文档库 最新最全的文档下载
当前位置:文档库 › 碳分子筛的发展与前景

碳分子筛的发展与前景

碳分子筛的发展与前景

CARBON MOLECULAR SIEVE(CMS)DEVELOPMENT AND PROSPECT.

1-)China Carbon Molecular Sieve Status.

Long period carbon molecular sieve is monopolized,Japan and Germany occupied80%market share before2000.

Based on international technology Hotech Chemical Co.,Ltd.developed their own production technology,In more than 15years reformation and innovation technology become refined and even surpass Japan and Germany to some extent.Thus China carbon molecular sieve performance become more and more preferable and seize more market share gradually against its special advantage low cost.

But Hotech should aware technology must innovated and reformed incessantly the could keep the leading position.

2-)Industry Development Tendency

Carbon molecular sieve demand increased continuously as usage fields expanding,this must accelerate its development.meanwhile usage fields expanding would be a challenge to technology.In some new fields would put forward a higher requirement of its performance.so promote performance is carbon molecular sieve industry tendency.

Carbon molecular sieve take up around70%of PSA nitrogen production cost,reduce cost would be a decisive condition to its development.

3-)China market industry prospect.

In the next few years,market request for carbon molecular sieve in high-performance low-performance

would be eliminated from market.

China is expecting become the leader if could master present opportunities to enlarge

production,enhance buyer awareness and speed market share occupation.

Currently China market consumption capacity around6000Metric Tons and the demand continue increased yearly since China economy facing a searing development period and Industry especially chemical industry developed

fast.China government advocate safety production,enforce equip PSA nitrogen generator in coal mining,oil exploitation and related industry,meanwhile usage in electronics and raw material industry all would result in the demand increase.

According to investigation carbon molecular sieve increase ration in80%above in average annually.without doubt it is in a prosperous prospect.

分子筛的结构应用说明

1.分子筛的概念 分子筛是结晶型的硅铝酸盐,具有均匀的孔隙结构。分子筛中含有大量的结晶水,加热时可汽化除去,故又称沸石。自然界存在的常称沸石,人工合成的称为分子筛。它们的化学组成可表示为 Mx/n ?ZH2O 式中M是金属阳离子,n是它的价数,x是AlO2的分子数,y是SiO2分子数,Z是水分子数,因为AlO2带负电荷,金属阳离子的存在可使分子筛保持电中性。当金属离子的化合价n = 1时,M的原子数等于Al的原子数;若n = 2,M的原子数为Al原子数的一半。 常用的分子筛主要有:方钠型沸石,如A型分子筛;八面型沸石,如X-型,Y-型分子筛;丝光型沸石(-M型);高硅型沸石,如ZSM-5等。分子筛在各种不同的酸性催化剂中能够提供很高的活性和不寻常的选择性,且绝大多数反应是由分子筛的酸性引起的,也属于固体酸类。近20年来在工业上得到了广泛应用,尤其在炼油工业和石油化工中作为工业催化剂占有重要地位。 2.分子筛的结构特征(1)四个方面、三种层次: 分子筛的结构特征可以分为四个方面、三种不同的结构层次。第一个结构层次也就是最基本的结构单元硅氧四面体(SiO4)和铝氧四面体(AlO4),它们构成分子筛的骨架。相邻的四面体由氧桥连结成环。环是分子筛结构的第二个层次,按成环的氧原子数划分,有四元氧环、五元氧环、六元氧环、八元氧环、十元氧环和十二元氧环等。环是分子筛的通道孔口,对通过分子起着筛分作用。氧环通过氧桥相互联结,形成具有三维空间的多面体。各种各样的多面体是分子筛结构的第三个层次。多面体有中空的笼,笼是分子筛结构的重要特征。笼分为α笼,八面沸石笼,β笼和γ笼等。 (2)分子筛的笼: α笼:是A型分子筛骨架结构的主要孔穴,它是由12个四元环,8个六元环及6个八元环组成的二十六面体。笼的平均孔径为1.14nm,空腔体积为7603。α笼的最大窗孔为八元环,孔径0.41nm。 八面沸石笼:是构成X-型和Y-型分子筛骨架的主要孔穴,由18个四元环、4个六元环和4个十二元环组成的二十六面体,笼的平均孔径为1.25nm,空腔体积为8503。最大孔窗为十二元环,孔径0.74nm。八面沸石笼也称超笼。 β笼:主要用于构成A型、X-型和Y型分子筛的骨架结构,是最重要的一种孔穴,它的形状宛如有关削顶的正八面体,空腔体积为1603,窗口孔径为约0.66nm,只允许NH3、H2O等尺寸较小的分子进入。 此外还有六方柱笼和γ笼,这两种笼体积较小,一般分子进不到笼里去。 不同结构的笼再通过氧桥互相联结形成各种不同结构的分子筛,主要有A-型、X型和Y型。(3)几种具有代表性的分子筛 A型分子筛 类似于NaCl的立方晶系结构。若将NaCl晶格中的Na+和Cl-全部换成β笼,并将相邻的β笼用γ笼联结起来就得到A-型分子筛的晶体结构。8个β笼联结后形成一个方钠石结构,如用γ笼做桥联结,就得到A-型分子筛结构。中心有一个大的α的笼。α笼之间通道有一个八元环窗口,其直径为4?,故称4A分子筛。若4A分子筛上70%的Na+为Ca2+交换,八元环可增至5?,对应的沸石称5A分子筛。反之,若70%的Na+为K+交换,八元环孔径缩小到3?,对应的沸石称3A分子筛。 X-型和Y-型分子筛 类似金刚石的密堆六方晶系结构。若以β笼为结构单元,取代金刚石的碳原子结点,且用六方柱笼将相邻的两个β笼联结,即用4个六方柱笼将5个β笼联结一起,其中一个β笼居

