄露事故到现在还是心有余悸,为保证民众的人身安全,从冷水机组件的选择、制冷剂/制冷剂的选择、安装过程及其使用过程中,都要秉着严格谨慎的态度去执行,避免事故发生。

KAYDELI

集团总部在美国德克萨斯州成立于

1966

年,在中国香港和大陆先后成立凯德利集团(香港)

有限公司、深圳市凯德利冷机设备有限公司(以下简称凯德利)

,是以生产、设计、研发、经

营“凯德利”牌冷水机、热回收机组、环保冷水机、激光冷水机、冷油机、模温冷水机、低

温冷冻机等制冷设备及以及厂房舒适中央空调工程、无尘室车间、冷冻工程所需配套产品加

工制造、制冷空调系统设计制造安装维修调试和技术服务等为主业的国家一级企业。改革开

放以来,公司在体制、机制、技术和管理上不断创新达到走出一条通过合资、合作、壮大经

济实力的成功之路,实现了公司的飞速发展

制冷系统设计步骤

制冷系统设计步骤

一、设计任务和已知条件 根据要求,在武汉地区,以风机盘管为末端装置,冷冻水温度为7℃,空调回水温度为11℃,总制冷量为400KW,冷却水系统选用冷却塔使用循环水。 二、制冷压缩机型号及台数的确定 1、确定制冷系统的总制冷量 制冷系统的总制冷量,应该包括用户实际所需要的制冷量,以及制冷系统本身和供冷系统冷损失,可按下式计算: 式中——制冷系统的总制冷量(KW) ——用户实际所需要的制冷量(KW) A——冷损失附加系数。 一般对于间接供冷系统,当空调制冷量小于174KW时,A=0.15~0. 20;当空调制冷量为174~1744KW时,A=0.10~0.15;当空调制冷量大于1744KW时,A=0.05~0.07;对于直接供冷系统,A=0.05~0. 07。 2、确定制冷剂种类和系统形式

根据设计的要求,选用氨为制冷剂而且采用间接供冷方式。 3、确定制冷系统设计工况 确定制冷系统的设计工况主要指确定蒸发温度、冷凝温度、压缩机吸气温度和过冷温度等工作参数。有关主要工作参数的确定参考《制冷工程设计手册》进行计算。 确定冷凝温度时,冷凝器冷却水进、出水温度应根据冷却水的使用情况来确定。 ①、冷凝温度()的确定 从《制冷工程设计手册》中查到武汉地区夏季室外平均每年不保证50h的湿球温度(℃) ℃ 对于使用冷却水塔的循环水系统,冷却水进水温度按下式计算: ℃ 式中——冷却水进冷凝器温度(℃); ——当地夏季室外平均每年不保证50h的湿球温度(℃); ——安全值,对于机械通风冷却塔,=2~4℃。

冷却水出冷凝器的温度(℃),与冷却水进冷凝器的温度及冷凝器的形式有关。 按下式确定: 选用立式壳管式冷凝器=+(2~4)=31.2+3=34.2℃ 注意:一般不超过35℃。 系统以水为冷却介质,其传热温差取4~6℃,则冷凝温度为 ℃ 式中——冷凝温度(℃)。 ②、蒸发温度()的确定 蒸发温度是制冷剂液体在蒸发器中汽化时的温度。蒸发温度的高低取决于被冷却物体的温度及传热温差,而传热温差与所采用的载冷剂(冷媒)有关。 系统以水为载冷剂,其传热温差为℃,即 ℃ 式中——载冷剂的温度(℃)。 一般对于冷却淡水和盐水的蒸发器,其传热温差取=5℃。

冷水机组选型

冷水机组选型 冷水机组选型: 众所周知冷水机的应用行业是非常的广泛的,那么作为用户的我们完全不了解冷水机的专业知识,那么要怎么才能购买到适合自己的设备呢?下面请慢慢的跟着我的思路来: 问题1:工厂在购买工业冷水机之前,根本不清楚该选用用什么类型什么型号的冷水机设备 问题2:选购什么型号才能达到工厂要求的制冷效果 问题3:根本不知道什么类型什么型号的的设备更适合自己的生产车间。 首先,我们要弄明白冷水机有哪些类型: 一般的厂家,都会重点分:水冷和风冷两种。 风冷式冷水机的优缺点,在它机身内含有保温水箱和水泵,无需再另加冷却水塔来散热.安装和移动非常方便.但是它对工作环境要求较高!

深圳市凯德利冷机设备有限公司(以下简称凯德利)是以生产、设计、研发、经营“凯德利”牌冷水机、热回收机组、环保冷水机、激光冷水机、冷油机、模温冷水机、低温冷冻机等制冷设备及以及厂房舒适中央空调工程、无尘室车间、冷冻工程所需配套产品加工制造、制冷空调系统设计制造安装维修调试和技术服务等为主业的国家一级企业。改革开放以来,公司在体制、机制、技术和管理上不断创新达到走出一条通过合资、合作、壮大经济实力的成功之路,实现了公司的飞速发展 首先,因为它是以热风循环来制冷的,所以,如果安装车间的通风效果不好的话,会直接影响到冷水机的制冷效果. 如果您想把冷水机放在有湿度要求的无尘车间里的话,那么我劝您改装水冷的.因为风冷冷水机,会在机顶喷出水蒸气以散热。 如想通过计算来选择冷水机的话,可以参照下面的公式和计算指南: 通过冷却水(油)进、出口温差来计算发热量 Q = SH × De × F × DT / 60 Q: 发热量 KW(注明:瀚信德1P冷水机的发热量约为3KW) SH:比热水的比热为 4.2KJ/Kg*C (4.2千焦耳/千克*摄氏度) 油的比热 为 1.97KJ/Kg*C (1.97千焦耳/千克*摄氏度) De: 比重水的比重1Kg/L (1千克/升) 油的比重0.88Kg/L (0.88千克/升) F:流量 LPM (L/min 升/分钟)

