文档库 最新最全的文档下载
当前位置:文档库 › Lip Segmentation by Fuzzy

Lip Segmentation by Fuzzy

Lip Segmentation by Fuzzy
Lip Segmentation by Fuzzy

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 1, JANUARY 2004
51
Lip Image Segmentation Using Fuzzy Clustering Incorporating an Elliptic Shape Function
Shu-Hung Leung, Shi-Lin Wang, and Wing-Hong Lau, Member, IEEE
Abstract—Recently, lip image analysis has received much attention because its visual information is shown to provide improvement for speech recognition and speaker authentication. Lip image segmentation plays an important role in lip image analysis. In this paper, a new fuzzy clustering method for lip image segmentation is presented. This clustering method takes both the color information and the spatial distance into account while most of the current clustering methods only deal with the former. In this method, a new dissimilarity measure, which integrates the color dissimilarity and the spatial distance in terms of an elliptic shape function, is introduced. Because of the presence of the elliptic shape function, the new measure is able to differentiate the pixels having similar color information but located in different regions. A new iterative algorithm for the determination of the membership and centroid for each class is derived, which is shown to provide good differentiation between the lip region and the nonlip region. Experimental results show that the new algorithm yields better membership distribution and lip shape than the standard fuzzy c-means algorithm and four other methods investigated in the paper. Index Terms—Color, elliptic shape, fuzzy clustering, lip segmentation.
I. INTRODUCTION
U
SING visual information in speech recognition and speaker verification has aroused the interest of many researchers [1]–[5], [7] in recent years because the visual information of lip movement will help enhance the robustness of the system [6]. In the presence of noise, most speech recognition systems suffer from performance degradation. But with the aid of lip image sequence, the recognition performance can be considerably improved. To extract visual information from lip image sequence for various lip shape and lip color, accurate lip segmentation is of vital importance for subsequent lip modeling. However, low color contrast between the lip and the face skin for unadorned faces makes the problem difficult. Different methods for lip image segmentation have been proposed in the literature. Among them, two major kinds of segmentation methods are widely used. The first kind is to perform the segmentation directly from the color space [9], [10]. This kind of algorithm often uses a color transformation or color filter
Manuscript received June 11, 2002; revised June 2, 2003. This work was supported by a research grant (CityU 1215/01E) from the RGC of the HKSAR, China. The associate editor coordinating the review of this manuscript and approving it for publication was Dr. Luca Lucchese. S.-H. Leung is with the Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China (e-mail: eeeugshl@https://www.wendangku.net/doc/b56738501.html,.hk). S.-L. Wang and W.-H. Lau are with the Department of Computer Engineering and Information Technology, City University of Hong Kong, Hong Kong, China (e-mail: 50003667@https://www.wendangku.net/doc/b56738501.html,.hk; itwhlau@https://www.wendangku.net/doc/b56738501.html,.hk). Digital Object Identifier 10.1109/TIP.2003.818116
to enlarge the difference between the lip and the skin. The processing time is a prominent advantage of these algorithms; however the method has large color noise and is sensitive to color contrast. Generally the resulting segmentation has patches scattered in the image. For images with weak color contrast, the method cannot satisfactorily outline the boundary of the lip region. Modification based on Markov random field technique has also been proposed to exploit the spatial continuity in order to improve the robustness of segmentation [11], [12]. These algorithms can reduce the segmentation error caused by color noise. However, patches outside and holes inside the mouth region are generally found in the resulting segmentation. The second kind is fuzzy clustering method. The classical fuzzy c-means (FCM) algorithm generates a membership distribution to minimize a fuzzy entropy measure [7], [8]. In order to enhance the performance of FCM, different modifications of fuzzy clustering methods have been proposed in the past few years [13]–[18]. However, from experimental lip-segmentation results, it is found that these approaches cannot perform satisfactorily especially when dealing with images of weak color contrast. In this paper, we propose a new fuzzy algorithm, fuzzy c-means with shape function (FCMS), which exploits the spatial distance in addition to the color information. A shape function is embedded in the dissimilarity measure of the objective function. As a result, pixels having similar color information but located in different regions can be clearly differentiated. The inclusion of the shape function is seamlessly integrated in the clustering algorithm that optimizes the updating of the membership and centroids. Experimental results show that the segmentation produced by the new method is of high quality and matched well to the original image. In Section II, details of the FCMS algorithm are presented. A new dissimilarity measure that takes both the color information and the spatial distance into account is proposed. The updating equations for the membership, the centroids and the parameters of the elliptic shape function are derived. Section III presents the implementation of the whole lip segmentation process. Experimental results of the FCMS algorithm are discussed in Section IV. The performance of FCMS is compared with other lip segmentation methods. Finally, Section V draws the conclusion. II. FUZZY C-MEANS WITH SHAPE FUNCTION (FCMS) In fuzzy c-means, the measure is a function of the distance between the feature vectors and the centroids without the knowledge of the shape of the image. Generally fuzzy c-means cannot give satisfactory segmentation for lip images with weak contrast between the lip feature and the skin. The dissimilarity measure
1057-7149/04$20.00 ? 2004 IEEE

52
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 1, JANUARY 2004
solely using the color information will generally create patches wherever the skin feature is close to the lip feature. The scattered patches will incur undesirable disturbances to the membership map. To improve the robustness of the method, a new measure with the inclusion of a shape function for fuzzy clustering is introduced. With the shape function, the differentiation between the lip region and the nonlip region can be enhanced. be the set of feature Let by , where vectors associated with an image of size is a q-dimensional color vector at the pixel location stand for the Euclidean distance between the ( , ). Let feature vector and the centroid of the ith cluster. The purpose of the shape function is to obtain a large membership for the cluster associated with the target image. In order to do so, the shape function associated with a cluster should have a small value for those pixels belonging to the cluster and become large for the pixels belonging to other classes. As the shape of lip contour is more like an ellipse, we use an elliptic function to define the shape function. Let denote the set of parameters that describes the elliptic function, where ( , ) is the center of mass of the ellipse, and are respectively the semi-major axis and the semi-minor axis, and is the inclination angle about ( , ). We incorporate the shape function into the fuzzy measure which measures the by defining a dissimilarity measure and the ( , )th color dissimilarity between the centroid pixel and the spatial distance between the pixel and the center of the target image as (1) where
matrix is a fuzzy c-partition where the with is the set of , defines the fuzziness of of fuzzy cluster centroids, the clustering, and the value gives the membership of the ( , )th pixel in the fuzzy cluster . The optimum solution of (3) is the value that minimizes , i.e. (5) is a stationary point of The optimum solution at which the gradient of is zero. with respect to Taking partial derivative on for any subject to the constraint (4) and setting the derivative to zero, we have [7], [8] (6) Equation (6) is the formula for the calculation of the membership, which is of the same form as that of FCM but has different dissimilarity measure. be expressed as Let
(7) is the objective function of the standard FCM. where with respect to Taking the partial derivative on we have (8) With the inclusion of the spatial distance in the dissimilarity measure, the pixels with similar color but located in different regions can be clearly differentiated. The weighting parameter in the dissimilarity measure defined in (1) is to adjust the weight of the physical distance against the color feature. In the elliptic ensure a small function as defined by (2), the exponents function value for the pixels within the th cluster and a large value for the pixels outside the cluster. In this paper, we consider two clusters in the segmentation, one stands for lip region and the other for nonlip region. The elliptic function for each cluster but with different . has identical The objective function of FCMS is given by (3) subject to (4) (11) The result shows that the partial derivative of the objective function with the new measure with respect to is identical to that of FCM. Therefore the formula for computing the centroid is the same as that of FCM, i.e., (9) The partial derivative of with respect to is given by
(2)
(10) where

LEUNG et al.: LIP IMAGE SEGMENTATION USING FUZZY CLUSTERING INCORPORATING AN ELLIPTIC SHAPE FUNCTION
53
The five components of the gradient vector in (10) are shown in Appendix I. By setting the gradient in (10) to zero, can be solved numerically. We iterate (12), which is derived from the method of steepest descent, to obtain the solution (12) where is the step size and the membership is kept constant during the iterations. Equations (6), (9), and (12) can be iterated as Picard iteration to obtain a fuzzy segmentation of the image. We observe that is continuous in ( , , ) and is bounded in . Also the second partial derivative of the objective function with respect to is a positive diagonal matrix for any feasible . Hence, following the proof of the convergence for FCM in [7], [8], the objective function value of the th Picard solution is strictly less than that of , i.e.,
(19)
(20) From experiments, the use of best-fit ellipse in the Picard iteration does not affect the convergence and the segmentation results. For a lip image, we set the number of clusters equal to two: cluster 0 stands for lip feature and cluster 1 for nonlip feature. Based on (6) together with (1), (2) and (11), the membership of cluster 0 is given by
and
steepest descent for solving , is kept dewith to a local minimum or reaches -vector space. Hence we have, . Therefore, the Picard iteration is shown to give a local minimum solution. In the Picard iteration, the update of the parameter vector is quite computationally expensive. It is observed from experiments that the ellipse described by the parameter vector obtained from the method of steepest descent always lies near the boundary defined by the pixels with the membership equal to 0.5. In order to reduce the calculation, we propose to replace the ellipse, which is described by , by a best-fit ellipse derived of the target cluster. For a given from the membership , the parameters of the best-fit ellipse are computed as follows: (13) (14) (15) (16) (17) where (18)
Using the method of the objective function falls creasing until the boundary of the
(21) for cluster 0 and a negative We choose a positive exponent for cluster 1. For a pixel near the center of the elexponent is approximately equal lipse ( is small), its membership to one. For a pixel far away from the center of the ellipse, approximately equals zero. For a pixel near the boundary of the , its color dissimilarity is dominant in the meaellipse sure that yields the membership formula similar to that of FCM. In comparison with the membership formula solely based on the color dissimilarity, (21) shows that the membership value is increased for the pixels within the ellipse while it is decreased for the pixels outside the ellipse. This property explains why the FCMS algorithm with the elliptic shape function can yield better membership values in the lip region as well as the nonlip region than FCM. III. IMPLEMENTATION A. Color Transformation Lip images are captured by a video camera in RGB color format with each color component quantized to 8 bits. As RGB color space is not visually uniform [19]–[21], i.e. the distance between any two points in RGB color space is not proportional to their color difference, a color transformation is needed to transform the RGB color to a uniform color system. In our experiment, we use two uniform chromaticity color spaces: CIE-1976 CIELAB and CIELUV. The color vector is used to represent the color information of pixels [20], [21] (Details of the color space transformation are shown in Appendix II). The main reason for using both and in our color feature is to increase the robustness of the system for a wide range of lip colors and skin colors. B. Preprocessing The preprocessing is composed of two parts: equalization of gradual intensity variation and teeth masking [22]. The equalization procedure is carried out as follows: (22)