碳基复合材料研究现状及发展趋势

碳基复合材料研究现状及发展趋势 摘要:碳基复合材料由于其优异的各项性能在航空航天工业、能源技术、信息技术等方面有着很好的应用前景,国内外对高性能复合材料的研究也日趋加深,本文主要从材料的性能来分析其应用及其在未来主要领域的发展趋势。 1 碳基复合材料的特点 碳纤维增强碳复合材料(碳基复合材料,C/C)是具有特殊性能的新型工程材料,是以碳或石墨纤维为增强体,碳或石墨为基体复合而成的材料。碳基复合材料几乎完全是由碳元素组成,故能承受极高的温度和极大的加热速度。该材料具有极高的烧蚀热、低的烧蚀率、抗热冲击,并在超热环境下有高强度,被认为是再入环境中高性能的抗烧蚀材料。它抗热冲击和抗烧诱导能力极强,且具有良好的化学惰性。碳基复合材料做导弹的鼻锥时,烧蚀率低且烧蚀均匀,从而可提高导弹的突防能力和命中率。碳基复合材料还具有优异的耐磨差性能和高的导热,使其在飞机、汽车刹车片和轴承等方面得到应用。 碳基复合材料不仅具有其它复合材料的优点,同时又有很多独到之处。碳基复合材料的特点如下: (1)整个系统均由碳元素构成,由于碳原子彼此间具有极强的亲和力,使碳基复合材料无论在低温下还是在高温下,都有很好的稳定性。同时,碳素材料高熔点的本性,赋予了该材料优异的耐热性,可以经受住2000℃左右的高温,是目前在惰性气氛中高温力学性能最好的材料。更重要的是碳基复合材料随着温度的升高,其强度不降低,甚至比室温还高,这是其他材料无法比拟的。 (2)密度低(小于2.0g/cm3),仅为镍基高温合金的1/4,陶瓷材料的1/2。 (3)抗烧蚀性能良好,烧蚀均匀可以用于3000 ℃以上高温短时间烧蚀的环境中,可作为火箭发动机喷管、喉衬等材料。 (4)耐摩擦,耐磨损性能优异,其摩擦系数很小,性能稳定,是各种耐磨和摩擦部件的最佳候选材料。 (5)良好的生物相容性,具有与人体骨骼相当的密度和模量,在人体骨骼修复与替代材料方面具有较好的应用前景。 2 碳基复合材料的制备工艺 碳基复合材料制备过程包括:增强体碳纤维及其织物的选择、基体碳先驱体

沸石吸附材料的研究进展

沸石吸附的研究进展 摘要:本文主要通过沸石分子筛吸附剂对碘吸附的原理及传质影响的研究,目的是加强认识脱碘的机理,为进一步开发沸石吸附剂的应用提供一定的理论依据。同时针对目前国内外的研发及应用情况进行了概述,提出了存在的问题和解决的思路。 关键字:沸石脱碘吸附传质 前言 沸石是含碱土金属或碱金属的具有三维空间结构的硅铝酸盐晶体,分为天然沸石和人工沸石。天然沸石空隙中充满大量的水分,加热时会沸腾而得其名。人工合成沸石是以硅和含铝的盐为原料,经过水热合成大小与分子大小相当的材料,也称分子筛。沸石的化学通式为M x/n[(AlO2)x(SiO2)y]·mH2O,其中M通常为Na、K、Ca等金属离子。 沸石比表面积适中,一般为500~800m2/g;其孔结构以微孔为主,孔径较小,一般主孔径最大不超过2.5nm,且分布均一。沸石分子筛是通过氧硅四面体和氧铝四面体单元在过氧架桥作用下形成的,其中氧铝四面体带负电性,且孔道内分布有金属阳离子,容易与外界的阳离子发生交换,表现出离子交换性。常用的分子筛全交换工作容量在2.0~2.5mg/g。 沸石是一种强极性吸附剂,极易水分子等极性分子,且由于自身铝硅比和孔径大小不同,对不同极性分子具有选择性,孔道内有可被交换的金属阳离子,对某些特定分子有特殊的吸附作用。 在废气处理方面,沸石可以吸附废气中的SO2和NO x,但是其吸附量低。利用 改性方法可改变沸石的电性、孔径等,可以用来对不同分子特性和直径的气体进行吸附。在水处理方面,利用沸石的离子交换能力,可以吸附去除废水中的氨氮,也可以利用利用改性沸石处理高氟污水或地下水,有价格低的优势,但吸附容量往往不高。 沸石吸附剂脱碘的特性就是一种选择性吸附,通过选择适合碘分子大小孔径的沸石制成吸附剂,达到吸附碘的目的。 二、沸石吸附剂的脱碘原理 1. 吸附原理 (1)物理吸附 沸石吸附剂吸附碘包括物理吸附和化学吸附。物理吸附主要是由于溶液中的碘与沸石分子筛固体表面之间存在范德华力(Van der waals),而产生了范德华吸附,它是可逆的。当沸石分子筛表面分子与液体中碘之间的引力大于液体内部分子运动时,液体中的碘就被吸附在沸石分子筛表面上。它们之间的吸引机理,与气体的液化和冷凝时的机理类似,其吸附热比较低。从分子运动观点看,这些吸附在沸石吸附剂表面的分子由于分子运动,也会从固体表面脱离而进入液体中去,但其本身不发生化学变化。所以物理吸附的特征就是吸附物质不发生任何化学反应,吸附的进程极快,参与吸附的各相间的平衡瞬时即可达到。而且这种吸附通常在固体表面几个分子直径的厚度区域,单位体积固体表面所吸附的量非常小。(2)化学吸附 化学吸附是由于沸石通过所存在的孔道和空腔中的阳离子交换,使其吸附性能发生较大变化,即沸石通过与含Ag的可溶性盐类溶液进行离子交换成银离子型沸石。其脱碘的原理是这种载在沸石上的可交换的银离子从沸石上解离出来,与