制冷剂的种类及特性

氨(R717)的特性 氨(R717、NH3)是中温制冷剂之一,其蒸发温度ts为-33.4℃,使用范围是+5℃到-70℃,当冷却水温度高达30℃时,冷凝器中的工作压力一般不超过1.5MPa。 氨的临界温度较高(tkr=132℃)。氨是汽化潜热大,在大气压力下为1164KJ/Kg,单位容积制冷量也大,氨压缩机之尺寸可以较小。 纯氨对润滑油无不良影响,但有水分时,会降低冷冻油的润滑作用。 纯氨对钢铁无腐蚀作用,但当氨中含有水分时将腐蚀铜和铜合金(磷青铜除外),故在氨制冷系统中对管道及阀件均不采用铜和铜合金。 氨的蒸气无色,有强烈的刺激臭味。氨对人体有较大的毒性,当氨液飞溅到皮肤上时会引起冻伤。当空气中氨蒸气的容积达到0.5-0.6%时可引起爆炸。故机房内空气中氨的浓度不得超过0.02mg/L。 氨在常温下不易燃烧,但加热至350℃时,则分解为氮和氢气,氢气于空气中的氧气混合后会发生爆炸。 氟哩昂的特性 氟哩昂是一种透明、无味、无毒、不易燃烧、爆炸和化学性稳定的制冷剂。不同的化学组成和结构的氟里昂制冷剂热力性质相差很大,可适用于高温、中温和低温制冷机,以适应不同制冷温度的要求。 氟里昂对水的溶解度小,制冷装置中进入水分后会产生酸性物质,并容易造成低温系统的“冰堵”,堵塞节流阀或管道。另外避免氟里昂与天然橡胶起作用,其装置应采用丁晴橡胶作垫片或密封圈。 常用的氟里昂制冷剂有R12、R22、R502及R1341a,由于其他型号的制冷剂现在已经停用或禁用。在此不做说明。 氟里昂12(CF2CL2,R12):是氟里昂制冷剂中应用较多的一种,主要以中、小型食品库、家用电冰箱以及水、路冷藏运输等制冷装置中被广泛采用。R12具有较好的热力学性能,冷藏压力较低,采用风冷或自然冷凝压力约0.8-1.2KPa。R12的标准蒸发温度为-29℃,属中温制冷剂,用于中、小型活塞式压缩机可获得-70℃的低温。而对大型离心式压缩机可获得-80℃的低温。近年来电冰箱的代替冷媒为R134a。 氟里昂22(CHF2CL,R22):是氟里昂制冷剂中应用较多的一种,主要以家用空调和低温冰箱中采用。R22的热力学性能与氨相近。标准气化温度为-40.8℃,通常冷凝压力不超过1.6MPa。R22不燃、不爆,使用中比氨安全可靠。R22的单位容积比R12约高60%,其低温时单位容积制冷量和饱和压力均高于R12和氨。近年来对大型空调冷水机组的冷媒大都采用 R134a来代替。 氟里昂502(R502):R502是由R12、R22以51.2%和48.8%的百分比混合而成的共沸溶液。R502与R115、R22相比具有更好的热力学性能,更适用于低温。R502的标准蒸发温度为-45.6℃,正常工作压力与R22相近。在相同的工况下的单位容积制冷量比R22大,但排气温度却比R22低。R502用于全封闭、半封闭或某些中、小制冷装置,其蒸发温度可低达-55℃。R502在冷藏柜中使用较多。 氟里昂134a(C2H2F4,R134a):是一种较新型的制冷剂,其蒸发温度为-26.5℃。它的主要热力学性质与R12相似,不会破坏空气中的臭氧层,

空调机房设计

第八章 空调机房设计 8. 1 机房位置及技术要求 8.1.1 机房位置的选择与组成 1 .机房的位置选择 离心式、 螺杆式制冷机组的机房按功能分有两类: 一类是为建筑物空调服务的冷冻机房, 提供空调用的低温冷冻水,常采用冷水机组直接供冷或蓄冷槽与制冷机组组合供冷的方法;另一类是为冷藏、 冷冻服务的制冷机房, 常采用螺杆式制冷机组。 冷冻机房位置的合理选择, 对于整个建筑物的合理布局、安全方便地使用是非常重要的。选择机房位置时,应遵循建筑设计防火规范、采暖通风与空气调节设计规范、冷库设计规范等,并应综合考虑下列因素: 1)应与建筑物的总体布局相协调,机房应设在既靠近负荷中心,又能使进出机房的各类管道布置方便的地方。冷藏、冷冻的制冷机房和设备间除了要满足上述要求外,选址时还应避开库区的主要交通干线。 2)由于制冷机房用电功率大,因此机房应靠近变配电房设置,以减少线路压降损失,保证机组正常运行。 3)对于采用不同制冷剂的机房的布置,应符合下列要求: ①卤代烃压缩式制冷装置可布置在民用建筑、生产厂房及辅助建筑物内,但不得直接布置在楼梯间、走廊、和建筑物的出入口处。 ②由于氨制冷剂具有强烈的刺激性、毒性、易燃的危险性,因此氨压缩式制冷装置应布置在隔断开的房间或单独的建筑物内,但不能布置在民用建筑和工业企业辅助建筑物内。 4)单独建造的制冷机房宜布置在全厂厂区夏季主导风的下风向。在动力站区域内,一般应布置在乙炔站、锅炉房、煤气站、堆煤场和散发尘埃的站房的上风向。 5)为保证机组的散热及可靠运行,并创造一个安全、卫生的工作环境,机房位置的选择应使它能具备良好的通风和采光条件,一般应贴邻外墙布置。 6)选择机房位置时.还应考虑到设备运行时的振动和噪声对周围房间和环境的影响,一般不应贴邻办公、会议、卧室等房间布置。 7)采用冷却塔冷却方式的机房,应靠近冷却塔的位置设置,避免粗大的冷却水管占用过多的空间、消耗更多的输送动力。

空调设计设备选型指南

内容: 1 水冷冷水机空调系统 ☆主要设备 (1)制冷主机(2)冷冻水泵(3)冷却水泵(4)冷却塔 (5)电子水处理仪(6)水过滤器(7)膨胀水箱 (8)末端装置(组合式空调机组、柜式空调机组、风机盘管等) 2 冷、热源的选择 1. 冷、热源系统设计选型注意的几个方面 1.1 各种冷、热源系统的能效特性 1.2 冷、热源系统的部分负荷性能 1.3 冷、热源系统的投资费用 1.4 冷、热源系统的运行费用 1.5 冷、热源系统的环境行为 2. 冷源设备选择 2.1 冷水机组的总装机容量 冷水机组的总装机容量应以正确的空调负荷计算为准,可不作任何附加,避免所选冷水机组的总装机容量偏大,造成大马拉小车或机组闲置的情况。 2.2 冷水机组台数选择 制冷机组一般以选用2~4台为宜,中小型规模宜选用2台,较大型可选用3台,特大型可选用4台。机组之间要考虑其互为备用和切换使用的可能性。 同一机房内可采用不同 类型、不同容量的机组搭配的组合式方案,以节约能耗。并联运行的机组中至少应选择一台自动化程度较高、调节性能较好、能保证部分负荷下能高效运行的机组。 为保证运转的安全可靠性,当小型工程仅设1台时,应选用调节性能优良、运行可靠的机型,如选择多台压缩机分路联控的机组,即多机头联控型机组。 2.3 冷水机组机型选择 2.3.1水冷电动压缩式冷水机组的机型宜按制冷量范围,并经过性能价格比 进行选择。 2.3.2冷水机组机型选择

