文档库 最新最全的文档下载
当前位置:文档库 › 熔焊

熔焊

熔焊
熔焊

钨极惰性气体保护焊

1 TIG焊的原理及应用

可以用于几乎所有金属和合金的焊接,特别是对铝、镁、钛、铜等有色金属及其合金、不锈钢、耐热钢、高温合金和钼、铌、锆等难熔金属等的焊接最具优势。TIG焊有手工焊和自动焊两种方式。它适用于各种长度焊缝的焊接;既可以焊接薄件,也可以用来焊接厚件;既可以在平焊位置焊接,也可以在各种空间位置焊接。

通常被用于焊接厚度为6mm以下的焊件。如果采用脉冲钨极氩弧焊,焊接厚度可以降到0.8mm以下。

对于大厚度的重要结构(如压力容器、管道等) ,利用TIG焊进行打底焊。

2 TIG焊设备的组成

手工T1G焊设备包括焊接电源、控制系统、引弧装置、稳弧装置(交流焊接设备用)、焊枪、供气系统和供水系统等部分。

其中,控制系统包括两部分:一部分是为了保证焊接电源实现T1G焊所要求的垂降外特性、电流调节特性等而设置的;另一部分是为了协调气体与电源之间先后顺序而设置的程序控制系统。

3 TIG焊的特点

优点:

(1)能够实现高品质焊接,得到优良的焊缝。这是由于电弧在惰性气氛中极为稳定,保护气对电弧及熔池的保护很可靠,能有效地排除氧、氮、氢等气体对焊接金属的侵害。

(2)焊接过程中钨电极是不熔化的,故易于保持恒定的电弧长度,不变的焊接电流,稳定的焊接过程,使焊缝很美观、平滑、均匀。

(3)焊接电流的使用范围通常为5~500A。即使电流小于10A,仍能正常焊接,因此特别适合于薄板焊接。如果采用脉冲电流焊接,可以更方便地对焊接热输入进行调节控制。

缺点

(1)焊接效率低于其它方法。由于钨极承载电流能力有限,且电弧较易扩展而不集中,TIG 焊的功率密度受到制约,致使焊缝熔深浅,熔敷速度小,焊接速度不高和生产率低。

(2)氩气没有脱氧或去氢作用,所以焊前对除油、去锈、去水等准备工作要求严格,否则易产生气孔,影响焊缝的质量。

(3)焊接时钨极有少量的熔化蒸发,钨微粒如果进入熔池会造成夹钨,影响焊缝质量,电流过大时尤为明显。

(4)由于生产效率较低和惰性气体的价格较高,生产成本比焊条电弧焊、埋弧焊和CO2气体保护焊都要高。

4 直流TIG焊时,电极是接正还是接负,对电弧的性质及对母材的熔化的影响

(1)直流反接

具有阴极清理作用,可以获得表面光亮美观、成形良好的焊缝。

反接时钨极是电弧的阳极,不具有发射电子的作用,而是接受大量电子及其携带的大量能量。因而易产生过热,甚至熔化。因而钨极为阳极时的许用电流仅为阴极时的1/10左右,钨极端头形状都是圆球状;另一方面,焊件为阴极,阴极斑点寻找氧化膜,不断游动,使得电弧分散,加热不集中,因而得到浅而宽的焊缝(见图6-5a),生产率低。