分子筛催化剂

绿色高分子材料论文 ——分子筛催化剂 学院:京江学院 班级:高分子1101 姓名:刘铭 学号:4111126020

摘要:随着环保意识的增强,对清洁能源的需求不断提高,人们越来越多的研究了新型环保的催化剂。目前,分子筛催化剂在炼油与化工工业得到了研究与应用,如催化裂化、加氢裂化、带支链芳烃的烷基化、异构脱蜡以及轻烯烃聚合等。国内外已开发出一批有发展前景的高功能化、多功能化、精密化的分子筛催化剂材料。 1. 分子筛催化剂的概述 1.1、定义: 指以分子筛为催化剂活性组分或主要活性组分之一的催化剂。又称沸石催化剂。分子筛具有离子交换性能、均一的分子大小的孔道、酸催化活性,并有良好的热稳定性和水热稳定性,可制成对许多反应有高活性、高选择性的催化剂。应用最广的有X型、Y型、丝光沸石、ZSM-5等类型的分子筛。工业上用量最大的是分子筛裂化催化剂。 1.2、合成方法: ①水热晶化法; ②非水体系合成法; ③干胶转换法; ④无溶剂干粉体系合成法;; ⑤微波辐射合成法; ⑥蒸汽相体系合成法; ⑦多级孔道沸石分子筛的合成; ⑧化学后处理法; ⑨硬模板法; ⑩软模板法。 2. 分子筛催化剂的的发展现状 1954年第一次人工合成沸石分子筛催化剂并作为吸附剂而商品化。20世纪50年代人们先后合成了 A 型、X型和Y 型分子筛。随着人们对分子筛催化剂的不断加深,美国联合碳化学公司(UCC)开发出合成沸石分子筛,继而,美国Mobil公司的研究人员开发出由Zeolites Socony Mobil缩写命名的ZSM系列高硅铝比沸石分子筛催化剂,并形成工业化规模生产。1980年Sand合成了ZEOLON分子筛。1982 年UCC(联合碳化公司)Wilson和Flanigen等首次合成20余种AlPO4 和SaPO4分子筛,从而打破了沸石分子筛由硅氧四面体和铝氧四面体组成的传统观念。1982年,WLSON 等在水热条件下首先合成了新型微孔磷铝分子筛,这种分子筛由铝氧四面体和磷氧四面体严格有序交替排列而成,其骨架接近中性。1992年美国Mobil公司发现了M41S介孔分子筛。为了改善催化剂的催化活性,在催化剂中加入杂原子,如La、Ce、Fe、Mn、Ti、Sn。Vietze等将有机燃料加入到在磷酸铝分子筛合成中。Tang等在磷酸铝分子筛中组合了直径为0.4nm的超小的单个的碳纳米分子筛。Caro等报道了非线性硝基苯胺载体磷酸铝晶体的特性。 近几年来市场对各类分子筛催化剂的需求不断增加,国内合成分子筛的生产规模也不断增大。中科院大连化物所自20世纪80年代以来开展沸石分子筛的合成及改性研究工作,开发出二甲醚裂解制低碳烯烃催化剂及甲醇转化制低碳烯烃催化剂。1988年首次合成了具有十八环的VPI-5分子筛,孔径达1.3nm,实

碳分子筛制备工艺总结

本实验炭分子筛的制备采用炭化法与气体活化、碳沉积法相结合,原料为椰壳,相对 于有机高分子聚合物和煤炭类原料,类属于植物基的椰壳具有原料价格低廉,来源广泛,且高含碳量、低挥发分、低灰分。利用植物壳等废料制备商业化产品如CMS, 不仅可避免植物直接焚焼或填埋带来的环境污染,还可变废为宝,为世界提供能源。 以椰壳一次炭化料(椰壳在一定温度、惰性气氛下热解)为原料、酚醛树脂为粘结剂制 备CMS。具体制备步骤如下:首先使用行星式球磨机将椰壳一次料磨至所需粒度 (<10μm ),以酚醛树脂为粘结剂,聚乙二醇为助剂,在自动控温混涅机里混捏均匀后在双螺杆挤条机上挤条成型,然后将自然晾干的成型料断条整粒至小于4mm。最后将长度较均一的成型料加入转炉行二次炭化、活化、一步苯沉积、二步苯沉积制备CMS。CMS制备工艺流程如图1.1所示。 图1. 1 CMS制备工艺流程图 Fig.1.1 Technology process diagram for CMS prepared 一次炭化:是指原料在惰性气氛下将成型原料在适当的热解条件下炭化的方法。在热 解条件下,原料分子中各基团、桥键、自由基和芳环发生复杂的分解缩聚反应,从而 导致炭化物孔隙的形成、孔径的扩大和收缩。适用于分子结构规整的树脂和果壳类的 高挥发分物质,如杏核壳、山枣核、椰子壳、桃核壳、山碴核等。影响炭化效果的主 要因素是升温速率、炭化温度与恒温时间。本实验经炭化后制得椰壳一次炭化料。 混捏挤条:一次炭化料经球磨机磨制所需粒度后,以聚乙二醇为助剂、酚醛树脂为粘 结剂,与水按照一定比例在自动控温混捏机中混捏均匀,在双螺杆挤条机上挤条成型。混捏的目的是为了使一次炭化料有一定的粘性,有助于在挤条过程中成型,确保断条 及工业应用目的的实现。 断条整粒:挤条成型料经自然晾干后送至断条装置断条至所需粒径,可用筛分装置判 断是否符合要求。断条整粒的目的是使颗粒长短均一,以使颗粒在相同的活化、炭沉 积下得到的产品性能一致。

分子筛催化剂

伴随着工业革命的大潮,碳材料的应用越来越广泛,从最初的过滤杂质逐渐发展到分离不同组份。与此同时,随着技术的进步,人类对物质的加工能力也越来越强。那么什么是分子筛催化剂?为此,安徽天普克环保吸附材料有限公司为大家总结了相关信息,希望能够为大家带来帮助。 分子筛催化剂又称沸石催化剂,指以分子筛为催化活性组分或主要活性组分之一的催化剂,工业上用量最大的是分子筛裂化催化剂,它属于固体酸催化剂。此外,常用的还有具双功能催化作用的载金属分子筛催化剂,如钯-超稳Y型分子筛加氢裂化催化剂。 催化性质按分子筛的催化性质,可分为分子筛固体酸催化剂、金属分子筛双功能催化剂和分子筛择形催化剂三大类。按分子筛的类型分类,则分子筛催化剂的分类和分子筛的分类相同。 分子筛催化剂中通常只含有5%~15%的分子筛,其余部分可称为基质,通常由难熔性无机氧化物或其混合物和粘土组成。基质的作用是使分子筛良好分散,使分子筛易于粘结成形,甚至可使分子筛的

热稳定性得到提高。在催化过程中基质还起到热载体的作用。制造催化剂时,分子筛原粉通常经胶体磨研磨后混入基质的胶体中,用喷雾、挤条或其他方法成形,再经干燥、焙烧等步骤最后制成催化剂。 安徽天普克环保吸附材料有限公司是原上海摩力克分子筛有限公司直属公司,本公司成立于2004年,由于生产量扩增,本公司在安徽合肥空港寿县新桥产业园投资建设生产基地。公司目前拥有年产2000吨分子筛、1500吨活性氧化铝生产线各一条。 二期工程将建成4000吨分子筛生产线。公司全面推行ISO9001质量管理体系,建有现代化的实验室和质量控制中心。现有工程技术人员20人,其中工程师8人。 产品系列化、经营多元化,这些都是企业的发展方针,而OEM----更是公司多年的经营模式,并且得到广泛好评。我们的用户涉及石油、化工、冶金、汽车、空调、电子仪表等行业,我们的客户群不仅是在国内而且遍及东南亚、欧美等地。公司热忱欢迎国内外客