54
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 1, JANUARY 2004
Fig. 1. (a) Original lip image. (b) Membership distribution with best-fit ellipse drawn in black for iteration 1. (c) Membership distribution with best-fit ellipse drawn in black for iteration 4. (d) Membership distribution with best-fit ellipse drawn in black for iteration 11.
where and stand for the intensity variation of the upper is the mean value of and lower border, respectively, and , and is the number of rows of the whole image [22]. For both FCM and FCMS, the teeth pixels and low luminance region where the chrominance information is noisy can adversely affect the 2-class (lip and nonlip) clustering result. It and has been observed that the teeth region has a lower value than that of the rest of the lip image. From experimentation with different lip images, the teeth thresholds and were found to be given by [22] (23) (24) where , and , are the mean and standard deviation of and , respectively. Possible teeth pixels, i.e., or , or pixels with of the reference white are also masked out from subsequent clustering process. C. Lip Clustering Using FCMS After preprocessing, we run FCMS as follows: 1) Initialize the values of the color centroids and set , and . , via (6) 2) Compute the membership of the lip image, given and . 3) Update using (9) and compute via (13)–(20). using (2) and 4) Calculate the .
until 5) Repeat step 2 to step 4 for , where is a small threshold. In step 1, the initial value of the color centroids for the first frame of a lip image sequence can be obtained in the following way: We use FCM to process the first frame of lip image to obtain the color centroids and the membership. The color centroid for the features in the center portion of the image is assigned for the lip cluster and the other one for the background feature. Subsequently, the centroids of previous frame can be directly used as the initial values of the present frame. D. Post Processing Unlike many other algorithms of lip segmentation, FCMS does not need many post processing steps. After fuzzy clus3 Gaussian tering, the membership is smoothed by a 3 low-pass filter before segmentation in order to smooth the lip region. The lip segmentation is obtained by hard-quantizing the membership value at a threshold of 0.5. IV. EXPERIMENTAL RESULTS Our FCMS algorithm has been tested on about 5000 lip images collected from more than twenty speakers in our laboratory. In the experiments, the parameters of FCMS are set as follows: , , , and for the FCMS algorithm. The effects of the weighting parameters and the exponents on the performance of FCMS will be discussed in the last part of the section. In Fig. 1, we demonstrate the growth of the ellipse starting with and . The membership distributions represented in gray scale for iterations 1, 4, and 11 are shown in

LEUNG et al.: LIP IMAGE SEGMENTATION USING FUZZY CLUSTERING INCORPORATING AN ELLIPTIC SHAPE FUNCTION
55
TABLE I AVERAGE NUMBER OF ITERATIONS STARTING WITH DIFFERENT INITIAL w
AND
h
TABLE II COMPUTATIONAL COMPLEXITY ANALYSIS FOR (a) FCMS AND (b) FCM WITH m = 2
Fig. 1. The best-fit ellipse obtained from the membership distribution of the previous iteration is drawn in black in the figure. It is observed from experimental results that the initial values of and do not significantly affect the converged membership and segmentation. Nevertheless they will affect the convergence time of the algorithm. A. Convergence Time Analysis In this experiment, we study the effects of the initial values of and on the average convergence time based on 5,000 images. In Table I, we list the number of iterations for the con-
vergence. It is observed that the FCMS algorithm starting with and uses the least number of iterations to converge. The convergence time of FCMS is about 6.2 iterations while FCM algorithm needs to take 8.52 iterations. It is worth mentioning that the number of iterations required by FCMS is less sensitive to the initial value of the color centroids than is FCM. B. Computational Complexity Analysis In this section, the computational complexity of FCMS is compared with that of FCM. We count the number of addi-

56
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 1, JANUARY 2004
Fig. 2. (a) Original lip image 1. (b) Membership distribution obtained by CT. (c) Lip-segmentation result obtained by CT. (d) Membership distribution obtained by FCM. (e) Lip-segmentation result obtained by FCM. (f) Membership distribution obtained by RFCM. (g) Lip-segmentation result obtained by RFCM. (h) Membership distribution obtained by FCMS. (i) Lip-segmentation result obtained by FCMS. (j) Lip-segmentation result obtained by LL. (k) Lip-segmentation result obtained by ZM.
tions, multiplications and table look-ups required for the updating equations in each iteration. The look-up table is to provide the elliptic function value in (2) and the multiplication with . With equal to 2, the computational complexity per iterais summarized in Table II. tion for a lip image of size
From the analysis, it is observed that multiplications predominate in the complexities of FCMS and FCM. The complexity of FCMS in terms of multiplications is 41 NM whereas the complexity of FCM is 23 NM. Hence FCMS is 1.78 times the complexity of FCM.

LEUNG et al.: LIP IMAGE SEGMENTATION USING FUZZY CLUSTERING INCORPORATING AN ELLIPTIC SHAPE FUNCTION
57
Fig. 3. (a) Original lip image 2. (b) Membership distribution obtained by CT. (c) Lip-segmentation result obtained by CT. (d) Membership distribution obtained by FCM. (e) Lip-segmentation result obtained by FCM. (f) Membership distribution obtained by RFCM. (g) Lip-segmentation result obtained by RFCM. (h) Membership distribution obtained by FCMS. (i) Lip-segmentation result obtained by FCMS. (j) Lip-segmentation result obtained by LL. (k) Lip-segmentation result obtained by ZM.
From Section IV-A, it is shown that the average convergence times of FCMS and FCM are 6.2 iterations and 8.52 iterations, respectively. The average computational times of FCMS and FCM are thus given by 254.2 NM and 196 NM, respectively. Hence, the average computational time of FCMS is 1.30 times that of FCM.
In Section II, we have shown that the membership of the pixels ) far away from the center of the ellipse is ap(for pixel with proximately zero. For our images, it is generally observed that one third of the pixels of the whole image have membership values approximately equal to zero. Hence, the computational time to obtain the best-fit ellipse can be reduced by excluding these pixels.

58
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 1, JANUARY 2004
Fig. 4. (a) Original lip image 3. (b) Membership distribution obtained by CT. (c) Lip-segmentation result obtained by CT. (d) Membership distribution obtained by FCM. (e) Lip-segmentation result obtained by FCM. (f) Membership distribution obtained by RFCM. (g) Lip-segmentation result obtained by RFCM. (h) Membership distribution obtained by FCMS. (i) Lip-segmentation result obtained by FCMS. (j) Lip-segmentation result obtained by LL. (k) Lip-segmentation result obtained by ZM.
C. Segmentation Results In this experiment we use three lip images to demonstrate the segmentation results of FCMS. The three lip images contain different lip shapes and oral openings. The third lip image in particular has weak color contrast with the skin. We compare the segmentation results of FCMS with color transforma-
tion algorithm (CT) [9], FCM, robust fuzzy c-means clustering algorithm (RFCM) [13], Lievin and Luthon’s method (LL) [11], and Zhang and Mercereau’s method (ZM) [12]. The membership distribution and segmentation result of the six methods for image 1, image 2 and image 3 are shown in Fig. 2, Fig. 3, and Fig. 4, respectively. It should be noted that the curve value