电机驱动压缩机的蒸气压缩循环冷水机组,在额定制冷工况和规定条件下,性能系数(COP)不应低于以下规 定。 2.3.3冷水机组的制冷量和耗功率 冷水机组铭牌上的制冷量和耗功率,或样本技术性能表中的制冷量和耗功率是机组名义工况下的制冷量和耗功率,只能作冷水机组初选时参考。冷水机组在设计工况或使用工况下的制冷量和耗功率应根据设计工况或使用工况(主要指冷水出水温度、冷却水进水温度)按机组变工况性能表、变工况性能曲线或变工况性能修正系数来确定。 2.4热源设备 2.4.1热源设备类型 提供空调热水的锅炉按其使用能源的不同,主要分为两大类:(1)电热水锅炉(2)燃气、燃油热水锅炉 电热水锅炉 电热水锅炉的优点是使用方便,清洁卫生,无排放物,安全,无燃烧爆炸危险,自动控制水温,可无人值守。 《公共建筑节能设计标准》(GB50189-2005)规定:除了符合下列情况之一外,不得采用电热锅炉、电热水器作为直接采暖和空气调节系统的热源:电力充足、供电政策支持和电价优惠地区的建筑; 以供冷为主,采暖负荷较小且无法利用热泵提供热源的建筑; 无集中供热与燃气源,用煤、油等燃料受到环保或消防严格限制的建筑; 夜间可利用低谷电进行蓄热、且蓄热电锅炉不在日间用电高峰和平段时间启用的建筑; 利用可再生能源发电地区的建筑; 内、外区合一的变风量系统中需要对局部外区进行加热的建筑.

空调用制冷技术课程设计

目录 目录 (1) 设计任务书 (2) 设计说明书 (3) 一、制冷机组的类型及条件 (3) 二、热力计算 (6) 三、制冷压缩机型号及台数的确定 (7) 四、冷凝器的选择计算 (8) 五、蒸发器的选择计算 (12) 六、冷却水系统的选择 (14) 七、冷冻水系统的选择 (14) 八、管径的确定 (14) 九、其它辅助设备的选择计算 (15) 十、制冷机组与管道的保温 (17) 十一、设备清单 (18) 十二、参考文献 (18)

空调用制冷技术课程设计任务书 一、课程设计题目:本市某空调用制冷机房 二、原始数据 1.制冷系统采用空冷式直接制冷,空调制冷量定为100KW。 2.制冷剂为:氨(R717)。 3.冷却水进出口温度为:28℃/31℃。 4.大连市空调设计干球温度为28.4℃,湿球温度为25℃。 三、设计内容 1.确定设计方案根据制冷剂为:氨(R717)确定制冷系统型式。 2.根据冷冻水、冷却水的要求和条件,确定制冷工况并用压焓图来表示。 3.确定压缩机型号、台数、校核制冷量等参数。 4.根据蒸发温度、冷凝温度选择蒸发器(卧式壳管)冷凝器(水冷或空冷),并做其中一个设备(蒸发器或冷凝器)的传热计算。 5.确定辅助设备并选型 6.编写课程设计说明书。

空调用制冷技术课程设计说明书 一、制冷机组的类型及条件 1、初参数 1)、制冷系统主要提供空调用冷冻水,供水与回水温度为:7℃/12℃,空调制冷量定为100KW 。 2)、制冷剂为:氨(R717)。 3)、冷却水进出口温度为:28℃/31℃。 4)、大连市空调设计干球温度为28.4℃,湿球温度为25℃。 2、确定制冷剂种类和系统形式 根据设计的要求,本制冷系统为100KW 的氨制冷系统,一般用于小型冷库,该制冷机房应设单独机房且远离被制冷建筑物。因为制冷总负荷为100KW,所以可选双螺杆制冷压缩机来满足制冷量要求(空气调节用制冷技术第四版中国建筑工业出版社P48)。冷却水系统选用冷却塔使用循环水,冷凝器使用立式壳管式冷凝器,蒸发器使用强制循环对流直接蒸发式空气冷却器(即末端制冷设备)。 3、确定制冷系统设计工况 确定制冷系统的设计工况主要指确定蒸发温度、冷凝温度、压缩机吸气温度和过冷温度等工作参数。有关主要工作参数的确定参考《制冷工程设计手册》进行计算。 确定冷凝温度时,冷凝器冷却水进、出水温度应根据冷却水的使用情况来确定。 ①、 冷凝温度()的确定 从《制冷工程设计手册》中查到大连地区夏季室外平均每年不保证50h 的湿球温度(℃) C o s 25t 对于使用冷却水塔的循环水系统,冷却水进水温度按下式计算:

氟利昂制冷剂的分类和优劣势

氟利昂制冷剂的分类及优劣势 氟利昂是在制冷机中完成热力循环的工质。它在低温下吸取被冷却物体的热量,然后在较高温度下转移给冷却水或空气。在蒸气压缩式制冷机中,使用在常温或较低温度下能液化的工质为制冷剂,合肥空调加氟服务中心介绍,常见的有R12.R22.R502 、R123及R134a,由于其他型号的制冷剂已经停用或禁用。在此不做说明。 一、氟利昂R600a(C4H10) 2-甲基丙烷(异丁烷),属于CH类制冷剂A3类物质,充灌量很少时可用作冰箱制冷剂,具有节能、低噪、对大气无破坏的优势,但其易燃、易爆、安全性差。 二、氟利昂R410A 是一种新型环保制冷剂,HFC制冷剂,由二氟甲烷R32(CH2F2),五氟乙烷R125(C2HF5)以50%,50%的质量百分比混合而成的非(近)共沸制冷剂,温度滑移较小,发生相变时两组分比例基本保持恒定,物性接近单组分制冷剂。工作压力为普通R22空调的1.6倍左右,制冷(热)效率更高,不破坏臭氧层。另外,采用新冷媒的空调在性能方面也会有一定的提高。R410A 是目前为止国际公认的用来替代R22最合适的的冷媒,并在欧美,日本等国家得到普及。 三、氟利昂R407C 是一种新型环保制冷剂,HFC制冷剂,由二氟甲烷R32(CH2F2),五氟乙烷R125(C2HF5),四氟乙烷R134a(C2H2F4)以23%,25%,52%的质量百分比混合而成的非共沸制冷剂,温度滑移较高。 四、氟利昂134a(C2H2F4,R134a) 是一种较新型的制冷剂,HFC制冷剂,其蒸发温度为-26.5℃。它的主要热力学性质与R12相似,不会破坏空气中的臭氧层,是鼓吹的环保冷媒,但会造成温室效应。是比较理想的R12替代制冷剂。 五、氟里昂502(R502) R502是由R12.R22以51.2%和48.8%的百分比混合而成的共沸溶液。R502与R115.R22相比具有更好的热力学性能,更适用于低温。R502的标准蒸发温度为-45.6℃,正常工作压力与R22相近。在相同的工况下的单位容积制冷量比R22大,但排气温度却比R22低。R502用于全封闭、半封闭或某些中、小制冷装置,其蒸发温度可低达-55℃。R502在冷藏柜中使用较多。 六、氟利昂22(CHF2CL,R22) HCFC制冷剂,是氟里昂制冷剂中应用较多的一种,主要以家用空调和低温冰箱中采用。R22的热力学性能与氨相近。标准气化温度为-40.8℃,通常冷凝压力不超过1.6MPa。R22不燃、不爆,使用中比氨安全可靠。R22的单位容积比R12约高60%,其低温时单位容积制冷量和饱和压力均高于R12和氨。对大型空调冷水机组的冷媒大都采用R134a来代替。 七、氟利昂-13