新型碳材料的发展

新型碳材料的发展 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

新型碳材料的发展 The development trend of Several Kinds of New Carbon Materials 摘要及概述 碳是世界上含量极广的一种元素。碳材料在人类发展史上起着主导性的作用,应用最为出众的一次就是第二次工业革命。有人预言,21世纪是“超碳时代”。金刚石的人工合成、石墨层间化合物的研究、富勒烯(碳笼原子簇)、碳纤维、C60、碳纳米管、碳素系功能材料的发现及研究都取得了令人瞩目的进展。这些以单质碳为基础的无机碳化学给人们展现了无限的想象空间。 关键词 碳材料碳纳米管碳纤维活性炭材料微孔碳金刚石膜富勒烯柔性石墨插层化合物 C/C复合材料纳米碳管生物碳材料核石墨 前言 碳元素是自然界中存在的与人类最密切相关、最重要的元素之一,它具有多样的电子轨道特性(sp、sp2、sp3杂化),再加之sp的异向性而导致晶体的各向异性和其排列的各向异性,因此以碳元素为唯一构成元素的碳材料具有各式各样的性质,并且新碳素相和新型碳材料还不断被发现和人工制得。事实上,没有任何元素能像碳这样作为单一元素可形成如此之多的结构与性质完全不同的物质。可以说碳材料几乎包括了地球上所有物质所具有的性质,如最硬-最软;绝缘体-半导体-良导体;绝热-良导热;全吸光-全透光等。随着科学技术的进步,人们发现碳似乎蕴藏着无限的开发可能性。碳的用途也十分广泛,从史前的木炭、近代工业的人造石墨和炭黑、当代的原子炉用高纯石墨和飞机用碳/碳复合材料刹车片、现今的铿

先进制造技术的现状和发展趋势

浅谈先进制造技术现状和发展趋势 xxxx xxx xxxxxxxxx 先进制造技术不仅是衡量一个国家科技发展水平的重要标志,也是国际间科技竞争的重点。我国正处于工业化经济发展的关键时期,制造技术是我们的薄弱环节。只有跟上发展先进制造技术的世界潮流,将其放在战略优先地位,并以足够的力度予以实施,,进一步推进国企改革,推动建立强大的企业集团。推进技术创新,推动大型企业尽快建立技术开发中心,广泛吸引人才,在重大技术创新项目中实行产学研结合,才能尽快缩小同发达国家的差距, 销售及售后服务等方面的应用。它要不断吸收各种高新技术成果与传统制造技术相结合,使制造技术成为能驾驭生产过程的物质流、能量流和信息流的系统工程。 3)是面向全球竞争的技术随着全球市场的形成,使得市场竞争变得越来越激烈,先进制造技术正是为适应这种激烈的市场竞争而出现的。因此,一个国家的先进制造技术,它的主体应该具有世界先进水平,应能支持该国制造业在全球市场的竞争力 2 先进制造技术的组成 先进制造技术是为了适应时代要求提高竞争能力,对制造技术不断优化和推陈出新而形

成的。它是一个相对的,动态的概念。在不同发展水平的国家和同一国家的不同发展阶段,有不同的技术内涵和构成。从目前各国掌握的制造技术来看可分为四个领域的研究,它们横跨多个学科,并组成了一个有机整体: 2.1 现代设计技术 1)计算机辅助设计技术包括:有限元法,优化设计,计算机辅助设计技术,模糊智能CAD等。 2)性能优良设计基础技术包括:可靠性设计;安全性设计;动态分析与设计;断裂设 7)过程设备工况监测与控制。 2.4 系统管理技术 1)先进制造生产模式; 2)集成管理技术;3)生产组织方法。 3先进制造技术的国内外现状 3.1国外先进制造技术现状 在制造业自动化发展方面, 发达国家机械制造技术已经达到相当水平, 实现了机械制

碳分子筛

碳分子筛 碳分子筛概述 : 碳分子筛的主要成分为元素碳,外观为黑色柱状固体。因含有大量直径为4埃德微孔,该微孔对氧分子的瞬间亲和力较强,可用来分离空气中的氧气和氮气,工业上利用变压吸附装置(PSA )制取氮气。鑫陶碳分子筛制氮量大、氮气回收率高,使用寿命长,适用于各种型号的变压吸附制氮机,是变压吸附制氮机的首选产品。 碳分子筛空分制氮已广泛地应用于石油化工、金属热处理、电子制造、食品保鲜等行业。 碳分子筛物化指标: 颗粒直径: 1.6mm 堆积密度: 640-660g/l 抗压强度: 100N/颗 Min. 粉尘含量: 100PPM Max. 碳分子筛性能指标 : 型 号 (Type) 吸附压力 (MPa) 氮浓度 (N2%) 产氮量 (NM3/h.t) N2/Air (%) CMS-160 0.8 99.99 99.9 99.5 99.0 98.0 40 100 160 200 290 15 23 34 38 43 CMS-185 0.8 99.99 99.9 60 120 20 26

99.5 99.0 98.0 185 230 310 36 41 46 CMS-200 0.8 99.99 99.9 99.5 99.0 98.0 70 140 200 260 330 21 27 36 41 48 CMS-220 0.8 99.99 99.9 99.5 99.0 98.0 90 160 220 290 360 25 34 43 48 54 CMS-240 0.8 99.99 99.9 99.5 99.0 98.0 100 175 240 300 370 26 35 44 49 55 CMS-260 0.8 99.99 99.9 99.5 110 190 260 27 36 45