由于上述原因,TIG焊直流反接用得较少,只用于厚度约3mm以下的铝、镁及其合金焊接。

(2)直流正接

适用于除焊接铝、镁及其合金以外的其它金属材料焊接。

(1)对钨极具有冷却作用,钨极不易过热烧损,可以采用较细的钨极,通过较大的电流,电极形状保持良好,寿命较长。

(2)能得到深而窄的焊缝(见图6-5b),生产率高,焊件的收缩和变形也较小。

(3)钨棒的热发射能力很强,当采用小直径钨棒时,电流密度可以增大,即使在小电流下电弧也能稳定。

5 钨极材料的选择

对电极的要求及钨极性能

应满足三个条件:(1)引弧及稳弧性能好;(2)耐高温、不易损耗;(3)电流容量大。

6 焊接参数的选择

TIG焊焊接参数有:焊接电流、电弧电压(电弧长度)、焊接速度、保护气体流量、钨极伸出长度、填丝速度等

(1)焊接电流是决定焊缝熔深的最主要参数,要按照焊件材料、厚度、接头形式、焊接位置等因素来选定。一般先确定电流类型和极性,然后确定电流的大小。

TIG焊开始和结束时对焊接电流通常都采取缓升和缓降

(2)电弧电压电弧电压主要影响焊缝宽度,它由电弧长度决定。TIG焊电弧长度根据电流值的大小通常选择在1.2~5mm之间。需要填加焊丝时,要选择较长的电弧长度。(3)焊接速度当焊接电流确定后,焊接速度决定单位长度焊缝的热输入。提高焊接速度,熔深和熔宽均减小;反之,则增大。如果要保持—定的焊缝成形系数,焊接电流和焊接速度应同时提高或减小。

TIG焊在5~50cm/min的焊接速度下能够维持比其它焊接方法更为稳定的电弧形态(4)焊丝直径与填丝速度焊丝直径与焊接板厚及接头间隙有关。当板厚及接头间隙大时,焊丝直径应选大一些焊丝的送丝速度则与焊丝的直径、焊接电流、焊接速度和接头间隙等因素有关。一般焊丝直径大时送丝速度慢,焊接电流、焊接速度和接头间隙大时,送丝速度快。

(5)保护气体流量TIG焊决定保护效果的主要因素有保护气流量、喷嘴尺寸、喷嘴与母材的距离、外来风等。保护气流量的选择通常首先要考虑所需保护的范围、焊枪喷嘴尺寸以及所使用焊接电流的大小。

(6)钨极直径与形状钨极直径要根据焊接电流值和极性来选取。在同一直径下,直流正接时允许的电流数值较大,而直流反接及交流焊接时允许的电流小。

钨极的端部形状对电弧的稳定性及自身的损耗有影响。在直流正接和小电流薄板焊接时,可使用小直径钨极并将末端磨成尖锥角;直流反接和交流焊接时,把电极前端形状磨成圆形最合适。

(7)钨极伸出长度对焊接保护效果及焊接操作性均有影响。该长度应根据接头的形状确定,并对气流做适当调整。

熔焊方法及设备

熔化极氩弧焊的特点

优点:

(1)MIG焊电弧空间无氧化性,能避免氧化,焊接中不产生熔渣,在焊丝中不需要加入脱氧剂,可以使用与母材同等成分的焊丝进行焊接。

(2)与CO2电弧焊相比较,熔化极氩弧焊电弧稳定、熔滴过渡稳定,焊接飞溅少,焊缝成形美观。

(3)与TIG钨极氩弧焊相比较,焊丝和电弧的电流密度大,焊丝熔化速度快,熔敷效率高,母材熔深大,焊接变形小,焊接生产率高。

(4)MIG焊采用焊丝为正的直流电弧焊接铝及铝合金时,对母材表面的氧化膜有良好的阴极清理作用。

缺点:

(1)氩气及混合气体比CO2气体的售价高,熔化极氩弧焊的焊接成本比CO2电弧焊的焊接成本高。

(2)MIG焊对工件、焊丝的焊前清理要求较高,即焊接过程对油、锈等污染比较敏感。

2 熔化极氩弧焊的熔滴过渡

熔滴过渡形态有粗滴过渡、射滴过渡、射流过渡、旋转射流过渡、亚射流过渡、短路过渡等。应用广泛的是射滴过渡、射流过渡和亚射流过渡。

3 焊接时的极性选择

一般采用直流反接(焊件接负),很少采用直流正接(焊件接正)或者交流电流。在焊接铝、镁及其合金时,也需要利用直流反接时电弧对焊件及熔池表面的氧化膜所具有的阴极清理作用。

4 焊接参数

主要包括:焊接电流、电弧电压、焊接速度、焊丝伸出长度、焊丝倾角、焊丝直径、保护气体的种类及其流量等

5 什么是MIG MAG焊接?