关于空调制冷系统设计的优化

关于空调制冷系统设计的优化 发表时间:2018-08-01T09:58:15.197Z 来源:《电力设备》2018年第11期作者:高威林伟雪杨伟基 [导读] 摘要:现代科技的发展,是人们的生活水平有了质的飞跃,人们对生活要求也在不断提高,空调作为保证人们舒适度的重要工具,对其制冷系统设计要求也在不断提高。 (珠海格力电器股份有限公司广东省珠海市 519100) 摘要:现代科技的发展,是人们的生活水平有了质的飞跃,人们对生活要求也在不断提高,空调作为保证人们舒适度的重要工具,对其制冷系统设计要求也在不断提高。空调制冷设计已经不在局限于初始阶段的了解,而是对其系统功能更加深入的设计,为空调制冷系统技术设计提供指导。 关键词:空调;制冷;系统化;优化 前言 随着国内经济建设的发展,空调制冷系统应用场合也不断扩展,大量运用在工业、民用项目中。空调制冷系统的设计有了很大的进步,其应用技术要求也在不断提高。这对广大暖通工程师提出了更高的要求,仅仅局限于对系统或设备的简单了解,并不一定能保证整个制冷系统稳定、高效和安全运转。笔者结合多年的设计、施工安装和后期运行经验,以及同业项目信息的整理归纳,现将空调制冷系统设计和运行中可能会发生的部分问题进行总结分析。 一、室外低温环境下冷却系统运行设计方案 冷却系统是大多数农业与工业项目生产运行的辅助系统,制冷系统在使用过程中具有周期性长,一年四季均可使用,不受气候的影响等特点。而且,制冷系统具有变化波动较小的负荷侧制冷负荷,主要的设备具有耐用性好,不易出现故障,备用性能优良等优点。在冷却系统的设计过程中,设计人员要重点提高其运行效率,减少能源消耗,增强其适应外界环境的能力,提高系统的应急反应系统设置。其中,在冷却系统设计过程中,需要考虑的因素很多,其中重点要考虑的因素是室外低温环境对冷却系统的影响。以东北地区为例,东北地区冬季的气温较低,制冷系统的设置安装主要用于产品的冷藏保鲜。在东北冬季温度下降到零下30摄氏度以下时,制冷系统依然要工作,这就存在一种满负荷情况下运行的状态。但是,在制冷系统进行设计时,并没有针对这种情况进行科学合理的设置,导致空调系统的室外冷却塔在低温环境下出现冰冻现象,设置系统中的冷却水温过低,在冰点之下,严重超出设计计算的范围,制冷系统因冷却塔无法正常工作而进入停止运行状态,系统发出警报。上述这种情况,如果能够在设计上进行科学合理的优化,不仅可以保证制冷系统正常运行,还能够减少能源消耗,提高制冷系统的运行效率。首先,在制冷系统中安装水气换热装置,通过密闭系统实现高效的水气换热,完成冷却载冷剂的工作。一般使用乙二醇水溶液作制冷剂,因为其凝固点较低,所以可以在低温环境下避免冷却塔冰冻。其次,使用高效密闭循环系统,不仅能够及时有效的补充损耗的水,还能够保证水循环系统的清洁,减少因杂质过多而导致的水循环硬化现象发生[1]。当室外温度较低时,乙二醇溶液不会因低温而结冰,可以保证系统管路通畅,保证制冷系统的稳定性与高效性。总而言之,制冷系统的设计与安装要结合实际的工作环境,针对特殊情况进行优化设计,保证空调制冷系统的正常运行,减少生产经营中不必要的经济损失。 二、注重膨胀水箱的计算,方便优化设计 对于空调系统膨胀水箱容积的计算,国内的设计手册给出了两种不同计算方法。将这两种计算方法运用于水冷式冷水系统或供暖系统,夏季冷水温度7℃,冬季热水温度60℃,其计算结果相差不大。但是对于冬冷、夏热区域的长江流域而言,很多项目采用了风冷热泵主机作为冷热源。此时系统管路里的水温最低为7℃(夏季冷水出水温度),最高达到45℃(冬季热水出水温度),两种方法的计算结果则可能偏差较大,下面将具体举例计算。 三、旁通清洗回路的设置 在空调制冷系统设计与安装的相关规定中表明,制冷系统工作过程中,冷却水及冷热水系统要进行冲洗排出污水的工作,排污工作后要进行检测,当检测符合标准后还要进行2小时循环运行,而且要保证系统中水质正常后方可进行正常使用。但是,在实际的设计与安装过程中,一些制冷系统管道与换热器中会出现焊接时掉下的残渣或其他异物,对系统的正常使用造成一定的不良影响。本文作者在研究这类问题时发现,这些水循环系统缺少完善的旁通清洗回路装置,不能够及时有效的进行系统中污物的排出[2]。因此,在优化空调制冷系统设计过程中,要在制冷系统水管前面增加一个旁路清洗回路装置,实现空调系统安装时排出系统内污物,加强系统维护与保养工作,延长空调系统的使用寿命,保证空调的制冷效果。 四、空调制冷系统优化设计 第一,空调制冷系统优化的内容在产品设计的过程中,可以使用很多种方法将其中的参数问题或者是结构上的问题进行解决,但是在生产的过程中最好的也是最能够使用在产品生产中的方案只有一个,就是将这个方案进行确定的过程我们将其优化,一般表现为提高空调的功能效果、降低能耗、减小噪音,对空调的外形进行优化、降低生产成本等方面,这些都是优化设计要考虑的问题,我们可以从这些优化设计的内容中了解到,对空调制冷系统进行优化设计重点在于提高空调设备的运行效率、节能降耗,提升空调企业的经济效益,让企业得到更好的发展。第二,对空调制冷系统进行优化设计的任务通过对空调系统进行优化设计,可以将空调的一些性能、参数进行提升,让空调的性能更加的安全、经济,让空调的市场竞争力得到提升。对空调进行制冷系统优化设计中最重要的是按空调的型号,对整个空调技术参数进行确定,有详细的技术规范,将各个部件的技术指标进行明确。比如说:空调压缩机的型号。空调中的冷凝器、蒸发器,还有一些结构上的参数,比如说,使用的制冷剂的流动方向、传热管的大小,空调叶片的形状、距离等。空调循环风量大小的指标,比如说将空调电机的转速、功率等参数进行优化设计等等。对空调的制冷系统进行优化设计时为了减少资源的浪费,降低空调的能耗,提高资源的利用率。 五、以最大电流值为标准的冷风机组配电容量的设计 目前,我国各种类型的电气设备配电设计过程中,主要根据额定电流来确定设备的最大线径,以额定电流当作电气设备的运行电流。因此,设计与安装人员在完成设计时,电气工程人员只可能得到作为电气设备选择性型号的标准情况下的额定量流量。空调制冷系统中的冷水系统中的所有设备受温度变化的影响较小,实际运行的电流与标准情况下基本相同,系统的供电容量变化也相对较小,这样的情况下不容易产生设备故障。空调制冷系统中的风冷系统与冷水系统相比,其局限性比较大,受外界温度影响较大,随着温度的变化而变化。一般来说,风冷机组虽外界温度升高而耗电量增加,随着温度下降而耗电量降低。当空调制冷机组采用的是空气或冷却水系统时,其运行环