分子筛催化剂的发展及研究进展

分子筛催化剂的发展及研究进展 摘要:分子筛是一种具有特定空间结构的新型催化剂,具有活性高、选择性好、稳定性和抗毒能力强等优点,因此,近几十年来它作为一种化工新材料发展的很快,应用也日益广泛。特别是在石油的炼制和石油化工方面作为工业催化剂发挥了很重要的作用。本文介绍了几种常见的分子筛及应用前景,并对分子筛的性能做了详尽的概述[1]。 关键词:分子筛;催化剂;应用;性能 Development and research of the molecular sieve catalyst Abstract:Zeolite is a new catalyst with specific spatial structure, with high activity, good selectivity, advantages, stability and antitoxic ability etc. Therefore, in recent decades, as a kind of new material chemical development soon, have been widely applied in. Especially as industrial catalysts in refining and petrochemical petroleum plays a very important role. This paper introduces the composition and application of molecular sieve, and the properties of molecular sieves as described in detail. Key words:Molecular sieve;catalyst;application;performance 1.分子筛的发展现状 所谓分子筛催化剂,就是将气体或液体混合物分子按照不同的分子特性彼此分离开的一类物质,实际上是一些具有实际工业价值且具有分子筛作用的沸石分子筛,构成沸石分子筛基本结构特征主要是硅氧四面体和铝氧四面体,这些四面体交错排列形成空间网状结构,存在大量空穴,在这些空穴内分布着可移动的水分和阳离子。基本组成物质为:Na2O、Al2O3、SiO2。上世纪50年代末发现小分子的催化反应可以在分子筛的孔道中进行,才使得这种材料得以迅速的发展。美国的多家公司,具有代表的是Linder公司、Exxon公司、联合碳化公司(UCC )模拟天然沸石的类型与生成条件,开发了一系列低硅铝和中硅铝的人工合成沸石。 上世纪60年代左右,上海试剂五厂开展沸石分子筛的研制开发工作,合成出A型、X型、Y型沸石分子筛。上世纪80年代,金陵石化有限公司炼油厂首次工业化生产ZSM-5沸石分子筛。已有南开大学、北京石科院、兰化炼油厂等单位纷纷开展ZSM -5沸石分子筛的开发生产,并将其广泛应用催化裂解、辛烷值助剂、柴油、润滑油降凝、芳烃烷基化、异构化及精细化工等领域。 近几年来市场对各类分子筛催化剂的需求不断增加,国内合成分子筛的规模也在不断扩大。中科院大连物化所自上世纪80年代以来开展沸石分子筛的合成及改性研究工作,开发出二甲醚裂解制低碳烯烃催化剂。已完成中试放大实验,据称,该研究所采用改性SAPO-34分子筛催化剂可使二甲醚单程转化率大于97%,低碳烯烃选择性达90%。1988年首次合成了具有十八环的VPI-5分子筛,孔径达1.3nm,实现了大孔分子筛的合成。上海骜芊科贸发展有限公司生产经营ZSM-5高硅沸石分子筛结晶粉体、疏水晶态ZSM-5吸附剂等系列分子筛。南开大学催化剂厂主要生产了NFK-5分子筛(直接法合成ZSM-5分子筛)、Beta分子筛、Y型分子筛以及以其为载体的获得国家级发明奖的各类催化剂。 2.分子筛的性能 一切固体物质的表面都有吸附作用,只有多孔物质或表面积很大的物质,才有明显的吸附效应,才是良好的吸附剂。常用的固体吸附剂活性炭、硅胶,活性氧化铝和分子筛等都有很大的表面积。其中沸石分子筛在吸附分离方面有十分重要的地位,它除了有很高的吸附量外,还有独特的选择性吸附性能。这是由于它具有规整的微孔结构,这些均匀排列的孔道和尺寸固定的孔径,决定了能进入沸石分子筛内部的分子的大小。

沸石与分子筛的区别讲解

沸石与分子筛的区别研究 摘要 随着天然与人工分子筛在化工行业的应用的推广,以及各方面的生产要求的提高,促使分子筛的研究成为当今的热门。作为初学者,本文主要围绕沸石、分子筛的不同应用分别从二者的概念、特征、结构、性能、用途等几个方面阐述分子筛与沸石的区别。 关键词沸石分子筛应用区别 一、简介 1932年,McBain提出了“分子筛”的概念。表示可以在分子水平上筛分物质的多孔材料。虽然沸石只是分子筛的一种,但是沸石在其中最具代表性,因此“沸石”和“分子筛”这两个词经常被混用。人造沸石是:磺酸化聚苯乙烯;天然沸石:铝硅酸钠。沸石族矿物常见于喷出岩,特别是玄武岩的孔隙中,也见于沉积岩、变质岩及热液矿床和某些近代温泉沉积中。浙江省缙云县为我国境内沸石储量最高的地区。 狭义上讲,分子筛是结晶态的硅酸盐或硅铝酸盐,由硅氧四面体 或铝氧四面体通过氧桥键相连而形成的分 子尺寸大小(通常为0.3nm至2.0 nm)的 孔道和空腔体系,从而具有筛分分子的特 性。然而随着分子筛合成与应用研究的深

入,研究者发现了磷铝酸盐类分子筛,并且分子筛的骨架元素(硅或铝或磷)也可以由B、Ga、Fe、Cr、Ge、Ti、V、Mn、Co、Zn、Be和Cu等取代,其孔道和空腔的大小也可达到2 nm以上,因此分子筛按骨架元素组成可分为硅铝类分子筛、磷铝类分子筛和骨架杂原子分子筛;按孔道大小划分,孔道尺寸小于2 nm、2~50 nm和大于50 nm的分子筛分别称为微孔、介孔和大孔分子筛。由于具有较大的孔径,成为较大尺寸分子反应的良好载体,但介孔材料的孔壁为非晶态,致使其水热稳定性和热稳定性尚不能满足石油化工应用所需的苛刻条件。由于含有电价较低而离子半径较大的金属离子和化合态的水,水分子在加热后连续地失去,但晶体骨架结构不变,形成了许多大小相同的空腔,空腔又有许多直径相同的微孔相连,这些微小的孔穴直径大小均匀,能把比孔道直径小的分子吸附到孔穴的内部中来,而把比孔道大的分子排斥在外,因而能把形状直径大小不同的分子,极性程度不同的分子,沸点不同的分子,饱和程度不同的分子分离开来,即具有“筛分”分子的作用,故称为分子筛。目前分子筛在冶金,化工,电子,石油化工,天然气等工业中广泛使用。 二,结构 沸石有很多种,已经发现的就有36种。它们的共同特点就是具有架状结构,就是说在它们的晶体内,分子像搭架子似地连在一起,中间形成很多空腔。因为在这些空腔里还存在很多水分子,因此它们是含水矿物。这些水分在遇到高温时会排出来,比如用火焰去烧时,