6 调节过程

电弧固有的自调节系统是由具有固有自调节作用的电弧,配合以等速送丝焊机和垂降特性(恒流)焊接电源而构成的。

它与电弧自身调节系统的相同处是都是利用焊丝熔化速度作调节量来保持焊接弧长的稳定;不同之处是电弧自身调节系统是依靠焊接电流的改变来影响焊丝的熔化速度,而电弧固有的自调节系统是依靠焊丝熔化系数的改变来影响焊丝的熔化速度。

CO2气体保护电弧焊

1 定义:CO2气体保护电弧焊(Carbon-Dioxide Arc Welding)是利用CO2气体作为保护气体,使用焊丝作为熔化电极的电弧焊方法。

2 原理:焊接时,在焊丝与焊件之间产生电弧;焊丝自动送进,被电弧熔化形成熔滴,并进入熔池;CO2气体经喷嘴喷出,包围电弧和熔池,起着隔离空气和保护焊接金属的作用。同时,CO2气还参与冶金反应,在高温下的氧化性有助于减少焊缝中的氢。当然,其高温下的氧化性也有不利之处。

在CO2焊的初期发展阶段,由于CO2气体的氧化性,难以保证焊接质量。后来在焊接钢铁材料时,采用含有一定量脱氧剂的焊丝或采用带有脱氧剂成分的药芯焊丝,使脱氧剂在焊接过程中进行冶金脱氧反应,就可以消除CO2气体氧化作用的不利影响。

3 CO2气体保护电弧焊设备的组成

CO2半自动焊设备由以下几部分组成:焊接电源、控制系统、送丝系统、焊枪和气路系统等。

4 飞溅问题与控制措施

CO2气体保护焊时,容易产生飞溅,这是由CO2气体的性质所决定的。

产生的途径:

1.由冶金反应引起的飞溅

2.由斑点压力引起的飞溅

3.熔滴短路时引起的飞溅

4.非轴向熔滴过渡造成的飞溅

5.焊接参数选择不当引起的飞溅

5 CO2焊的焊接参数较多,主要包括焊接电流、电弧电压、焊接速度、焊丝直径、焊丝伸出长度、电流极性、焊接回路电感值和气体流量等。

等离子弧焊接与喷涂

1 等离子弧是利用等离子弧焊枪,将阴极(如钨极)和阳极之间的自由电弧压缩成高温、高电离度及高能量密度的电弧。等离子弧焊接(Plasma Arc Welding)是利用等离子弧作焊接热源的熔焊方法;等离子弧喷涂(Plasma Arc Spraying)是以等离子弧为热源,用氩、氮或其它气体为喷射气流的喷涂方法。

2 等离子弧的特性

等离子弧是一种受到约束的非自由电弧,它是借助于以下三种压缩效应而形成的:

(1)机械压缩效应(2)热压缩效应(3)磁压缩效应

3 等离子弧的分类

等离子弧按电源供电方式不同分为三种形式:(1)非转移型等离子弧(2)转移型等离子弧(3)联合型(又称为混合型)等离子弧

4 等离子弧特性

(1)静态特性等离子弧的静态特性是指一定弧长的等离子弧处于稳定的工作状态时,电弧电压U?与电弧电流I?之间的关系,即:U?=?(I?

5 等离子弧焊接

等离子弧焊接的工作原理

等离子弧焊接是使用惰性气体作为工作气和保护气,利用等离子弧作为热源加热并熔化母材金属,使之形成焊接接头的熔焊方法。按照焊透母材的方式,等离子弧焊接有两种,即穿透型等离子弧焊接和熔透型等离子弧焊接,各有不同的原理。

6 等离子弧焊接设备主要包括焊接电源、控制系统、焊枪、气路系统、水路系统。根据不同的需要有时还包括送丝系统、机械旋转系统或行走系统以及装夹系统等。

7 等离子弧堆焊

等离子弧堆焊(Plasma Arc Surfacing)是利用转移型等离子弧为主要热源(有时用非转移型弧作为辅助热源),在惰性气体保护下,将丝状或粉末状合金材料熔化,熔敷到金属表面形成堆焊层的一种焊接方法。

8 等离子弧堆焊有三个重要指标:

熔敷效率

熔敷速度

稀释率

焊接工艺参数

焊接工艺参数 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

焊接工艺指导书 电弧焊工艺 1 接口 焊条电弧焊的接头主要有对接接头、T形接头、角接接头和搭接接头四种。 1.1 对接接头 对接接头是最常见的一种接头形式,按照坡口形式的不同,可分为I形对接接头(不开坡口)、V形坡口接头、U形坡口接头、X形坡口接头和双U形坡口接头等。一般厚度在6mm以下,采用不开坡口而留一定间隙的双面焊;中等厚度及大厚度构件的对接焊,为了保证焊透,必须开坡口。V形坡口便于加工,但焊后构件容易发生变形;X形坡口由于焊缝截面对称,焊后工件的变形及内应力比V形坡口小,在相同板厚条件下,X形坡口比V形坡口要减少1/2填充金属量。U形及双U形坡口,焊缝填充金属量更少,焊后变形也很小,但这种坡口加工困难,一般用于重要结构。 1.2 T形接头 根据焊件厚度和承载情况,T形接头可分为不开坡口,单边V形坡口和K形坡口等几种形式。T形接头焊缝大多数情况只能承受较小剪切应力或仅作为非承载焊缝,因此厚度在30mm以下可以不开坡口。对于要求载荷的T形接头,为了保证焊透,应根据工件厚度、接头强度及焊后变形的要求来确定所开坡口形式。 1.3 角接接头 根据坡口形式不同,角接接头分为不开坡口、V形坡口、K形坡口及卷边等几种形式。通常厚度在2mm以下角接接头,可采用卷边型式;厚度在2~8mm以下角接接头,往往不开坡口;大厚度而又必须焊透的角接接头及重要构件角接头,则应开坡口,坡口形式同样要根据工件厚度、结构形式及承载情况而定。 1.4 搭接接头 搭接接头对装配要求不高,也易于装配,但接头承载能力低,一般用在不重要的结构中。搭接接头分为不开坡口搭接和塞焊两种型式。不开坡口搭接一般用于厚度在12mm 以下的钢板,搭接部分长度为3~5δ(δ为板厚) 2 焊条电弧焊工艺参数选择 2.1 焊条直径 焊条直径可根据焊件厚度、接头型式、焊缝位置、焊道层次等因素进行选择。焊件厚度越大,可选用的焊条直径越大;T形接头比对接接头的焊条直径大,而立焊、仰焊及横焊比平焊时所选用焊条直径应小些,一般立焊焊条最大直径不超过5mm,横焊、仰焊不超过4mm;多层焊的第一层焊缝选用细焊条。焊条直径与厚度的关系见表4 2.2 焊接电流是焊条电弧焊中最重要的一个工艺参数,它的大小直接影响焊接质量及焊缝成形。当焊接电流过大时,焊缝厚度和余高增加,焊缝宽度减少,且有可能造成咬边、烧穿等缺陷;当焊接电流过小时,焊缝窄而高,熔池浅,熔合不良,会产生未焊透、夹渣等缺陷。选择焊接电流大小时,要考虑焊条类型、焊条直径、焊件厚度以及接头型式、

熔焊方法及设备考试复习资料..

熔焊方法及设备 绪论 1、焊接定义及焊接方法分类 焊接:焊接是通过加热或加压,或两者并用,并且用或不用填充材料,使工件达到结合的一种加工方法。 焊接方法分为熔焊、钎焊、和压焊三大类 熔焊:熔焊是在不施加压力的情况下,将待焊处的母材加热溶化以形成焊缝的焊接方法。焊接时母材熔化而不施加压力是其基本特征。 压焊:压焊是焊接过程中必须对焊件施加压力(加热或不加热)才能完成焊接的方法。焊接施加压力是其基本特征。 钎焊:钎焊是焊接事采用比母材熔点低的钎料,将焊件和钎料加热到高于钎料熔点但是低于母材熔点的温度,利用液态钎料润湿母材,填充接头间隙,并与母材相互扩散而实现连接的方法。其特征是焊接时母材不发生溶化,仅钎料发生溶化。 熔焊方法的物理本质:在不施加外力的情况下,利用外加热源使木材被连接处发生熔化,使液相与液相之间、液相与固相之间的原子或分子紧密地接触和充分扩散,使原子间距达 到r A,并通过冷却凝固将这种冶金结合保持下来的焊接方法。 熔焊方法的特点:焊接时木材局部在不承受外加压力的情况下被加热熔化;焊接时须采取更为有效的隔离空气的措施;两种被焊材料之间必须具有必要的冶金相容性;焊接时焊接接头经历了更为复杂的冶金过程。 第一章焊接电弧 1、焊接电弧 焊接电弧是由焊接电源供给能量,在具体一定电压的两极之间或电极与母材之间气体介质中产生的一种强烈而持久的放电现象,从其物理本质来看,它是一种在具有一定电压的两电极之间的气体介质中所产生的电流最大、电压最低、温度最高、发光最强的自持放电现象。 激励:激励是当中性气体分子或原子收到外加能量的作用不足以使电子完全脱离气体分子或原子时,而使电子从较低的能量级转移到较高的能级的现象。 2、焊接电弧中气体电离的种类 热电离——气体粒子受热的作用而产生的电离称为热电离。其实质是气体粒子由于受热而产生高速运动和相互之间激烈碰撞而产生的一种电离。 场致电离——当气体中有电场作用时,气体中的带电粒子被加速,电能被转换为带电粒子的动能,当其动能增加到一定程度时,能与中性粒子产生非弹性碰撞,使之电离,这种电离称为场致电离。 光电离——中性粒子接受光辐射的作用而产生的电离现象称为光电离。不是所有的光辐射都可以引发电离,气体都存在一个能产生光电离的临界波长,气体的电离电压不同,其临界波长也不同,只有当接受的光辐射波长小于临界波长时,中性气体粒子才可能被直接电离。 3、焊接电弧中气体的发射有几种 热发射——金属表面承受热作用而产生电子发射的现象称为热发射。 场致发射——当阴极表面空间有强电场存在时,金属电极内的电子在电场静电库仑力的作用下,从电极表面飞出的现象称为场致发射。