常用制冷剂种类及特性教案资料

常用制冷剂种类及特 性 常用制冷剂种类及特性 说明 制冷剂又称制冷工质,是制冷循环的工作介质,利用制冷剂的相变来传递热 量,既制冷剂在蒸发器中汽化时吸热,在冷凝器中凝结时放热。当前能用作制冷剂的物质有80多种,最常用的是氨、氟里昂类、水和少数碳氢化合物等。 1987年9月在加拿大的蒙特利尔室召开了专门性的国际会议,并签署了《关于消耗臭氧层的蒙特利尔协议书》,于1989年1月1日起生效,对氟里昂在的R11、 R12 R113 R114 R115 R502及R22等CFC类的生产进行限制。1990年6月在伦敦召开了该议定书缔约国的第二次会议,增加了对全部CFC四氯化碳(CCL4和甲基 氯仿(C2H3CL3生产的限制,要求缔约国中的发达国家在2000年完全停止生产以上 物质,发展中国家可推迟到2010年。另外对过渡性物质HCF(提出了2020年后的控制日程表。

HCFC中的R123和R134a是R12和R22的替代品 制冷剂的要求氨(R717)的特性 制冷剂的分类氟哩昂的特性制冷剂的要求 热力学的要求 在大气压力下,制冷剂的蒸发温度(沸点)ts要低。这是一个很重要的性能指标。ts愈低,则不仅可以制取较低的温度,而且还可以在一定的蒸发温度to下,使 其蒸发压力Po高于大气压力。以避免空气进入制冷系统,发生泄漏时较容易发现。 要求制冷剂在常温下的冷凝压力PC应尽量低些,以免处于高压下工作的压缩机、冷凝器及排气管道等设备的强度要求过高。并且,冷凝压力过高也有导致制冷剂向外渗漏的可能和引起消耗功的增大。 对于大型活塞式压缩机来说,制冷剂的单位容积制冷量qv要求尽可能大,这 样可以缩小压缩机尺寸和减少制冷工质的循环量;而对于小型或微型压缩机,单位容积制冷量可小一些;对于小型离心式压缩机亦要求制冷剂qv要小,以扩大离心式压缩 机的使用范围,并避免小尺寸叶轮制造之困难。 制冷剂的临界温度要高些、冷凝温度要低些。临界温度的高低确定了制冷剂在常温或普通低温范围内能否液化。 凝固温度是制冷剂使用范围的下限,冷凝温度越低制冷剂的适用范围愈大。

制冷系统设计步骤

一、设计任务和已知条件 根据要求,在武汉地区,以风机盘管为末端装置,冷冻水温度为7℃,空调回水温度为11℃,总制冷量为400KW,冷却水系统选用冷却塔使用循环水。 二、制冷压缩机型号及台数的确定 1、确定制冷系统的总制冷量 制冷系统的总制冷量,应该包括用户实际所需要的制冷量,以及制冷系统本身和供冷系统冷损失,可按下式计算: 式中——制冷系统的总制冷量(KW) ——用户实际所需要的制冷量(KW) A——冷损失附加系数。 一般对于间接供冷系统,当空调制冷量小于174KW时,A=0.15~0.20;当空调制冷量为1 74~1744KW时,A=0.10~0.15;当空调制冷量大于1744KW时,A=0.05~0.07;对于直接供冷系统,A=0.05~0.07。 2、确定制冷剂种类和系统形式 根据设计的要求,选用氨为制冷剂并且采用间接供冷方式。 3、确定制冷系统设计工况 确定制冷系统的设计工况主要指确定蒸发温度、冷凝温度、压缩机吸气温度和过冷温度等工作参数。有关主要工作参数的确定参考《制冷工程设计手册》进行计算。 确定冷凝温度时,冷凝器冷却水进、出水温度应根据冷却水的使用情况来确定。 ①、冷凝温度()的确定 从《制冷工程设计手册》中查到武汉地区夏季室外平均每年不保证50h的湿球温度(℃)

℃ 对于使用冷却水塔的循环水系统,冷却水进水温度按下式计算: ℃ 式中——冷却水进冷凝器温度(℃); ——当地夏季室外平均每年不保证50h的湿球温度(℃); ——安全值,对于机械通风冷却塔,=2~4℃。 冷却水出冷凝器的温度(℃),与冷却水进冷凝器的温度及冷凝器的形式有关。 按下式确定: 选用立式壳管式冷凝器=+(2~4)=31.2+3=34.2℃ 注意:通常不超过35℃。 系统以水为冷却介质,其传热温差取4~6℃,则冷凝温度为 ℃ 式中——冷凝温度(℃)。 ②、蒸发温度()的确定 蒸发温度是制冷剂液体在蒸发器中汽化时的温度。蒸发温度的高低取决于被冷却物体的温度及传热温差,而传热温差与所采用的载冷剂(冷媒)有关。 系统以水为载冷剂,其传热温差为℃,即

制冷量的计算 及冷水机选型

制冷量的计算 一、各种制冷量单位的换算关系如下: 1,1 kcal/h (大卡/小时)=1.163W,1 W=0.8598 kcal/h; 2,1 Btu/h (英热单位/小时)=0.2931W,1 W=3.412 Btu/h; 3,1 USRT (美国冷吨)=3.517 kW,1 kW=0.28434 USRT; 4,1 kcal/h=3.968 Btu/h,1 Btu/h=0.252 kcal/h; 5,1 USRT=3024 kcal/h,10000 kcal/h=3.3069 USRT; 6,1匹=2.5 kW(用于风冷机组),1匹=3 kW(用于水冷机组) 二、制冷设备选型公式: 1、通过冷却水(油)进、出口温差来计算发热量 Q = SH * De * F * DT / 60 Q:发热量 KW SH:比热水的比热为 4.2KJ/Kg*C (4.2千焦耳/千克*摄氏度)。油的比热为 1.97KJ/Kg*C(1.97千焦耳/千克*摄氏度)。 De:比重水的比重1Kg/L (1千克/升) 油的比重0.88Kg/L (0.88千克/升) F:流量 LPM (L/min 升/分钟) DT:冷却水(油)进出口温差(出口温度-进口温度) 注: "/ 60" 是用于将流量升/分变为升/秒 ;1kW = 1kJ/s ; 例1:冷却水进水为20度,出水25度,流量10升/分钟 发热量 Q = 4.2 * 1 * 10 * (25-20) / 60 = 3.5KW 选择冷水机冷量时可适当加大 20%-50% 即可选用HK-02 HP 例2:冷却油进口为25度,出水32度,流量8升/分钟 发热量 Q = 1.97 * 0.88 * 8 * (32-25) / 60 = 1.62KW 选择冷油机冷量时可适当加大 20%-50% 即可选用HK-01 HP 2、通过水(油)箱的温升来计算发热量 Q = SH * De * V * DT / 60 Q:发热量 KW SH:比热水的比热为 4.2KJ/Kg*C (4.2千焦耳/千克*摄氏度)。油的比热为 1.97KJ/Kg*C(1.97千焦耳/千克*摄氏度) De:比重水的比重1Kg/L (1千克/升) 油的比重0.88Kg/L (0.88千克/升) V:水容量 L(升)包括水箱及管路中的总水容量 DT:水(油)在一分钟内的最大温升 注: "/ 60" 是用于将温升摄氏度/分变为摄氏度/秒 ; 1kW = 1kJ/s; 注意:测量时,水(油)箱的温度需略低于环境温度;并且设备处于最大的负荷下工作。 例:水箱容积 1000L 最大的水温 0.2度/分钟 发热量 Q = 4.2 * 1 * 1000 * 0.2 / 60 = 14KW 常州鸿康制冷