分子筛催化剂的解析

分子筛催化剂的解析 分子筛(又称合成沸石)是一种硅铝酸盐多微孔晶体,它是由 SiO4和AlO4四面体组成和框架结构。在分子筛晶格中存在金属阳离子(如 Na,K,Ca等),以平衡四面体中多余的负电荷。分子筛的类型按其晶体结构主要分为: A型,X型,Y型等 A型主要成分是硅铝酸盐,孔径为 4A(1A=10 -10 米),称为 4A(又称纳A型)分子筛;用Ca2+交换4A分子筛中的Na+,形成5A的孔径,即为5A(又称钙A型)分子筛;用K+交换4A分子筛的Na+,形成3A的孔径,即为3A(又称钾A型)分子筛。 X型硅铝酸盐的晶体结构不同(硅铝比大小不一样),形成孔径为 9—10A的分子筛晶体,称为 13X(又称钠X型)分子筛;用Ca2+交换13X分子筛中的Na+,形成孔径为9A的分子筛晶体,称为 10X(又称钙X型)分子筛。 沸石分子筛是一类由硅氧四面体和铝氧四面体通过共用氧原子相互连接成骨架结构、并具有均匀晶内孔道的晶态微孔材料。通常,天然的和人工合成的沸石分子筛指的是硅铝酸盐。 1 分子筛的应用领域 沸石分子筛不仅可应用于催化、吸附、分离等过程,还可用于微激光器、非线性光学材料及纳米器件等新兴领域,并在药物化学、精细化工和石油化工等领域有着广阔的应用前景。 分子筛主要应用品种有 3A、4A、5A 、13X以及以上述为基质的改性产品。 3A分子筛用途:各种液体(如乙醇)的干燥;空气的干燥;制冷剂的干燥;天然气、甲烷气的干燥;不饱和烃和裂解气、乙烯、乙炔、丙烯、丁二烯的干燥。 4A分子筛用途:空气、天然气、烷烃、制冷剂等气体和液体的深度干燥;氩气的制取和净化;药品包装、电子元件和易变质物质的静态干燥;油漆、燃料、涂料中作为脱水剂。 5A分子筛用途:变压吸附;空气净化脱水和二氧化碳。 13X分子筛用途:空气分离装置中气体净化,脱除水和二氧化碳;天然气、液化石油气、液态烃的干燥和脱硫;一般气体深度干燥。 改性分子筛可用于有机反应的催化剂和吸附剂。 2分子筛催化剂的发展历史 分子筛的起源可追溯到1756年,首次在玄武岩的孔洞中发现了天然微孔硅铝酸盐,天然沸石。1840年,发现天然沸石具有可逆地吸水一脱水的性能,并且在加热过程中,它的透明度和结晶形状不发生变化。于是,天然沸石的微孔性及其在吸附、离子交换等方面的能引起了研究者的关注。1858年,根据泡沸石脱水晶体可以分离不同大小分子的性能,成功地实现了异构烷烃和正烷烃的分离。1925年,人们发现菱沸石能迅速吸附水、乙醇和甲酸蒸气,而基本上不吸收丙酮、乙醚和苯,再次证实了沸石的分子筛分作用。于是,沸石分子筛这一不仅代表其组成,而且代表着其作用的名称便产生了。研究者最初主要把沸石分子筛用作流体干燥和净化过程的吸附剂与干燥剂,后来也用于流体的分离。 20世纪50年代中期至80年代初期,是分子筛科研、应用及产业发展的全盛时期。1960年,提出了分子筛规整结构的“择形催化”概念,1962年,X型沸石分子筛首次用于催化裂化过程,此阶段发现的低、中硅铝比(SiO2/A1203≤10)的A型、X型、Y型、丝光沸石等称为第一代分子筛。 20世纪70年代,美国美孚石油公司开发的以ZSM一5为代表的高硅三维交叉直通道的新结构沸石分子筛称为第二代分子筛。如ZSM一5、ZSM一11、ZSM一12等,这些高硅分子筛水热稳定性高,亲油疏水,绝大多数孔径在0.6nm左右,对甲醇及烃类转化反应有良好的活性及选择性,此类分子筛的开发,促进了分子筛及微孔化合物结构与性质的研究,也大大推动了分子筛应用方面的研究。 联碳(UCC)公司于80年代开发了非硅、铝骨架的磷铝系列分子筛联碳(UCC)公司于80

长兴金龙碳分子筛有限公司年产450t碳分子筛生产线建设项目环(精)

长兴金龙碳分子筛有限公司年产450t碳分子筛生产线建设项目环境影响报告书 湖州市环境科学研究所 ENVIRONMENTAL SCIENCE RESEARCH INSTITUTE OF HUZHOU 二零零七年四月

第一章总论 1.1项目由来 1.1.1项目背景及其实施的必要性 碳分子筛(CMS)作为一种新型吸附剂自60年代末实现工业化生产以来得到了迅速发展。CMS是一种特殊的活性炭,主要由1nm以下的微孔和少量大孔组成。由于其特殊的微孔结构,故可按照分子的大小和形状进行吸附,从而具有筛分分子的能力。CMS与传统的吸附剂相比,主要区别在于其孔隙结构:CMS主要由微孔及少量大孔组成,孔径分布较窄,约在0.5~1.0nm,而普通活性炭除微孔外,还有大量的中孔和大孔,平均孔径达2nm。自1948年EmmettL发现Saran 树脂(氮乙烯和偏二氯乙烯的聚合物)的炭化物具有分于筛效应以来,各国开展了大量工作,近年来在西欧、日本及中国亦相继进行了这方面的研究。目前,国际上生产商品CMS的公司主要有德国BF公司、日本Takeda公司以及美国Calogn 炭化公司。CMS主要用于吸附分离领域,它已成熟地应用于变压吸附分离空气中的N2和O2。以CMS为吸附剂的变压吸附空气分离技术作为一种中小规模经济地制取富氮的可靠方法,已在国内外得到广泛应用。 国内生产分子筛(CMS)是从上个世纪80年代开始的,经过多年发展,在分子筛生产上已积累了丰富经验,产品已和德国、日本等国家产品质量达到同等水平。目前国内分子筛产量最大的地方就是浙江省湖州市长兴县。目前长兴有分子筛生产企业4家,分别为长兴县海华化工有限公司、长兴中泰分子筛有限公司、长兴县科博化工有限公司、长兴县三立新材料有限公司。 面对这一市场背景,由自然人黄金龙投资600万元组建了长兴金龙碳分子筛