LEUNG et al.: LIP IMAGE SEGMENTATION USING FUZZY CLUSTERING INCORPORATING AN ELLIPTIC SHAPE FUNCTION
59
TABLE III COMPARISON OF P fB jOg, P fO jB g AND SE AMONG CT, FCM, RFCM, FCMS, LL AND ZM FOR THE THREE LIP IMAGES SHOWN IN FIGS. 2, 3, AND 4
TABLE IV COMPARISON OF AVERAGE SE AMONG CT, FCM, RFCM, FCMS, LL AND ZM FOR A FURTHER 27 LIP IMAGES (NOT SHOWN)
of each pixel ( , ) is considered as the membership value for the color transformation method in [9]. In Figs. 2 to 4, the membership distributions of CT, FCM, RFCM, and FCMS are shown in (b), (d), (f), and (h), respectively. It is clearly shown in the figures that FCMS has strengthened the membership of the nonlip region as well as the lip region and yields a better boundary. For the Image 1 in Fig. 2 and the Image 2 in Fig. 3 with fairly good color contrast, CT, FCM and FCMS basically have the membership reflecting the lip shape. But for the image having poor contrast against the background such as Image 3 in Fig. 4, FCMS can produce much better membership in both the skin and lip region than any of the other three methods. Among the four methods, FCMS is the only one to give a very clear background for all the three lip images. The resulting lip-segmentation results for CT, FCM, RFCM, FCMS LL, and ZM are, respectively, shown in (c), (e), (g), (i), (j), and (k) in Figs. 2 to 4. These results show that FCMS provides the best segmentation of the six methods investigated. With the incorporation of the elliptic shape function, the background produced by FCMS is considerably clearer in comparison with the other methods; and also the boundary is much smoother than with the others. Unlike the other methods having patches scattered in the images and ragged boundary, FCMS generates a segmentation well suited to the original image. In the following we apply a quantitative technique to evaluate the quality of the clustering algorithm for the lip images. We
manually draw the boundary of the lip for the three lip images. is defined as [23] The Segmentation Error (25) is the probability of classifying background as where object, is the probability of classifying object as backand stand for the a priori probabilities of ground. the object and the background of the image, respectively. , and of the In Table III, we compare the six methods. From Table III, we observe that the error percentages of FCMS for Image 1 and Image 2 are the least among all the methods investigated. In particular, for the Image 3 which of FCMS is much has relatively poor color contrast, the smaller than that of all other methods. We also experimented on a further 27 lip images of different shapes from different speakers. All these images have fairly good color contrast. The segmentation errors of the six methods are summarized in Table IV and FCMS is proved again to have . the smallest D. Weighting Parameter and Exponents Analysis The weighting parameter in (1) controls the weight between the physical distance and the color feature. Proper value of this parameter will greatly improve the performance of the FCMS algorithm. However, it cannot be analyzed separately from the in (2) because different of the disexponents tance function have a different optimum value for . We car-

60
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 1, JANUARY 2004
TABLE V AVERAGE SEGMENTATION ERROR (SE ) OF FCMS WITH DIFFERENT PARAMETER SETS f ; p
;p
g
TABLE VI CONVERGENCE TIME (AVERAGE NUMBER OF ITERATIONS) OF FCMS WITH DIFFERENT PARAMETER SETS f ; p
;p
g
ried out experiments on 8 lip images with different lip shapes and convergence time (number of iterations to evaluate the . The results for the to converge) for different sets of and the convergence time are listed in Table V and Table VI, respectively. From the results, we find that the error rate is large when are small because in this case the disthe values of tance function is not effective to help differentiate the lip region and the skin. Large values can achieve smaller errors while they need more time to converge. It is observed that a very large value of will increase the number of iterations and also lead to a large segmentation error, as the dissimilarity measure is too sensitive to the change of the physical distance. However, if is too small, there will be little difference between FCMS and FCM as the dissimilarity measure is then mainly dependent on the color features. Hence, we choose the parame-
as which gives a small segmentation ters error and requires fewer iterations to converge. V. CONCLUSIONS In this paper, we have presented a lip segmentation method based on fuzzy c-means clustering with shape function. Unlike the classical FCM and other fuzzy clustering algorithms, the FCMS exploits the spatial distance in order to give a better membership distribution. Experimental results show that the FCMS algorithm, which incorporates spatial distance with color feature in the dissimilarity measure, strengthens the membership of the lip and nonlip regions. The computational complexity of FCMS is about 1.78 times that of FCM. However, the fast convergence of FCMS renders its average computational time only increased about 30% over that of FCM.

LEUNG et al.: LIP IMAGE SEGMENTATION USING FUZZY CLUSTERING INCORPORATING AN ELLIPTIC SHAPE FUNCTION
61
APPENDIX I GRADIENT VECTOR OF Let . The partial derivatives and are given by
APPENDIX II The CIELAB and CIELUV can be obtained from the RGB color space by the following transformation
if otherwise
where if otherwise
and
[6] E. D. Petajan, “Automatic lipreading to enhance speech recognition,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1985, pp. 40–47. [7] J. C. Bezdek, Pattern Recognition With Fuzzy Objective Function Algorithms. New York: Plenum, 1981. , “A convergence theorem for the fuzzy ISODATA clustering al[8] gorithms,” IEEE Trans. Pattern Anal. Machine Intell., vol. 2, pp. 1–8, 1980. [9] N. Eveno, A. Caplier, and P. Y. Coulon, “New color transformation for lips segmentation,” in Proc. IEEE 4th Workshop on Multimedia Signal Processing, Cannes, France, Oct. 2001, pp. 3–8. [10] T. Wark, S. Sridharan, and V. Chandran, “An approach to statistical lip modeling for speaker identification via chromatic feature extraction,” in Proc. 14th Int. Conf. Pattern Recognition, vol. 1, Brisbane, Australia, Aug. 1998, pp. 123–125. [11] M. Lievin and F. Luthon, “Unsupervised lip segmentation under natural conditions,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, vol. 6, Phoenix, AZ, Mar. 1999, pp. 3065–3068. [12] X. Zhang and R. M. Mersereau, “Lip feature extraction toward an automatic speechreading system,” in Proc. IEEE Int. Conf. Image Processing, vol. 3, Vancouver, BC, Canada, Sept. 2000, pp. 226–229. [13] P. R. Kersten, R. Y. Lee, J. S. Verdi, R. M. Carvalho, and S. P. Yankovich, “Segmenting SAR images using fuzzy clustering,” in Proc. 19th Int. Conf. North American, Fuzzy Information Processing Society, Atlanta, GA, July 2000, pp. 105–108. [14] P. R. Kersten, “Fuzzy order statistics and their application to fuzzy clustering,” IEEE Trans. Fuzzy Syst., vol. 7, pp. 708–712, Dec. 1999. [15] T. A. Runkler and J. C. Bezdek, “Image segmentation using fuzzy clustering with fractal features,” in Proc. 6th IEEE Int. Conf., vol. 3, Barcelona, Spain, July 1997, pp. 1393–1398. [16] Y. A. Tolias and S. M. Panas, “On applying spatial constraints in fuzzy image clustering using a fuzzy rule-based system,” IEEE Signal Processing Lett., vol. 5, pp. 245–247, Oct. 1998. [17] Y. T. Qian and R. C. Zhao, “Image segmentation based on combination of the global and local information,” in Proc. Int. Conf. Image Processing, vol. 1, Santa Barbara, CA, Oct. 1997, pp. 204–207. [18] A. W. C. Liew, S. H. Leung, and W. H. Lau, “Fuzzy image clustering incorporating spatial continuity,” Proc. Inst. Elect. Eng., vol. 147, no. 2, pp. 185–192, Apr. 2000. [19] CIE, Colorimetry, Bureau Central de la CIE, Vienna, Austria, 1986. [20] G. Sharma, M. J. Vrhel, and H. J. Trussell, “Color imaging for multimedia,” Proc. IEEE, vol. 86, pp. 1088–1108, 1998. [21] R. W. G. Hunt, “Measuring color,” in Ellis Horwood Series in Applied Science and Industrial Technology, 2nd ed. London, U.K.: Ellis Horwood, 1991. [22] A. W. C. Liew, S. H. Leung, and W. H. Lau, “Segmentation of color lip images by spatial fuzzy clustering,” IEEE Trans. Fuzzy Syst., to be published. [23] S. U. Lee, S. Y. Chung, and R. H. Park, “A comparative performance study of several global thresholding techniques for segmentation,” Comput. Vis., Graph., Image Process., vol. 52, pp. 171–190, 1990.
where
,
with
The , , , and are the values of , , , and for the reference white, respectively. In the transformation, the . reference white is defined as REFERENCES
[1] N. P. Erber, “Interaction of audition and vision in the recognition of oral speech stimuli,” J. Speech Hearing Res., vol. 12, pp. 423–425, 1969. [2] Y. Zhang, S. Levinson, and T. Huang, “Speaker independent audio-visual speech recognition,” in Proc. IEEE Int. Conf. Multimedia and Expo, vol. 2, New York, July 2000, pp. 1073–1076. [3] G. Rabi and S. Lu, “Visual speech recognition by recurrent neural networks,” in Electrical and Computer Engineering, 1997. Engineering Innovation: Voyage of Discovery St. Johns, Nfld., Canada, May 1997, vol. 1, pp. 55–58. [4] J. Luettin, N. A. Thacker, and S. W. Beet, “Visual speech recognition using active shape models and hidden Markov models,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, vol. 2, Atlanta, GA, May 1996, pp. 817–820. [5] C. Benoit, T. Mohamadi, and S. Kandel, “Effects of phonetic context audio-visual intelligibility of French,” J. Speech Hearing Res., vol. 37, pp. 1195–1203, 1994.
Shu-Hung Leung received the first class honor B.Sc. degree in electronics from the Chinese University of Hong Kong in 1978, and the M.Sc. and Ph.D. degrees, both in electrical engineering, from the University of California at Irvine in 1979 and 1982, respectively. From 1982 to 1987, he was an Assistant Professor with the University of Colorado, Boulder. Since 1987, he has been with the Department of Electronic Engineering at the City University of Hong Kong, where he is currently an Associate Professor. He is the leader of Digital and Mobile Communication Team in the Department of Electronic Engineering. His current research interest is in digital communications, speech and image processing, intelligent signal processing, and adaptive signal processing. Dr. Leung has served as the Program Chairman of the Signal Processing Chapter of the IEEE Hong Kong Section since 1992; now as the vice chairman of the Chapter. He serves as a technical reviewer for a number of international conferences and IEEE TRANSACTIONS, IEE Proceedings, and Electronics Letters. He is listed in the Marquis Who’s Who in Science and Engineering and Marquis Who’s Who in the World.