冷媒类型

目前使用的制冷剂已达70~80种,并正在不断发展增多。但用于食品工业和空调制冷的仅十多种。其中被广泛采用的只有以下几种: 1.氨(代号:R717)氨是目前使用最为广泛的一种中压中温制冷剂。氨的凝固温度为-77.7℃,标准蒸发温度为-33.3℃,在常温下冷凝压力一般为1.1~1.3MPa,即使当夏季冷却水温高达30℃时也绝不可能超过1.5MPa。氨的单位标准容积制冷量大约为520kcal/m3。氨有很好的吸水性,即使在低温下水也不会从氨液中析出而冻结,故系统内不会发生“冰塞”现象。氨对钢铁不起腐蚀作用,但氨液中含有水分后,对铜及铜合金有腐蚀作用,且使蒸发温度稍许提高。因此,氨制冷装置中不能使用铜及铜合金材料,并规定氨中含水量不应超过0.2%。氨的比重和粘度小,放热系数高,价格便宜,易于获得。但是,氨有较强的毒性和可燃性。若以容积计,当空气中氨的含量达到0.5%~0.6%时,人在其中停留半个小时即可中毒,达到11%~13%时即可点燃,达到16%时遇明火就会爆炸。因此,氨制冷机房必须注意通风排气,并需经常排除系统中的空气及其它不凝性气体。总上所述,氨作为制冷剂的优点是:易于获得、价格低廉、压力适中、单位制冷量大、放热系数高、几乎不溶解于油、流动阻力小,泄漏时易发现。其缺点是:有刺激性臭味、有毒、可以燃烧和爆炸,对铜及铜合金有腐蚀作用。 2.氟利昂-12(代号:R12)R12为烷烃的卤代物,学名二氟二氯甲烷,分子式为CF2Cl2。它是我国中小型制冷装置中使用较为广泛的中压中温制冷剂。R12的标准蒸发温度为-29.8℃,冷凝压力一般为0.78~0.98MPa,凝固温度为-155℃,单位容积标准制冷量约为288kcal/m3。R12是一种无色、透明、没有气味,几乎无毒性、不燃烧、不爆炸,很安全的制冷剂。只有在空气中容积浓度超过80%时才会使人窒息。但与明火接触或温度达400℃以上时,则分解出对人体有害的气体。R12能与任意比例的润滑油互溶且能溶解各种有机物,但其吸水性极弱。因此,在小型氟利昂制冷装置中不设分油器,而装设干燥器。同时规定R12中含水量不得大于0.0025%,系统中不能用一般天然橡胶作密封垫片,而应采用丁腈橡胶或氯乙醇等人造橡胶。否则,会造成密封垫片的膨胀引起制冷剂的泄漏。 3.氟利昂-22(代号:R22)R22也是烷烃的卤代物,学名二氟一氯甲烷,分子式为CHClF2,标准蒸发温度约为-41℃,凝固温度约为-160℃,冷凝压力同氨相似,单位容积标准制冷量约为454kcal/m3。R22的许多性质与R12相似,但化学稳定性不如R12,毒性也比R12稍大。但是,R22的单位容积制冷量却比R12大的多,接近于氨。当要求-40~-70℃的低温时,利用R22比R12适宜,故目前R22被广泛应用于-40~-60℃的双级压缩或空调制冷系统中。 4. R-134a(代号:R134a)分子式:CH 2 FCF 3 (四氟乙烷),分子量:102.03 沸点:-26.26℃,凝固点:-96.6°C ,临界温度:101.1 ℃,临界压力:4067kpa 饱和液体密度:25℃,1.207g/cm 3 ,液体比热:25℃,1.51KJ/(Kg·℃) 溶解度( 水中,25℃ ) :0.15% ,临界密度:0.512g/cm3 破坏臭氧潜能值(ODP):0 ,全球变暖系数值(GWP):0.29 沸点下蒸发潜能:215 kJ/kg 质量指标:纯度≥ 99.9 % ,水份PPm≤ 0.0010,酸度PPm≤ 0.00001 ,蒸发残留物PPm≤ 0.01 R134a作为R12的替代制冷剂,它的许多特性与R12很相像。R134a的毒性非常低,在空气中不可燃,安全类别为A1,是很安全的制冷剂。R134a的化学稳定性很好,然而由于它的溶水性比R22高,所以对制冷系统不利,即使有少量水分存在,在润滑油等的作用下,将会产生酸、二氧化碳或一氧化碳,将对金属产生腐蚀作用,或产生“镀铜”作用,所以R134a 对系统的干燥和清洁要求更高。R134a对钢、铁、铜、铝等金属未发现有相互

冷水机如何选型

冷水机制冷量计算方式及冷水机选型计算汇总 冷水机制冷量计算方式及冷水机选型计算汇总 (一)如何选用最适合自己的工业冷水机和小型冷水机呢,其实很简单有一个选型公式:制冷量=冷冻水流量*4.187*温差*系数 1、冷冻水流量指机器的工作时所需冷水流量,单位需换算为升/秒; 2、温差指机器进出水之间的温差; 3、4.187为定量(水的比热容); 4、选择风冷式冷水机时需乘系数1.3,选择水冷式冷水机则乘系数1.1。 5、根据计算的制冷量选择相应的机器型号。 一般习惯对冷水机要配多大的习惯用P来计算,但最主要的是知道额定制冷量,一般风冷的9.07KW的样子的话选择用3P的机器.依此类推。所以工业冷水机的选用最重要的是求出额定制冷量 (二)冷水机制冷量的计算方式 冷水机制冷量的计算方式,冷水机制冷原理,20kw就可以勒计算方式: 1:体积(升)×升温度数÷升温时候(分)×60÷0.86(系数)=(w) 2:体积(吨或立方米)×升温度数÷升温时候(时)÷0.86(系数)=(kw)你的数据带冷水机制冷量的计算方式,冷水机制冷原理出来就可以勒4小时 深圳市凯德利冷机设备有限公司(以下简称凯德利)是以生产、设计、研发、经营“凯德利”牌冷水机、热回收机组、环保冷水机、激光冷水机、冷油机、模温冷水机、低温冷冻机等制冷设备及以及厂房舒适中央空调工程、无尘室车间、冷冻工程所需配套产品加工制造、制冷空调系统设计制造安装维修调试和技术服务等为主业的国家一级企业。改革开放以来,公司在体制、机制、技术和管理上不断创新达到走出一条通过合资、合作、壮大经济实力的成功之路,实现了公司的飞速发展