分子筛催化剂

分子筛催化剂

分子筛催化剂及其进化柴油机尾气的研究 一、分子筛催化剂 1、分子筛的相关解释 分子筛, 常称沸石或沸石分子筛, 按经典的定义为“是具有可以被很多大的离子和水分占据孔穴(道) 骨架结构的铝硅酸盐”。照传统定义,分子筛是具有均一结构,能将不同大小分子分离或选择性反应的固体吸附剂或催化剂。狭义讲,分子筛是结晶态的硅酸盐或硅铝酸盐,由硅氧四面体或铝氧四面体通过氧桥键连相连形成孔道和空隙体系,从而具有筛分分子的特性。基本可分为A、X、Y、M和ZSM几种型号,研究者常把它归属固体酸一类。 2、分子筛催化剂的分类及其特点 分子筛按孔道大小划分,分别有小于2 nm、2—50 nm和大于50 nm的分子筛,它们分别称为微孔、介孔和大孔分子筛。分子筛根据孔径大小可分为微孔、介孔和大孔分子筛3 大类。微孔分子筛具有强酸性和高水热稳定性等优点和特殊“择形催化”性能,但也存在着孔径狭窄、扩散阻力大等缺点,从而大大限制了在大分子催化反应中的应用。介孔分子筛具有比表面积高、吸附容量大、孔径大等特点,在一定程度上解决了传质扩散限制问题,但其酸性较弱且水热稳定性较差,导致其工业应用受到了限制。为了解决上述问题,研究人员开发了多级孔分子筛,该分子筛结合了介孔和微孔分子筛的优点,在石油化工领域具有不可估量的应用前景。 3、分子筛的催化特性 (1)催化反应的活性要求: 比表面积大,孔分布均匀,孔径可调变,对反应物和产物有良好的形状选择;结构稳定,机械强度高,可耐高温(400~600℃),热稳定性很好,活化再生后可重复使用;对设备无腐蚀且容易与反应产物分离,生产过程中基本不产生“三废”,废催化剂处理简单,不污染环境。如择形催化的研究体系,几乎包括了全部的烃类转化和合成,还有醇类和其它含氮、氧、硫有机化合物以及

新型碳材料

新型碳材料 一.碳材料基础 碳作为生命组织的基本组成之一存在于所有有机材料和所有碳基高分子中。纯的碳很早以前就是重要的无机材料之一。碳有4种同素异形体:石墨、金刚石、富勒烯、卡宾碳,它们各有各自不同的特点及应用,总的来说它们几乎涵盖所有科学家及工程师所需要的特点。例如:石墨是最软的材料之一(显微硬度1GPa),通常用来作为固体润滑剂;金刚石是最硬的材料(显微硬度100GPa),通常作为切割工具;碳纳米管拥有与铜或硅相媲美的导电性。 传统碳材料(Classic Carbons) ?木炭,竹炭(Charcoals) ?活性炭(Activated carbons) ?炭黑(Carbon blacks) ?焦炭(Coke) ?天然石墨(Natural graphite)?石墨电极,炭刷 ?炭棒,铅笔新型碳材料(New Carbons) ?金刚石(Diamond) ?炭纤维(carbon fibers) ?石墨层间化合物(Graphite Intercalation compounds) ?柔性石墨(Flexible graphite) ?核石墨(Nuclear graphite)?储能用炭材料 ?玻璃炭(Glass-like carbons) 其中新型碳材料包含纳米碳材料:富勒烯、碳纳米管、纳米金刚石、石墨烯。二.新型碳材料 1.金刚石 自然界最硬的固体,有天然和人造两类。 钻石就是我们常说的金刚石,它是一种由纯碳组成的矿物。金刚石是自然界中最坚硬的物质,因此也就具有了许多重要的工业用途,如精细研磨材料、高硬切割工具、各类钻头、拉丝模。还被作为很多精密仪器的部件。 金刚石化学性质稳定,具有耐酸性和耐碱性,高温下不与浓HF 、HCl、HNO3作用,只在Na2CO3、NaNO3、KNO3的熔融体中,或与K2Cr2O7和H2SO4的混合物一起煮沸时,表面会稍有氧化;在O、CO、CO2、H、Cl、H2O、CH4的高温气体中腐蚀。 2.碳纤维 碳纤维(carbon fiber),顾名思义,它不仅具有碳材料的固有本征特性,又兼具纺织纤维的柔软可加工性,是新一代增强纤维。 碳纤维是由有机纤维经碳化及石墨化处理而得到的微晶石墨材料。碳纤维的微观结构类似人造石墨,是乱层石墨结构。 化学性质:碳纤维是含碳量高于90%的无机高分子纤维。其中含碳量高于99%的称石墨纤维。碳纤维的轴向强度和模量高,无蠕变,耐疲劳性好,比热及

己内酰胺生产现状及发展前景

己内酰胺生产现状及发展前景 一、己内酰胺的理化性质及主要用途 己内酰胺caprolactam (简称CPL) 分子式:C6H11NO 分子量:133.16 结构式: 己内酰胺是ε-氨基己酸H2N(CH2)5COOH分子内缩水而成的内酰胺,又称ε-己内酰胺,它一种重要的有机化工原料,是生产尼龙—6纤维(即锦纶)和尼龙—6工程塑料的单体,可生产尼龙塑料、纤维、及L-赖氨酸等下游产品。它常温下为白色晶体或结晶性粉末。熔点(CH2)5CONH69~71℃,沸点139℃(12毫米汞柱)、122~124℃(665Pa)、130℃(1599Pa)、165~167℃(2247Pa)。比重:1.05(70%水溶液),熔化热:121.8J/g,蒸发热:487.2J/g。纯己内酰胺的凝固点为69.2℃,在760mmHg时沸点为268.5℃,85℃下密度1010kg/m3。在20℃水中溶解度为100g水溶解82g己内酰胺。受热时起聚合反应,遇火能燃烧。 常温下容易吸湿,有微弱的胺类刺激气味,手触有润滑感,易溶于水、甲醇、乙醇、乙醚、石油烃、环己烯、氯仿和苯等溶剂。受热时易发生聚合反应。 己内酰胺(CPL)主要用于生产聚己内酰胺纤维树脂,广泛应用在纺织、汽车、电子、机械等领域。