62
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 1, JANUARY 2004
Shi-Lin Wang received the B.Sc. degree in electronic engineering from Shanghai Jiaotong University in 2001. He is pursuing his M.S. degree in philosophy degree in Computer Engineering and Information Technology Department at the City University of Hong Kong. His research interest is in image processing and pattern recognition.
Wing-Hong Lau (M’88) received the B.Sc. and Ph.D. degrees in electrical and electronic engineering from University of Portsmouth, U.K., in 1985 and 1989, respectively. He joined the Microwave Telecommunications and Signal Processing Research Unit of the University of Portsmouth in 1985 as a Research Assistant. In 1990, he joined the City University of Hong Kong, where he is currently an Associate Professor in the Department of Computer Engineering and Information Technology. His current research interests are in the area of digital signal processing, digital audio engineering, and visual speech signal processing. Dr. Lau is currently the Vice-Chairman of the IEEE Hong Kong Section. He is the recipient of the IEEE Third Millennium Medal. He was the Registration Co-Chair of the ICASSP 2003 and ISCAS’97. He was the Chairman of the IEEE Hong Kong Joint Chapter on CAS/COM for 1997 and 1998.

找等量关系列方程专题练习

一、填空 1、a×b×6的简便写法是() 2、甲数是12.5,比乙数的x倍少6,乙数是() 3、四(2)班有男生a人,比女生多6人,这个班共有学生()人。 4、30盒饼干共花了 a元,平均每盒饼干()元。 5、小丽有a块巧克力,给妹妹2块后,两人就同样多,原来妹妹有()块 6、三个连续自然数,中间的数是m, 两个数是()() 7、三个连续偶数,中间的数是n,它们的和是() 8、……摆一个正方形需要4根小棒,摆2个正方形需要7根小棒,3个需要 10根……摆n个正方形需要()小棒 9、一个两位数,十位上的数字为a,个位上的数字为b,用字母式子表示这个两位数是() 二、看图找出等量关系,列方程 方程一: 方程二:(挑战试一试) 三、根据题意找出等量关系,列方程。 【基础部分】注:一般在列方程时,未知数要参与运算。 1.小明原有一些故事书,送给小红4本,妈妈又给他买了9本,现在还有56本,小明原有故事书多少本? 解:设 3、大楼高29.2米,一楼准备开商店,商店层高4米,上面9层是住宅。住宅每层高多少米? 解:设2、一块长方形菜地的面积是180平方米,它的宽是12米,长是多少米? 解:设 4、猎豹是世界最快的动物,能达到每小时110km,比大象的2倍还多30km。大象最快能达到每小时多少千米? 解:设 5、一辆双层巴士共有乘客51人,下层人数是上层的2倍,上层有多少人? 1 / 21 / 2

解:设 6 、单价分别是:《科学家》2.5元/本,《发明家》3元 /本,两套丛书的本数相同,共花了22元。每套丛书多 少本? 解:设 【提高部分】 1、一个数的3倍加上这个数的2倍等于1.5,求这个数是多少?。 解:设 3、小红家到小明家距离是560米,小明和小红在校门口分手,7分钟后他们同时到家,小明平均每分钟走45m,小红平均每分钟走多少米? 解:设2、建筑工地用一辆卡车运60吨沙子,每次运4.6吨,运了几次后还剩14吨? 解:设 4、一根铁丝可以做成一个边长为25厘米的正方形,如果改折成一个长是32厘米的长方形,这个长方形的宽是多少厘米? 解:设 四、灵活运用 下面是小明编的一个计算程序。 1、假设输入的数是a,请用式子表示输出结果。 2、当a=2.6时,求出输出结果。 3、输入的数为y,输出的结果是10,y是多少? 五、能力提升 甲、乙两地仓库存有化肥,甲仓库存有化肥50吨,乙仓库存有62吨。每次从甲仓库运出5吨,同时从乙仓库运出8吨,运了多少次后,两个仓库所存化肥的吨数相等? 2 / 22 / 2

列方程解应用题(写出等量关系式)

列方程解应用题 (写出等量关系式) 1、甲乙两辆客车同时从两地相向而行,5小时后在距离中点30千米处相遇,快车每小时行60千米,慢车每小时行多少千米 2、甲地到乙地是斜坡路,一辆卡车上坡每小明行30千米,下坡每小时40千米,往返一次共用7小时,甲乙两地相距多少千米 3、10元和5元的人民币共有405元,已知10元的张数是5元张数的4倍,那么两种票面的钱各有多少张 4、一轮船从甲港 往乙港,第一天行了全程的1/2多16千米,第二天行的路程是第一天的7/8,这时离乙港还有15千米,甲、乙港之间的距离是多少千米 5、买一辆汽车,分期付款要多付出10%,若现金付款能打九折,王叔叔算了一下,两种方式有9000元的差价,这辆车原价是多少元 6、两个小组共种树200棵,甲组种的棵树的1/3比乙组种的1/10多19棵,两组各种多少棵 7、现在浓度为75%和45%的酒各一种,若要配制酒精含量65%的酒300克,应当从这两种酒中各取多少克 8、有两筐香蕉一共重80千克。从大筐取出4 1,从小筐取出21,从两筐取出的香蕉正好25千克,原来两筐香蕉各重多少千克 9、一次数学考试有10道题,评分规则对一题得10分,错一题倒扣2分,小明回答了10道题,但只得了76分,他答对了几题 10、第一个正方形的边长比第二个的2倍多1厘米,它们的周长相差24厘米。求这两个正方形的面积各多少。 11、弟弟今年5岁,哥哥今年18岁,几年后哥哥的年龄是弟弟的2倍 12、兄妹两人各有钱若干,如果兄给妹20元两人钱数就相等,如果妹给兄25元,则兄的钱是妹的2倍,问兄妹两人各有多少钱 13、一个通讯员骑自行车要在规定的时间内把信件送到某地,他每小时15千米就会早到24分钟,每小时骑12千米要迟到15分钟,规定时间是多少他去某地的路程有多远 14、食堂买的白菜比萝卜的3倍少20千克,萝卜比白菜少70千克,白菜、萝卜食堂各买了多少千克

找等量关系式的四种方法

找等量关系式的方法 1、根据题目中的关键句找等量关系。 应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有18 0棵”这样的句子叫做应用题的关键句。在列方程解应用题时,同学们可以根据关键句来找等量关系。 例如:买3支钢笔比买5支圆珠笔要多花0.9元。每 支圆珠笔的价钱是0.6元,每支钢笔多少钱? 我们可以根据题目中的关键句“ 3支钢笔比5支圆珠笔要多花0.9元”找出等量关系: 3支钢笔的价钱一5支圆珠笔的价钱= 0.9元解:设每支钢笔X元。 3X —0.6 X5 = 0.9 2、用常见数量关系式作等量关系。 我们已学过了如“工效X工时=工作总量”、“速度X时 间=路程”、“单价X数量=总价”、“单产量X数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。 例如:甲乙两辆汽车同时从相距237千米的两个车站 相向开出,经过3小时两车相遇,甲车每小时行3 8千米,乙车每小时行多少千米? 我们可以根据“速度(和)X时间=路程”找出等量关系:(甲速+乙速)X相遇时间=路程 解:设乙车每小时行X千米 (38+X)X3 = 23 7 3、把公式作为等量关系。 在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。 例如:一个梯形的面积是30平方分米,它的上底是4 公式作为等量关系即:"(上底+下底)X高-2=梯形的面积”列出方程。 解:设梯形的高是X分米 (4 + 8)XX-2 = 3 0 4、画出线段图找等量关系 对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。 例如:东乡农场计划耕6420公顷耕地,已经耕了5天, 平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷? 根据题意画出线段图: 从图中我们可以看出等量关系是:“已耕的公顷数+剩下的公顷数=6420”列出方程: 解:设平均每天要耕X公顷 780 X 5 + 3 X= 6420 想一想:根据上面的线段图还可以找出哪些等量关系。 分米,下底是8分米。求梯形的高。我们就把梯形的面积

常见等量关系

常见等量关系 列方程解应用题的一般步骤: 1.认真审题,找出已知量和未知量,以及它们之间的关系; 2.设未知数,可以直接设未知数,也可以间接设未知数; 3.列出方程中的有关的代数式; 4.根据题中的相等关系列出方程; 5.解方程; 6.答题。 一、行程问题: 基本相等关系:速度×时间=路程 (一)相遇问题 相遇问题的基本题型及等量关系 1.同时出发(两段)甲的路程+乙的路程=总路程 2.不同时出发(三段)先走的路程+甲的路程+乙的路程=总路程 (二)追及问题 追及问题的基本题型及等量关系 1.不同地点同时出发快者行驶的路程-慢者行驶的路程=相距的路程 2.同地点不同时出发快者行驶的路程=慢者行驶的路程慢者所用时间=快者所用时间+多用时间 (三)飞行、航行的速度问题等量关系: 顺水速度=静水速度+水流速度 (顺风飞行速度=飞机本身速度+风速) 逆水速度=静水速度-水流速度 (逆风飞行速度=飞机本身速度-风速) 顺水(顺风)的路程=逆水(逆风)的路程 二、商品的利润率: 基本相等关系 利润利润=售价-进价实际售价=折扣数×10%×标价利润率= 进价