(三)冷水机选型方法 (三)能量守恒法 Q=W入-W出 Q:热负荷(KW) W入:输入功率(KW)例:8KW W出:输出功率(KW)例:3KW 例: Q=W入-W出 =8-3=5(kw) wk_ad_begin({pid : 21});wk_ad_after(21, function(){$('.ad-hidden').hide();}, function(){$('.ad-hidden').show();}); (二)时间温升法 Q= Cp.r.V.△T/H Q:热负荷(KW) Cp:定压比热(KJ/kg.℃)……4.1868 KJ/kg.℃ r:比重量(Kg/m3 )……1000 Kg/m3 V:总水量(m3 ) 例:0.5 m3 △T:水温差(℃)……△T=T2-T1 例:=5℃ H:时间(h) 例:1h 例: Q= Cp.r.V.△T/H=4.1868*1000*0.5*5/3600=2.908(kw) (一)温差流量法 Q=Cp.r.Vs.△T Q:热负荷(KW) Cp:定压比热(KJ/kg.℃)……4.1868 KJ/kg.℃r:比重量(Kg/m3

制冷剂的分类

常用制冷剂种类及特性 新闻来源: 空调技术网2005-6-14 11:13:12作者: 未知责任编辑: LOG 说明 制冷剂又称制冷工质,是制冷循环的工作介质,利用制冷剂的相变来传递热量,既制冷剂在蒸发器中汽化时吸热,在冷凝器中凝结时放热。当前能用作制冷剂的物质有80多种,最常用的是氨、氟里昂类、水和少数碳氢化合物等。 1987年9月在加拿大的蒙特利尔室召开了专门性的国际会议,并签署了《关于消耗臭氧层的蒙特利尔协议书》,于1989年1月1日起生效,对氟里昂在的R11、R12、R113、R114、R115、R502及R22等CFC类的生产进行限制。1990年6月在伦敦召开了该议定书缔约国的第二次会议,增加了对全部CFC、四氯化碳(CCL4)和甲基氯仿 (C2H3CL3)生产的限制,要求缔约国中的发达国家在2000年完全停止生产以上物质,发展中国家可推迟到2010年。另外对过渡性物质HCFC提出了2020年后的控制日程表。 HCFC中的R123和R134a是R12和R22的替代品。 制冷剂的要求氨(R717)的特性 制冷剂的分类氟哩昂的特性 制冷剂的要求 热力学的要求 在大气压力下,制冷剂的蒸发温度(沸点)ts要低。这是一个很重要的性能指标。ts愈低,则不仅可以制取较低的温度,而且还可以在一定的蒸发温度to下,使其蒸发压力Po高于大气压力。以避免空气进入制冷系统,发生泄漏时较容易发现。 要求制冷剂在常温下的冷凝压力Pc应尽量低些,以免处于高压下工作的压缩机、冷凝器及排气管道等设备的强度要求过高。并且,冷凝压力过高也有导致制冷剂向外渗漏的可能和引起消耗功的增大。 对于大型活塞式压缩机来说,制冷剂的单位容积制冷量qv要求尽可能大,这样可以缩小压缩机尺寸和减少制冷工质的循环量;而对于小型或微型压缩机,单位容积制冷量可小一些;对于小型离心式压缩机亦要求制冷剂qv要小,以扩大离心式压缩机的使用范围,并避免小尺寸叶轮制造之困难。 制冷剂的临界温度要高些、冷凝温度要低些。临界温度的高低确定了制冷剂在常温或普通低温范围内能否液化。 凝固温度是制冷剂使用范围的下限,冷凝温度越低制冷剂的适用范围愈大。

冰箱制冷系统设计说明书

冰箱制冷系统设计说明书1.冰箱设计步骤

图1 BCD-348W/H电冰箱制冷系统图 2.冰箱的总体布置 2.1箱体设计要求及形式 电冰箱箱体设计的优劣,直接影响使用性能、外观、耐久性制造成本和市场销售。在进行设计时,要求造型别致、美观大方。除色调要与家庭家具协调外,还必须考虑占地面积小容积大,宽度、深度与高度的比例合理,有稳定感等。冰箱箱体尺寸见表1。 表1箱体尺寸 2.2箱体外表面温度校核和绝热层厚度 设计箱体的绝热层时,可预先参照国外冰箱的有关资料设定其厚度,并计算出箱体表面温度t w。如果箱体外表面温度t w低于露点温度t d,则会在箱体表面发生凝露现象,因此箱体表面温度必须高于露点温度,一般t w > t d+0.2 t o t i

)(i o o o W t t a K t t --= (1) 国家标准GB8059.1规定,电冰箱在进行凝露实验时 亚温带SN 、温带N 气候条件下,露点温度为19±0.5℃ 亚热带ST 、热带T 气候条件下,露点温度为27±0.5℃ 在t w > t d 的前提下,计算箱体的漏热量Q 1,并用下面的公式校验绝热层的厚度 121)(Q t t A w w -= λδ (2) 1w t ----冰箱外壁温度,℃ 2w t ----冰箱壁温度,℃ λ-----绝热层导热系数,w/(m.k) A -----传热面积,m 2 校验计算的厚度在设定厚度基础上进行修正,反复计算,直到合理为止。 3.冰箱热负荷计算 总热负荷Q=Q 1+Q 2+Q 3 Q 1---- 箱体的漏热量 Q 2---- 门封漏热量 Q 3---- 除露管漏热量 (1)箱体的漏热量Q 1 由于箱体外壳钢板很薄,而其导热系数很大,所以钢板热阻很小,可忽略不计。胆多用塑料ABS 成型,热阻较大,可将其厚度一起计入隔热层,箱体的传热可以看做单层平壁的传热。 )(1i o t t KA Q -= (3) (4) 其中:K —— 传热系数,W/m 2·℃; A —— 传热面积,m 2 ; t o ——箱体外空气温度,℃; t i ——箱体空气温度,℃ αo ——箱外空气对箱体外表面的表面换热系数,W/m 2·℃; αi ——箱体表面对箱空气的表面换热系数,W/m 2·℃; i o a a K 111++=λδ