焊接技术标准规范标准[详]

{ 1范围 主题内容 本标准规定了电子电气产品焊接用材料和导线与接线端子、印制电路板组装件等 的焊接要求以及质量保证措施。 1. 2适用范围 本标准适用于电子电气产品的焊接和检验。 2引用文件 ? GB 3131-88锡铅焊料 GB 9491-88锡焊用液态焊剂(松香基) QJ 3012-98电子电气产品元器件通孔安装技术要求 QJ 165A-95电子电气产品安装通用技术要求 QJ 2711-95静电放电敏感器件安装工艺技术要求 3定义 3. 1 MELF metal electrode leadless face $ MELF是指焊有金属电极端面,作端面焊接的元器件。 4 一般要求 4. 1环境要求 环境条件按QJ 165A中3. 1. 4条要求执行。 4.1.2焊接场所所需工具及设备应保持清洁整齐。在焊接工位上应及时清除多余物(导线断头、焊料球、残留焊料等)。禁止在焊接工位上饮食;禁止在工位上有化妆品以及与生产操作无关的东西。 4. 2工具、设备及人员要求 4. 2. 1工具 @ 电烙铁应为温控型的,烙铁头空焊温度应保持在预选温度的士 5. 5℃之内,烙铁头的形状应符合焊接空间要求,并保证良好的接地。 4. 2. 2设备 4. 2. 2. 1波峰焊设备 波峰焊设备(包括焊剂装置、预热装置、焊槽)焊接前应能将印制板组装件预热到120℃以内,在整个焊接过程中,焊料槽焊接温度的控制精度应维持在士℃,并具有排气系统。4.2.2.2再流焊设备 再流焊设备应可将焊接表面迅速加热,并能在连续焊接操作时,迅速加热到预定温度的士6℃范围内。加热源不应引起印制电路板或元器件的损坏,也不应在加热源与被焊金属直接接触时污染焊料。再流焊设备包括采用平行等距电阻加热、短路棒电阻加热、热风加热、红外线加热、激光加热装置或非电烙铁热传导焊接的设备。 4. 2. 3人员 操作人员应经过专业技术培训,熟悉本标准及相关工艺的规定,具有判别焊点合格或不合格的能力,并经考核合格上岗。 《