利润率=进价 进价售价- 销售额=售价×销售量 售价=进价×(1+利润率) 利息-利息税=应得利息 利息=本金×利率×期数 利息税=本金×利率×期数×税率 本息和=本金+本金×年利率×年数 三、变化率的问题: 1、 基本相等关系(增长率、下降率问题) a(1±x )n =b (其中a 为变化前的量,x 为变化率,n 为变化次数,b 为变化后的量) 四、工程问题: 1、 基本相等关系 工作效率=工作总量/工作时间 工作量=工作效率×工作时间 各工作量之和=总工作量 甲、乙一起合做:1+=合做天数合做天数甲独做天数乙独做天数 甲先做a 天,后甲乙合做:1++=a 合做天数合做天数甲独做天数甲独做天数乙独做天数 全部工作量之和=各队工作量之和,各队合作工作效率=各队工作效率之和 五、不等式问题: 1、 友情提醒 注意审清题意,不要列成方程来解题。留意“至少”、“多于”、“少于”、“不超过”、“不低于”等字眼,通常包含这些字词的题目都要列不等式(组)解题,并且要理解这些字词所代表的数学意义。六、方案问题(方程与不等式结合型):

初中应用题常用等量关系式整合

应用题常用等量关系式 列方程解应用题的一般步骤: 1. 认真审题,找出已知量和未知量,以及它们之间的关系; 2. 设未知数,可以直接设未知数,也可以间接设未知数; 3. 列出方程中的有关的代数式; 4. 根据题中的相等关系列出方程; 5. 解方程; 6. 答题。 一、行程问题:速度×时间=路程 (一)相遇问题::相遇问题的基本题型及等量关系 1、同时出发(两段):甲的路程+乙的路程=总路程 2、不同时出发(三段):先走的路程+甲的路程+乙的路程=总路程 (二)追及问题:追及问题的基本题型及等量关系 (快者的速度-慢者的速度)×追及所用的时间=两者相距的路程 1、不同地点出发:慢者行驶的路程+两者相距的路程=快者行驶的路程 同地不同时出发:快者行驶的路程=慢者行驶的路程 慢者所用时间=快者所用时间+多用时间 慢着先走的路程+慢者后走的路程=快者走的路程 2、追及问题:甲、乙同向不同地: 追者走的路程=前者走的路程+两地间的距离。 (三)飞行、航行的速度问题 顺水速度=静水速度+水流速度顺风飞行速度=飞机本身速度+风速 逆水速度=静水速度-水流速度逆风飞行速度=飞机本身速度-风速 顺水速度-逆水速度=2×水速顺风速度-逆风速度=2×风速 (四):环形跑道题: ①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢 的。 ②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈的长度。 二、利润、利率问题: (一)利润问题: 售价=标价×打折数售价=进价×(1+利润率)利润=售价-进价 利润率=(利润÷进价)×100℅=(售价-进价)÷进价×100﹪ 进价=利润÷利润率利润=进价×利润率 售价-进价=进价×利润率=利润销售额=售价×销售量 (二)利率问题:

数学方程找等量关系式的几种方法

找等量关系式的几种方法 1、根据题目中的关键句找等量关系。 应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。在列方程解应用题时,同学们可以根据关键句来找等量关系。 2、用常见数量关系式作等量关系。 我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。 3、把公式作为等量关系。 在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。 4、画出线段图找等量关系 对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。 例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷? 根据题意画出线段图: 780×5 3X X 6420公顷 从图中我们可以看出等量关系是:“已耕的公顷数+剩下的公顷数=6420”列出方程: 设:平均每天要耕X公顷 780×5+3X=6420 想一想:根据上面的线段图还可以找出哪些等量关系。

1.牢记计算公式,根据公式来找等量关系。 这种方法一般适用于几何应用题,教师要让学生牢记周长公式、面积公式、体积公式等,然后根据公式来解决问题。 2.熟记数量关系,根据数量关系找等量关系。 这种方法一般适用于工程问题、路程问题、价格问题,教师在教学这三类问题时,不但要让学生理解,还应让学生记熟 工作效率×工作时间=工作总量; 速度×时间=路程; 单价×件数=总价” 等关系式。 如“汽车平均每小时行45千米,从甲地到乙地共225千米,汽车共需行多少小时?”就可以根据“速度×时间=路程”这一数量关系,列出方程45X=225。 3.抓住关键字词,根据字词的提示找等量关系。 这种方法一般适用于和差关系、倍数关系的应用题,在题中常有这样的提示:“一共有”、“比……多(少)”、“是……的几倍”、“比……的几倍多(少)”等。在解题时,可根据这些关键字词来找等量关系,按叙述的顺序列出方程。 如“四年级有学生250人,比三年级的2倍少70人,三年级有学生多少人?”,根据题中“比……少”可知:三年级的2倍减去70人等于四年级的人数,从而列出方程2X-70=250。 4.找准单位“1”,根据“量率对应”找等量关系。 这种方法一般适用于分数应用题,有时也适用“倍比关系”应用题。对于分数应用题来说,每一个分率都对应着一个具体的量,而每一个具体的量也都对应着一个分率。在倍比关系的应用题中,也应找准标准量。因此,正确地确定“量率对应”是解题的关键。 5.补充缺省条件,根据句子意思找等量关系。 这类应用题的特征是含有“比……多(少)”、“比……增加(减少)”等特定词,如:甲比乙多“几分之几”、少“几分之几”、增加“几分之几”、减少“几分之几”等类型的语句,题目中由于常缺少主语,造成学生理解上的困难。因此,

常用应用题常用等量关系式

常用应用题常用等量关系式 列方程解应用题的一般步骤: 1. 认真审题,找出已知量和未知量,以及它们之间的关系; 2. 设未知数,可以直接设未知数,也可以间接设未知数; 3. 列出方程中的有关的代数式; 4. 根据题中的相等关系列出方程; 5. 解方程; 6. 答题。 一、行程问题:速度×时间=路程 (一)相遇问题:相遇问题的基本题型及等量关系 1、同时出发(两段):甲的路程+乙的路程=总路程 2、不同时出发(三段):先走的路程+甲的路程+乙的路程=总路程 (二)追及问题:追及问题的基本题型及等量关系 (快者的速度-慢者的速度)×追及所用的时间=两者相距的路程 1、不同地点出发:慢者行驶的路程+两者相距的路程=快者行驶的路程 同地不同时出发:快者行驶的路程=慢者行驶的路程 慢者所用时间=快者所用时间+多用时间 慢着先走的路程+慢者后走的路程=快者走的路程 2、追及问题:甲、乙同向不同地: 追者走的路程=前者走的路程+两地间的距离。 (三)飞行、航行的速度问题 顺水速度=静水速度+水流速度顺风飞行速度=飞机本身速度+风速 逆水速度=静水速度-水流速度逆风飞行速度=飞机本身速度- 风速 顺水速度-逆水速度=2×水速顺风速度-逆风速度=2×风速 (四):环形跑道题: ①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。 ②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈长度。 二、利润、利率问题: (一)利润问题: 售价=标价×打折数售价=进价×(1+利润率)利润=售价-进价 利润率=(利润÷进价×100℅利润率=(售价-进价)÷进价×100﹪ 进价=利润÷利润率利润=进价×利润率 利润=售价-进价利润=进价×利润率销售额=售价×销售量 (二)利率问题: 利息=本金×利率×存期(年数、月数)利息税=本金×利率×期数×税率 本息和=本金+利息=本金+本金×利率×存期利息- 利息税=应得利息 (三)工程问题(一般把工作总量设为单位1) 工作总量=工作效率×工作时间 各工作量之和=总工作量 各队合作工作效率=各队工作效率之和 工作量并不是具体数量,因而常常把工作总量看作整体1, 工作效率=工作总量除以工作时间 甲、乙一起合做:合做天数除以甲独做天数+合做天数除以乙独做天数=1 甲先做a 天,后甲乙合做:a 除以甲独做天数+合做天数除以甲独做天数+合做天数除以乙独做天数=1

(完整版)解方程等量关系式的四种方法

找等量关系式的四种方法 1、根据题目中的关键句找等量关系。 应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。在列方程解应用题时,同学们可以根据关键句来找等量关系。 例如:买3支钢笔比买5支圆珠笔要多花0.9元。每支圆珠笔的价钱是0.6元,每支钢笔多少钱? 我们可以根据题目中的关键句“3支钢笔比5支圆珠笔要多花0.9元”找出等量关系:3支钢笔的价钱-5支圆珠笔的价钱=0.9元 设:每支钢笔X元。3X-0.6×5=0.9 2、用常见数量关系式作等量关系。 我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。 例如:甲乙两辆汽车同时从相距237千米的两个车站相向开出,经过3小时两车相遇,甲车每小时行38千米,乙车每小时行多少千米? 我们可以根据“速度(和)×时间=路程”找出等量关系:“(甲速+乙速)×相遇时间=路程” 设:乙车每小时行X千米 (38+X)×3=237 3、把公式作为等量关系。 在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。 例如:一个梯形的面积是30平方分米,它的上底是4分米,下底是8分米。求梯形的高。我们就把梯形的面积公式作为等量关系即:“(上底+下底)×高÷2=梯形的面积”列出方程。 设:梯形的高是X分米 (4+8)×X÷2=30 4、画出线段图找等量关系 对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,