论述如何有效优化空调制冷系统设计

论述如何有效优化空调制冷系统设计 发表时间:2016-06-13T14:42:30.290Z 来源:《基层建设》2016年4期作者:廖锡博 [导读] 随着我国空调行业的越来越成熟,如何有效优化空调制冷系统变得越来越重要。 广东申菱环境系统股份有限公司广东佛山 528313 摘要:随着我国空调行业的越来越成熟,如何有效优化空调制冷系统变得越来越重要。通过何种方法有效优化空调制冷系统,这对设计者来说是一种挑战。空调制冷系统设计向高水平、高质量方向发展,为空调行业未来发展奠定基础。 关键词:空调制冷系统;设计;注意要点 1.空调制冷系统的工作原理 制冷系统是空调的核心组成部分,主要由冷凝器,压缩机、节流装置和蒸发器四部分组成。空调在进行工作时,压缩机会吸入制冷系统内的低温和低压制冷蒸汽,并且将其压缩成高温和高压的过热蒸汽之后,再排放至冷凝器内。与此同时,空调室外侧风扇吸收的外部空气会流动经过冷凝器,排掉制冷剂产生的热量,从而使得高温和高压的制冷剂蒸汽液化为高压的液体。当这些高压液体流经节流装置时,压力和温度都会有所下降,之后再进入具有一定压力的蒸发器里吸收热量进行蒸发,而室内侧空调的风机也不断将周围的空气引导到蒸发器的翅片间进行热量的交换,把放热完成后的冷气体排放至室内。如此反复的循环就是空调制冷系统的原理,能够实现空气降温的目的。 2.空调制冷系统中各元件的作用 空调系统的制冷过程中,压缩机作为空调制冷系统的关键环节,其的作用是压缩并输送制冷剂蒸汽,使得蒸发器保持低压力而冷凝器保持高压力作用;节流装置的作用是对制冷剂的流量进行调节,并起到节流降压的作用;冷凝器作为空调系统的热量输出设备,自蒸发器中所吸取的热量与压缩机因消耗功而转化成的热量均在冷凝器内被冷却的介质带走。蒸发器作为冷汽输出的设备,其中,制冷剂可对被冷却物体的热量进行吸收,从而制取冷量,更好的实现空调制冷的目的。 3.空调制冷系统优化的具体分析 空调制冷系统的节能措施,在设计上,需从两个方面入手,一是降低单位制冷量功耗,一是提高单位功耗制冷量;以下从几点方面简单介绍制冷系统的优化; 3.1高效化的压缩机 空调制冷系统中,压缩机的性能越高,效率越高,所用到的能量越少,更好的提高压缩机的性能,就成节能优化关键的一步。涡旋式压缩机是一种新型节能压缩机,适用于小型空调制冷系统化中。涡旋式压缩机又可分为数码涡旋压缩机、直流变频涡旋压缩机等。数码涡旋压缩机是采用压缩机顶部的气腔进行气体的吸排来调节电磁阀的通断电的时间,从而影响压缩机的排气量,控制压缩机的容量,进而实现对压缩机能源消耗的有效控制,促进空调制冷系统化的节能环保。直流变频涡旋压缩机是利用其它压缩机上永久性的磁铁作为压缩机的定子以及采用稀土为原材料制成永久性永久性磁钢作为压缩机的转子。此类型的压缩机装置能降低空调制冷系统装置的噪声,延长空调的使用寿命,并能对空调制冷系统中电机的转速作出合理的调整,提高能源的利用率,降低能源消耗,促进空调制冷系统化的节能环保。 3.2将蒸发器和冷凝器进行改良 蒸发器和冷凝器是由铝翅片和铜管一同组成的。为了达到更加经济的效果,一般翅片的厚度在0.095到0.1毫米之间。翅片有两种,波纹片和开槽片,开槽片的换热能力比波纹片更高。为了防止蒸发器和冷凝器在运行过程中出现故障,通常会在蒸发器的翅片上涂上一层亲水膜,这样在制冷运行时能够避免因为积累的水分过多存留在翅片上,保证蒸发器和冷凝器的正常工作。铜管中主要使用的内螺纹管和光管。虽然两种管的外径都是一样,但是内螺纹管较光管相比拥有更为强大的换热能力。通过对蒸发器和冷凝器内部物件的选择可以在一定程度上提高蒸发器和冷凝器的换热能力。但是一定要在确定蒸发器和冷凝器的结构之后再进行相应的换热能力测试。现阶段大部分的蒸发器和冷凝器都是采用铜管和铝翅片这种形式,经过了解,国外也存在其他方式的换热器,例如全铝换热器,相信通过合理的设计其他合理的材料也可以取得较好的换热效果,开发新模式的换热器同样可以有效优化制冷效果。 3.3有效提高蒸发温度 蒸发温度是蒸发器内的制冷剂在一定压力下沸腾汽化时的温度。蒸发温度的高低,主要取决于介质的温度及流量、蒸发器的迎风面积面积、蒸发器大小等条件。理论和实践证明,在空调系统其他条件不变的情况下,蒸发温度提高后,冷凝和蒸发压力差减小,压缩机排气温度降低、耗功减少,可以提高制冷系数;而且提高蒸发温度后,还可以增加单位时间制冷剂循环量,从而增加制冷量。 3.4有效降低风系统的阻力 在较大的制冷系统中,空调风系统所产生的能源消耗也是比较大的,如果能够有效设计空调内部的风路系统,有效减低空调内部阻力,减少制冷系统中风机消耗的功率,从而达到优化制冷系统的目的。 3.5制冷系统相应配合提高能效 虽然每个部件都可以不断提高其自身效率,但是没有高度的配合还是达不到提高能效的目的,就像蒸发器不能无限放大,风量也不能无限增加,必须找到一个性能最佳点才能有效发挥各个部件的作用。若要提高空调系统的能效比,首先要充分了解和掌握影响空调能效比的因素:压缩机与膨胀阀自身的热力学性能,空调制冷剂的效率,换热器的换热效率,压缩机的压缩效率,毛细管道的损坏以及空调装置的整体配置情况等。因此,针对这些因素,可以从换热器的材料,结构等工艺技术以及变频技术等方面着手,并从空调制冷系统的整体出发,是空调各个部分间能够形成高效统一的匹配关系,从而全面提高提高空调系统的能效比。例如,可以采用变频电机对压缩机的转速的控制来提高空调的能效比;通过材料与外形的设计增加换热器的换热面积;对变频空调采取电子膨胀阀加变频压缩机的配合控制方式提高空调的能效比;通过室内外变频风机电机控制通过两器的换热风量;通过更改蒸发器大小排数和翅片密度与风量大小配合取得合适的蒸发温度;通过改进冷凝器配合新一代制冷剂的使用来提高空调的能效比等 3.6.加强空调的日常保养和维护 空调制冷系统的冷凝器上有灰尘会导致能源消耗的加大,而空调制冷系统中蒸发器的温差控制不合理也将会直接增加能源的消耗,因

相关文档