二、市场分析 己内酰胺是重要的有机化工原料之一,主要用途是通过聚合生成聚酰胺切片(通常叫尼龙-6切片,或锦纶-6切片),可进一步加工成锦纶纤维、工程塑料、塑料薄膜。尼龙-6切片随着质量和指标的不同,有不同的侧重应用领域。世界己内酰胺的消费结构为:工程塑料和食品包装膜占总消费量的25%,尼龙6纤维占总消费量的75%。在尼龙6纤维的消费量中,民用丝(包括运动服、休闲衣、袜子等)的消费量占47%,地毯的消费量占30%,工业丝(包括帘子布、渔网丝等)占23%。在我国,尼龙6纤维己内酰胺总消费量的86.2%以上,尼龙6工程塑料占12.2%以上,其它方面的消费量不大,约占1.6%。 近年来,世界己内酰胺的生产能力稳步增长。根据统计,截止到2009年底,全世界己内酰胺的总生产能力达到487.2万吨,巴斯夫、帝斯曼和霍尼韦尔是目前世界上的三大己内酰胺生产厂家,生产能力分别占全球总能力的15.1%、12.6%和7.7%。 我国己内酰胺的工业生产始于20世纪50年代末期,但直到1994年我国引进的两套大型己内酰胺装置建成投产,才使国内己内酰胺的生产得到较快的发展。目前我国有中石化巴陵分公司、南京帝斯曼(DSM)东方化工有限公司、石家庄化纤责任有限公司以及浙江巨化集团公司4家企业生产己内酰胺,总生产能力为48.7万吨/年。除了中石化石家庄化纤有限责任公司的装置采用甲苯法外,其余装置均采用苯法生产工艺。

分子筛在石油加工中的应用和作用

七月四号星期四 分子筛在石油加工中的应用和作用 分子筛在石油化工中最主要的用途是催化作用。工业上用量最大的是分子筛裂化催化剂。使用分子筛催化的优点是活性高,选择性高,稳定性好,抗毒能力强。择形催化是一种将化学反应与分子筛吸附及扩散特性结合的科学,通过它可以改变已知反应途径及产物的选择性。导致择形催化的机理有两种,一种是由孔腔中参与反应的分子的扩散系数差别引起的,称为质量传递选择性;另一种是由催化反应过度态空间限制引起的,称为过渡态选择性。择形催化有四种形式:反应物择形催化(当反应混合物中某些能反应的分子因太大而不能扩散进入催化剂孔腔内,只有那些直径小于内孔径的分子才能进入内孔,在催化活性部分进行反应);产物的择形催化(当产物中某些分子太大,难于从分子筛催化剂内孔中扩散出来);过渡态限制的选择性(反应物和产物都不受催化剂窗口孔径扩散的限制,只是由于需要内孔或笼腔有较大的空间,才能形成相应的过渡态);分子交通控制的择形催化(在具有两种不同形状和大小孔道分子筛中,反应物可以很容易地通过一种孔道进入到催化剂的活性部位,进行催化反应,而产物分子则从另一孔道扩散出去,尽可能地减少逆扩散,从而增加反映速率)。分子筛对烯烃聚合有较好的催化作用,其活性为:异丁烷>丙烷>乙烯。在实际应用中可以把分子筛做成不同孔径以针对特定的反映。 分子筛吸湿能力极强,因此被广泛的用作干燥剂。吸收器油可用于分子筛干燥,使原来环境温度下操作的油吸收设备能转变为更有效的,在低温下操作的回收设备,油中存在的水分在一定的低温下生成碳氯化合物的水化物,引起堵塞和污染。分子筛的吸水作用会使水分减少,吸收器可在相对较高的温度下工作。在氟化氢或硫酸的烷化反应中,应用分子筛干燥原料可改善腐蚀和降低酸耗。分子筛可循环利用,吸水后,可在干燥箱250-300度干燥4小时以上,可以除掉绝大部分水分(再生不彻底)或者先用干燥箱150度干燥1小时,再用高温马弗炉500-550度焙烧1小时,可以除掉结晶水(再生完全)。 分子筛也可以做吸附剂,以除去硫化物。在二氧化碳含量较高的小储藏量的酸气井中,,天然气用分子筛吸附脱硫极为有利,通常用碱性吸收井不经济,分子筛对硫化氢的选择性比二氧化碳高。可用仪器自动控制,操作距离更远更安全。轻质碳氢化合物气流用分子筛液相吸附脱硫, 可得良好效果, 因为硫化合物的极性

碳材料介绍

碳材料介绍 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

新型碳材料的发展及简介 摘要:碳是世界上含量十分丰富的一种元素。碳材料在人类发展史上起着主导的作用,其应用最为出众的一次是在第二次工业革命。现代科技的发展使得人类又获得了几种新型的碳材料--碳纳米管、碳纤维、C60、碳素系功能材料等。 关键词:碳材料碳纳米管碳纤维 一、前言 碳是世界上含量及广的一种元素。它具有多样的电子轨道特性(SP、SP2、SP3杂化),再加之SP2的异向性而导致晶体的各向异性和其排列的各向异性,因此以碳元素为唯一构成元素的的碳材料,具有各式各样的性质。在历史的发展中传统的碳材料包括:木炭、竹炭、活性炭、炭黑、焦炭、天然石墨、石墨电极、炭刷、炭棒、铅笔等。而随着社会的发展人们不断地对碳元素的研究又发明了许多新型炭材料:金刚石、碳纤维、石墨层间化合物、柔性石墨、核石墨、储能型碳材料、玻璃碳等。其中新型纳米碳材料有:富勒烯、碳纳米管、纳米金刚石、石墨烯等。 没有任何元素能像碳这样作为单一元素可形成如此多类结构和性质不同的物质,可以说碳材料几乎包括了地球上所有物质所具有的性质,如最硬--最软、绝缘体--半导体--超导体、绝热-良导热、吸光--全透光等。随着时代的变迁和科学的进步,人们不断地发现和利用碳,可以这么说人们对碳元素的开发具有无限的可能性。 自1989年着名的科学杂志《Science》设置每年的“明星分子”以来,碳的两种同素异构体“金刚石”和“C ”相继于1990年和1991年 60 的三位科学家,连续两年获此殊荣,1996年诺贝尔化学奖又授予发现C 60 这些事充分反映了碳元素科学的飞速发展。但是由于碳元素和碳材料具

相关文档
相关文档 最新文档