再根据线段图找出等量关系。 例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷? 根据题意画出线段图: 从图中我们可以看出等量关系是:“已耕的公顷数+剩下的公顷数=6420”列出方程: 设:平均每天要耕X公顷 780×5+3X=6420 想一想:根据上面的线段图还可以找出哪些等量关系。

一元一次方程如何找等量关系

一元一次方程如何找等量关系 列方程找等量关系的关键就是找到题目中的不变量,不变量有不同的表现形式分为两种,题目中的已知数,也就是具体的数值,这种是比较简单的,一眼就能看出来的;有的是通过未知数与题目中的数字运算结果作不变量。当然理解题意非常重要,只有理解了,才能分清等量关系。好,下面我就一些例题详细作以讲解 1.找题目中已知数或者是题目中的一个或多个数字的运算结果作为不变量,让它作为等量关系的一边,把它放在方程的右边(也可以在左边,为了方便叙述,就把它放在右边),然后设未知数,通过未知数和题目中数字的运算列出代数式,使代数式的意义和右边不变量的意义相同,把代数式放在方程的左边,这样方程就会轻而易举的列了出来。 例题1.甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人? 这个题目中有两个数字,这两个数字都是不变量,任何题目中的数字都是不变量,找到一个不变量,放在方程的右边,我们再用x与题目中的数字把它表示出来。这个题目中的我们把98作为不变量放在方程的右边,98代表的含义是甲乙两班共有学生的人数,根据题意可以设甲班人数为x,根据第二个条件“甲班比乙班多6人”,就可以用x表示出乙班的人数为x-6,这样就可以用x把98所代表的含义表示出来x+(x-6),这样就可以把方程列出来了: x+(x-6)=98 同样,我们可以把6作为不变量来列方程,这里不再叙述,同学们自己可以根据这个思路列出方程来。 例题2.甲、乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B 地返回,在途中遇到乙,这时距他们出发时已过了3小时。求两人的速度。 这个题目中的不变量就是两地之间的距离,这里不做过多解释了。 解:设乙的速度是x 千米/时, 3x+3 (2x+2)=25.5×2 2.先把未知数设出来,然后直接把它放在方程的右边或者与题目中的一个或多个数字的运算结果(代数式)放在方程的右边(也可以在左边,为了方便叙述,

等量关系教案

四年级《等量关系》教学设计 教学内容:北师大版小学数学四年级下册第五单元第64-65页 教材分析:本节课是在学生学会用字母表示数功能的基础上教学的,教材通过跷跷板情境,引导学生用语言描述具体情境中的等量关系,通过反复体验感知找出等量关系,本节课的教学对学生学习方程、解方程及运用方程解决简单的实际问题起着承上启下的作用,它是学生学习用方程解决问题的起始课,在本单元中具有重要的地位。 教学目标: 1、结合具体情境,在用多种方法表示等量关系的活动中了解等量关系,知道同一个等量关系可以有不同的表示形式。 2、初步体会等量关系在日常生活中的广泛存在,体会数学的应用价值。 3、培养学生自主探究和合作交流的能力。 教学重点:能够在具体情境中找出等量关系 教学难点:找等量关系 教法:通过具体情境引导学发现等量关系,并能用语言和算式来表述,并在反复体会和深入探究中多角度理解等量关系。 学法:以自主探究、小组合作作为学习的主要方式。由直观到抽象,在探索和交流中感受、体会和理解。 教学过程: 一、创设情境 1、谈话导入: 师:同学们周末都喜欢去哪儿玩?为什么? 生:公园、游乐场等。 2、出示跷跷板: ①师:喜欢玩吗?说说玩跷跷板的感受? 生:起、落,有意思。 ②师:看图并说说三幅图分别是什么意思。 生:(1)1只鹅比2只鸭重 (2)3只鸭比1只鹅重

(3)1只鹅与2只鸭子和1只鸡一样重 二、合作探究 1、初步感知等量关系 师:跷跷板怎样就平衡了?你能尝试表示这组相等的关系吗? 生:1只鹅的质量等于2只鸭子和1只鸡的质量。 1只鹅的质量=2只鸭子+1只鸡的质量 师:像这样的关系,我们就称之为等量关系。 2、进一步体会等量关系 ①师:生活中有很多的数量关系,我们一起去看看吧!看,著名的篮球运动员姚明也来到了我们的课堂,他最大的特点是什么?(特别高)对呀,他的身高是226厘米。笑笑和妹妹跟姚明比了一下身高。(出示妹妹、姚明和笑笑身高关系) ②读懂信息:哪两个人之间的身高有关系?什么关系? ③你能表示出妹妹、姚明和笑笑身高的关系吗? 合作要求: 1、借助体现数量关系的句子,理解、抓住关键句子。 2、可以用文字、画图等形式来表示,选你们喜欢的方式。 ④展示汇报: 师:哪一组愿意汇报你们组的合作结果? 生:文字、式子、画图。 ⑤小结 说说怎样找等量关系? 3、多角度认识等量关系 师:老师从刚才的信息中也找到了一些等量关系式,我们一起来看看,你能看懂吗? 姚明身高÷2=妹妹身高笑笑身高—20厘米=妹妹身高 姚明身高÷2=笑笑身高—20厘米 师:观察这3个等量关系式你从中有什么发现? 生:妹妹身高有两种表示形式,通过妹妹身高的两种形式我们得出了又一个等量关系即:

找等量关系式的四种方法

找等量关系式的四种方法 1、从事情变化的结果找等量关系。 例如:一辆公共汽车上有乘客38人,在火车站有12人下车,又上来一些人,这时车上有乘客54人。在火车站上车的有多少人?分析事情变化的原因与结果,可以得出等量关系:原有人数-下车人数+上车人数= 现有人数 从而可以设未知数列出方程: 38-12+X=54 2、根据题目中的关键句找等量关系。 应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。在列方程解应用题时,同学们可以根据关键句来找等量关系。 例如:买3支钢笔比买5支圆珠笔要多花0.9元。每支圆珠笔的价钱是0.6元,每支钢笔多少钱?

我们可以根据题目中的关键句“3支钢笔比5支圆珠笔要多花0.9元”找出等量关系:3支钢笔的价钱-5支圆珠笔的价钱=0.9元 设:每支钢笔X元。3X-0.6×5=0.9 3、用常见数量关系式作等量关系。 我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。 例如:甲乙两辆汽车同时从相距237千米的两个车站相向开出,经过3小时两车相遇,甲车每小时行38千米,乙车每小时行多少千米? 我们可以根据“速度(和)×时间=路程”找出等量关系:“(甲速+乙速)×相遇时间=路程” 设:乙车每小时行X千米 (38+X)×3=237 4、把公式作为等量关系。

例如:(第75页第4题)一幅画长是宽的2倍,做画框共用了1.8米的木条,求这幅画的面积是多少?根据长方形的周长公式:(长+宽)×2=周长,列方程:设宽为X米,(2X+X)×2=1.8求出宽,再用长和宽求出面积。 又如:用80厘米长的铁丝,围成一个长方形,要使它的宽是16厘米,长应当是多少厘米?根据长方形周长公式列出等量关系:(长+宽)ⅹ2=长方形周长。设长为厘米,列方程得:(X+16)×2=80

一元一次方程等量关系式

一元一次方程的等量关系式: 寻找等量关系的常见方法 (1)抓住数学术语找等量关系 应用题中的数量关系:一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程,例如:“学校开展植树活动,五年级植树50棵,比四年级植树棵数的2倍少4棵,四年级植树多少棵?”这道题的关键词是“比……少”,从这里可以找出这样的等量关系:如:四年级植树棵数的2倍减去4等于五年级植树的棵数,由此列出方程2 X-4=50.(2)根据常见的数量关系找等量关系 常见的数量关系:工作效率×工作时间=工作总量;单价×数量=总价;速度×时间=路程……,在解题时,可以根据这些数量关系去找等量关系.例如:“某款式的服装,零售价为36元1套,现有216元,问一共可以买多少套衣服?”根据“单价×数量=总价”的数量关系。 (3)根据常用的计算公式找等量关系 常用的计算公式有:长方形面积=长×宽;可以根据计算公式找等量关系.例如:“一个长方形的面积是19平方米,它的长是4米,那么宽是多少米?”根据长方形面积的计算公式“长×宽=面积”,可列出方程4 =19. (4)根据文字关系式找等量关系

例如:“学校五年级一班有36人,二班有37人;一、二、三班共有108人,那么三班有多少人?” 此题用文字表示等量关系是: 一班+二班+三班=总数 36+37+X =108 一班+二班=总数-三班36+37=108- X 一班+三班=总数-二班 36+X =108-37 二班+三班=总数-一班37+X=108-36 (5)根据图形找等量关系 例如:“某农场有400公顷小麦,前三天每天收割70公顷小麦,剩下的要在2天内收割完,平均每天要收割小麦多少公顷?”先根据题意画出线段图,从线段图上可以直观地看出:割麦总数=前3天割麦数+后2天割麦数.根据这个关系式,可列出方程70×3+2 X=400. 常见等量关系式的类型 1)行程关系:基本等量关系(路程=速度×时间)一、相遇问题:甲、乙相向而行(方向不同,出发地不同) 总路程=甲走的路程+乙走的路程。 相遇路程=速度和(甲的速度+乙的速度)×相遇时间 相遇时间=相遇路程÷速度和(甲的速度+乙的速度) 速度和(甲的速度+乙的速度)=相遇路程÷相遇时间 二、追及问题:甲、乙同向不同地(方向相同,出发地不同),

找等量关系专项练习

五年级列方程解应用题找等量关系专项练习 一、翻译法:将题目中的关键性语句翻译成等量关系。 (一)从关键语句中寻找等量关系。 1.关键句是“求和”句型的. 例:先锋水果店运来苹果和梨共720千克,其中苹果是270。运来的梨有多少千克? 2.关键句是“相差关系”句型。关键词:比一个数多几,比一个数少几。 例:小张买苹果用去7.4元,比买橘子多用0.6元,每千克橘子多少元? (推荐)①直译法列式:从“比”字后面开始列: ②比较法列式:较大数-较小数=相差数: 3.关键句是“倍数关系”句型。 饲养场共养2400只母鸡,母鸡只数是公鸡只数的2倍,公鸡养了多少只? (推荐)①列乘法式:(从“是”字后面开始列) ②列除法式: 4.有两个关键句,既有“倍数”关系,又有“求和”或者“相差”关系。一般把“和差”关 系作为全题的等量关系式,倍数关系作为两个未知量之间的关系,用来设未知量。(1倍数设为x,几倍数设为几x。) 例:果园里共种240棵果树,其中桃树是梨树的2倍,这两种树各有多少棵? 例:河里有鹅鸭若干只,其中鸭的只数是鹅的只数的4倍。又知鸭比鹅多27只,鹅和鸭各多少只? 5、如果只有和差关系的话,一般把求和关系作为全题的等量关系式,相差关系作为两个未知 量之间的关系。(把较小数设为x,则较大数为x+a。) 例:后街粮店共运来大米986包,上午比下午多运14包,上午和下午各运多少包?

(二)从关键词上寻找等量关系式。“一共”、“还剩”。 例:网球场一共有1428个网球,每筒装5个,还剩3个。装了多少筒? 例:一辆公共汽车上有乘客38人,在火车站有12人下车,又上来一些人,这时车上有乘客 54人。在火车站上车的有多少人? (三)从常见的数量关系中找等量关系。 这种方法一般适用于工程问题、路程问题、价格问题。 工作效率×工作时间=工作总量速度×时间=路程单价×数量=总价 例:两辆汽车同时从相距的两个车站相向开出,3小时两车相遇,一辆汽车每小时行68千米,另一辆汽车每小时行多少千米? 理解:这是典型的相遇问题(行程问题)。速度和×相遇时间=相遇路程 (四)从公式中找等量关系。 例:一幅画长是宽的2倍,做画框共用了 1.8米的木条,求这幅画的面积是多少? 理解:“做画框共用了的木条”这句话是告诉我们画框的周长。 (五)从隐蔽条件中找等量关系。 例:鸡和兔数量相同,两种动物的腿共有48条,求鸡和兔各有多少只? 理解:题中隐藏了两个重要的条件:鸡有2条腿,兔有4条腿。 例:两个相邻的奇数之和是176,这两个数各是多少? 理解:题中隐藏的条件:大奇数比小奇数多2。 二、列举法。将已知条件和所求问题列举出来,从而找出数量之间的相等关系。 例:某工地有一批钢材,原计划每天用6吨,可以用70天,现在每天节约0.4吨,现在可以用多少天? 每天用量天数 原计划 6 70 实际 6-0.4 x 实际总量=原计划总量

列方程解应用题时如何找等量关系

列方程解应用题时如何找等量关系 如何让学生正确提取应用题中的数量关系在上一单元学生学习方程的时候,对于已有的方程一般都能正确解答,但是在碰到一些需要用方程解答的应用题时,往往会搞不清题目之中的数量关系,特别是一些题目中出现两个数量关系时,很多学生好像一下子蒙了,而提取出正确的数量关系,又是解决这些应用题的关键所在,所以最后导致列出来的方程不符合题意,那么下面的计算都将是做无用功。针对这一现象,应该怎样提高学生的分析能力,从而提取正确的数量关系?例:为了美化校园,五、六年级学生开展植树活动。计划六年级学生比五年级学生多植树75棵,又正好是五年级学生植树棵数的1.5倍。五、六年级学生各植树多少棵? 【答】: 应用题教学是小学数学教学的一个重点,也是一个难点。如何正确解答,一般处决于学

生的理解能力,即能正确理解题意,分析已知条件,理清数量之间的关系,从而推导出正确的解答方法。但在实际教学中,尤其是教学列方程解应用题时,我们也常会发现,学生找不到等量关系,从而无法正确解答。那么,如何让学生正确地找出应用题中的等量关系呢?我认为可以从以下几方面入手:1.牢记计算公式,根据公式来找等量关系。这种方法一般适用于几何应用题,教师要让学生牢记周长公式、面积公式、体积公式等,然后根据公式来解决问题。 如一个长方形的长为15厘米,面积为80 平方厘米,它的宽为多少厘米?”一题,就可以根据长方形的面积计算公式长X宽= 长方形面积”来计算,列出方程:15X=80 。 2.熟记数量关系,根据数量关系找等量关系。这种方法一般适用于工程问题、路程问题、价格问题,教师在教学这三类问题时,不但要让学生理解,还应让学生记熟工作效率X 工作时间=工作总量;速度x时间=路程;单价X件数

五年级列方程解应用题找等量关系经典练习

五年级列方程解应用题找等量关系经典练习 整理:王宪纬 一、译式法 将题目中的关键性语句翻译成等量关系。 (一)从关键语句中寻找等量关系。 1、关键句是“求和”句型的. 例:先锋水果店运来苹果和梨共720千克,其中苹果是270。运来的梨有多少千克? 理解:720千克由两部分组成:一部分是苹果,一部分是梨子。 苹果+梨=720 270+x=720 2、关键句是“相差关系”句型。 关键词:比一个数多几,比一个数少几, 例:小张买苹果用去7.4元,比买橘子多用0.6元,每千克橘子多少元? 理解:苹果与橘子相比较,多用了0.6元。 (推荐)直译法列式:从“比”字后面开始列:橘子+0.6=苹果 2x+0.6=7.4 比较法列式:较大数-较小数=相差数:苹果-橘子=0.6元 7.4-2x=0.6 3、关键句是“倍数关系”句型。 饲养场共养2400只母鸡,母鸡只数是公鸡只数的2倍,公鸡养了多少只? 理解:公鸡是1倍数,要求,母鸡是1.5倍数,为2400只。 (推荐)列乘法式:(从“是”字后面开始列)公鸡×2=母鸡 X ×2=2400 列除法式:母鸡÷公鸡=2倍 2400÷x=2 4、有两个关键句,既有“倍数”关系,又有“求和”或者“相差”关系。(必考考点)一般把“和差”关系作为全题的等量关系式,倍数关系作为两个未知量之间的关系,用来设未知量。(1倍数设为x,几倍数设为几x。) 如果只有和差关系的话,一般把求和关系作为全题的等量关系式,相差关系作为两个未知量之间的关系。(把较小数设为x,则较大数为x+a。) 例:果园里共种240棵果树,其中桃树是梨树的2倍,这两种树各有多少棵? 解:设梨树为x棵,则桃树为2x棵。 桃树+梨树=240 2x+x=240 例:河里有鹅鸭若干只,其中鸭的只数是鹅的只数的4倍。又知鸭比鹅多27只,鹅和鸭各多少只? 解:设鹅为x只,则鸭为4x只。 鹅+27只=鸭鸭-鹅=27只 x+27=4x4x-x=27 例:后街粮店共运来大米986包,上午比下午多运14包,上午和下午各运多少包? 解:设下午运了x包,则上午运了x+14包。 上午+下午=全天共运的 (x+14)+x=986

列方程解应用题如何寻找找等量关系

列方程解应用题如何寻找找等量关系 在教学学生列方程解应用题后,学生时常会出现一些问题。例如:电视机厂计划30天制造5400台电视机,实际每天比计划多制造20台,照这样计算,完成原计划要用多少天? 这道题,教师要求用方程解,有的学生却是这样做的: 解:设完成原计划要用x天。 x=5400÷(5400÷30+20) x=27 上面的算式虽然也是含有未知数的等式,但实际上是一种算术方法,其中缘故多属学生受原有思维定势影响,没有将未知数量同已知数量统一起来找到数量间的相等关系,只是从形式上列出了方程。要彻底解决以上问题,必须引导学生突破列方程解应用题的难点——找数量间的相等关系。在教学实践中,我通过以下方法教学,取得了较好的效果。 一、根据题目叙述顺序直接写等量关系。 一些应用题,可根据事物发展顺序和题目的叙述顺序写等量关系。 如: 一辆公共汽车原有48人,到电影院时下去了21人,又上来了一些人,车内现有30人。在电影院时上来了多少人? 根据题目叙述顺序,学生很容易得出:原来的—下去的+上来的=现有的。然后只需要用数字和字母填换文字数量,即可列出方程。

二、利用学生熟悉的数量关系和常用的计算公式。 列方程解应用题的一大特点就是未知数量参加列式,使逆向思维的问题转化成顺向思维的问题,学生易于接受。而在此之前的一些数量关系,如: 单价×数量=总价 共组效率×工作时间=工作总量 速度×时间=路程等 还有一些平面图形的周长和面积公式,均可直接作等量关系,而后将已知条件同所设未知数一同对号入座,就可以顺利列出方程。 三、找应用题中的关键句。 “少年宫合唱队有84人,合唱队的人数比舞蹈队的3倍多15人,舞蹈队有多少人?”我着重引导学生对其中“合唱队的人数比舞蹈队的3倍多15人”一句的理解,为了帮助学生理解,我提出了以下问题加以引导:句中有哪几个相比的量?量与量之间的关系怎么样?这句话反过来如何讲?等学生明确了关键句,实际也就是找到了等量关系。 四、利用列表法直观手段找等量关系。 书架有两层,上层有34本书,若将上层书取6本放入下层,则两层书一样多,下层原有多少本书?

找等量关系式的四种方法

找等量关系式的方法 1、根据题目中的关键句找等量关系。 应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。在列方程解应用题时,同学们可以根据关键句来找等量关系。 例如:买3支钢笔比买5支圆珠笔要多花0.9元。每支圆珠笔的价钱是0.6元,每支钢笔多少钱? 我们可以根据题目中的关键句“3支钢笔比5支圆珠笔要多花0.9元”找出等量关系: 3支钢笔的价钱-5支圆珠笔的价钱=0.9元 解:设每支钢笔X元。 3X-0.6×5=0.9 2、用常见数量关系式作等量关系。 我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。 例如:甲乙两辆汽车同时从相距237千米的两个车站相向开出,经过3小时两车相遇,甲车每小时行38千米,乙车每小时行多少千米? 我们可以根据“速度(和)×时间=路程”找出等量关系:(甲速+乙速)×相遇时间= 路程 解:设乙车每小时行X千米 (38+X)×3=237 3、把公式作为等量关系。 在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。 例如:一个梯形的面积是30平方分米,它的上底是4分米,下底是8分米。求梯形的高。我们就把梯形的面积公式作为等量关系即:“(上底+下底)×高÷2=梯形的面积”列出方程。 解:设梯形的高是X分米 (4+8)×X÷2=30 4、画出线段图找等量关系 对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。 例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷? 根据题意画出线段图: 从图中我们可以看出等量关系是:“已耕的公顷数+剩下的公顷数=6420”列出方程: 解:设平均每天要耕X公顷 780×5+3X=6420 想一想:根据上面的线段图还可以找出哪些等量关系。

简易方程--怎样找等量关系

怎样找等量关系 一、抓住数学术语找等量关系 应用题中的数量关系:一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍””等术语表示。在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程,例如:“学校开展植树活动,五年级植树50棵,比四年级植树棵数的2倍少4棵,四年级植树多少棵?”这道题的关键词是“比……少”,从这里可以找出这样的等量关系:四年 级植树棵数的2倍减去4等于五年级植树的棵数,由此列出方程。 二、根据常见的数量关系找等量关系 常见的数量关系:工作效率×工作时间=工作总量;亩产量×亩数=总产量;单价×数量=总价;速度×时间=路程……,在解题时,可以根据这些数量关系去找等量关系。例如:“某款式的服装,零售价为36元1套,现有216元,问一共可以买多少套衣服?”根据“单价×数量 =总价”的数量关系,可以列出方程。 三、根据常用的计算公式找等量关系 常用的计算公式有:长方形面积=长×宽;圆面积=……在解题时,可以根据计算公 式找等量关系。例如:“一个长方形的面积是19平方米,它的长是4米,那么宽是多少米?” 根据长方形面积的计算公式“长×宽=面积”,可列出方程。 四、根据文字关系式找等量关系 例如:“学校五年级一班有36人,二班有37人;一、二、三班共有108人,那么三班有多少人?”此题用文字表示等量关系是: 一班+二班+三班=总数 一班+二班=总数-三班 一班+三班=总数-二班 二班+三班=总数-一班 根据这些文字等量关系式,可列出以下方程,如: 五、根据图形找等量关系 例如:“某农场有400公顷小麦,前三天每天收割70公顷小麦,剩下的要在2天内收割完,平均每天要收割小麦多少公顷?”先根据题意画出线段图。 从线段图上可以直观地看出:割麦总数=前3天割麦数+后2天割麦数。根据这个关系式, 可列出方程。

北师大版 四年级下册 第14讲 解方程——等量关系(学生版)

教学辅导教案 下列哪些是方程? 8x=32 42+12=54 5+3x=0 3x+4 74+m=69 80x-56 58x=0 33-22=11 1.用字母或者含有字母的式子都可以表示数量,也可以表示数量关系. 2.用字母表示有关图形的计算公式: ①长方形周长公式:C=2(a+b). ①长方形面积公式:S=ab. ①正方形周长公式:C=4a. ①正方形面积公式:S=a2. 3.用字母表示运算定律:如果用a.b.c分别表示三个数,那么 ①加法交换律a+b=b+a ①加法结合律(a+b)+c=a+(b+c) ①乘法交换律a×b=b×a ①乘法结合律(a×b)×c=a×(b×c) ①乘法分配律(a±b)×c=a×c±b×c ①减法的运算性质a-b-c=a-(b+c) ①除法的运算性质a÷b÷c=a÷(b×c) 4.在含有字母的式子中,字母和字母之间.字母和数字之间的乘号可以用“·”表示或 省略不写,数字一般都写在字母前面.数字1与字母相乘时,1省略不写,字母按顺 第1页共8页

序写. 5.区别a的平方和2乘a的区别. 例1.填一填 (1)爸爸比小东大28岁,当小东a岁时,爸爸是()岁. (2)简写下面各式. x×0.8=()m·n=()2×(a+c)= () (3)小王每分钟打字90个,一份稿件她打了m分钟,这份稿件一共有()个字. (4)苹果和香蕉的单价分别是每千克4.5元和6元,买x千克苹果和y千克香蕉共需要()元. (5)小红看一本书有a页,她每天看5页,看了x天后,一共看了()页,还剩()页. 例2.写出题中确定的等量关系. (1)四(2)班男生人数,女生人数,这个班共有人数. (2)一个三角形的面积,底,高. (3)钢笔的单价,数量,总价. (4)汽车行驶的时间,路程,速度. 例3.写出等量关系并解答 (1)某数的4倍比这个数的一半大2,求这个数.

找等量关系列方程的技巧

找等量关系列方程的技巧-孩子学奥数的一定要看 寻找相等关系是列方程解应用题的关键步骤。列一元一次方程解应用题,首先要根据题意及题中的数量关系,找出能够反映应用题全部含义的一个相等关系,然后再设未知数布列方程求解。对于条件表达不够明确的应用题,可用如下的方法寻找相等关系。 一、动态问题静止看 静态的问题是指题中关系对应的量处于相对稳定的状态,而动态的问题则是指题中条件所表达的是不断变化的相等关系,对于这类问题,要善于在动中取静,以静制动。 例1.运动场的跑道一圈长400m,甲练习骑自行车,平均每分钟骑350m,乙练习跑步,平均每分钟跑250m.两人从同一处同时反向出发,经过多长时间首次相遇? 分析:甲、乙两人出发后,所走过的路程、时间都在发生变化,但跑道的长度是固定不变的,是一个静态量,首次相遇即甲与乙走的路程和为400m,据此,可布列方程求解. 设两人经过x分首次相遇,根据题意,得 350x+250x=400. 解得x=,即经过分两人首次相遇. 二、变化之中找不变 许多问题情景是在不断变化的,但在变化的问题情景中,肯定存在着不变量,找到这个不变量,我们就可以次为相等关系布列方程.

例2.某校组织师生春游,若单独租用45座的客车若干辆,则刚好坐满;若单独租用60座的客车,则可以少租一辆,且空余30个座位.试问该校有多少人参加春游? 分析:无论采用哪种租车方式,该校参加春游的人数是不变的,故可以此为相等关系,即租45座客车的坐车人数=租60座客车的坐车人数,采用间接设元的方法布列方程求解. 设租45座客车x辆,则租60座客车(x-1)辆,根据题意得 45x=60(x-1)-30,解得 x=6. 于是45x=45×6=270(人). 即该校参加春游的人数是270人. 三、隐含条件摆“桌面” 显性的相等关系是指根据所给的条件及所学的公式、性质、定律等一目了然就能看出的相等关系,而隐性的相等关系则是指问题中有一些隐含的条件,这类条件如果不认真去挖掘、分析,摆到“桌面”上,就不能清晰地看出其中的相等关系. 例3.哥哥对弟弟说:“当我像你这么大年龄时,你才3岁,而当你到了我现在的年龄时,我就24岁了”根据以上对话,你能算出兄弟两人现在的年龄吗? 分析:此题初看似乎没有明显的等量关系可寻,但生活经验告诉我们,年龄问题中隐含着的条件是“要长都长”,也即兄弟两人的年龄差不变.据此条件,并借助于线段图,可知题目蕴藏着的等量关系是:3×年龄差=24-3. 设兄弟两人的年龄差为x岁,根据题意,得 3x=24-3,解得x=7. 于是弟弟的年龄为3+7=10(岁),

相关文档
相关文档 最新文档