手工电弧焊焊接工艺和流程

手工电弧焊焊接工艺和流程工艺适用于低碳钢,低合金高强度钢,及各种大型钢结构工程制造的焊接,确保焊接生产施工质量,特制订本工艺。 一、焊前准备 1、根据施焊结构钢材的强度等级,各种接头型式选择相应强度等级牌号焊条和合适焊条直径。 2、当施工环境温度低于零度,或钢材的含碳量大于%及结构刚性过大,构件较厚时应采用焊前预热措施,预热温度为80℃-100℃,预热范围为板厚的5倍,但不小于100毫米。 3、工件厚度大于6毫米对接焊时,为确保焊透强度,在板材的对接边沿应开切V型或X型坡口,坡口角为60度,钝边P=0-1毫米,装配间隙为0-1毫米,当板厚差≥4毫米时,应对较厚板材的对接边缘进行削斜处理。 4、焊条烘焙:酸性药皮类型焊条焊前烘焙150℃*2保温2小时,碱性药皮类焊条焊前必做进行300℃-350*2烘焙,并保温2小时才能使用。 5、焊前接头清洁要求:在坡口或焊前两侧30毫米范围内,应将影响质量的毛刺,油污,水,锈脏物,氧化皮等必须清洁干净。 6、在板缝二端如余量小于50毫米时,焊缝二端应加引弧,熄弧板,其规格不小于50*50毫米。 二、焊接材料的选用 1、首先应考虑,母材强度等级与焊条强度等级相匹配和不同药皮类型焊条的使用特性。

2、考虑物件工作环境条件,承受动、静载荷的极限,高应力或形状复杂,刚性较大,应选用抗裂性能和冲击韧性好的低氢型焊条。 3、在满足使用性能和操作性能的前提下,应适当选用规格大效率高的铁粉焊条,以提高焊接生产效率。 三、焊接规范 1、应根据板厚选择焊条直径,确定焊接电流(如表)。 板厚(mm)焊条直径(Φ:mm)焊接电流(A:安倍)备注 3 80-90 不开坡口 8 110-150 开V型坡口 16 160-180 开X型坡口 20 180-200 开X型坡口 该电流为平焊位置焊接,立、横、仰焊时焊接电流应降低10-15%,大于16毫米板厚焊接底层选Φ焊条,角焊焊接电流应比对接焊焊接电流稍大。 2、为使对接焊缝焊焊透,其底层焊接应选用比其他层焊接的焊条直径较小。 3、厚件焊接,应严格控制层间温度,各层焊缝不宜过宽,应考虑多道多层焊接。 4、对接焊缝正面焊接后,反面使用碳气刨扣槽,并进行封底焊接。 四、焊接程序 1、焊接板缝,有纵横交叉的焊缝,应先焊端接缝后焊边接缝。 2、焊缝长度超过1米以上,应采用分中对称焊法或逐步码焊法。 3、结构上对接焊缝与角接焊缝同时存在时,应先焊板的对接焊缝,后焊物架对接焊缝。最后焊物架与板的角焊缝。 4、凡对称物件应从中央向前尾方向开始焊接,并左、右方向对称进

熔焊方法与设备

第一章焊接电弧 1、熔焊的基本特征:焊接时母材熔化而不施加压力。物理本质:在不施加外力的情况下,利用外加热源使使母材被连接处以及填充材料发生熔化,使液相与液相、液相与固相之间的原子或分子紧密地接触和充分地扩散,使原子间距达到ra,并通过冷却凝固将这种冶金结合保持下来的焊接方法。 2、熔焊的特点:(1)焊接时母材局部在不承受外加压力的情况下呗加热熔化(2)焊接时必须采取有效的隔离空气的措施(3)两种材料之间须有具有必要的冶金相容性(4)焊接时焊接接头经历了更为复杂的冶金过程。 3焊接电弧:是由焊接电源供给能量,在具有一定电压的两电极之间或电极与母材之间的气体介质中产生的强烈而持久的放电现象。其物理本质:是一种在具有一定电压的两电极之间的气体介质中所产生的电流量大、电压最低、温度最高、发光最强的自持放电现象。 4、气体放电具备条件:一必须有带电粒子,二在两电极之间必须有一定强度的电场。 5、阴极斑点:电弧燃烧时通常在阴极表面上可以看到一个很小但很光亮的斑点是电子集中发射的地方电流密度大 6、阴极区导电机构有:热发射型、场致发射型、等离子型。 7、最小电压原理含义:在电流和周围条件一定的情况下,稳定燃烧的电弧将自动选择一适当的断面,以保证电弧的电场强度具有的数值,即在固定弧长上的电压最小。这意味着电弧总是保持最小的能量消耗。 8、焊接电弧力:1、电磁收缩力 2、等离子流力 3、斑点压力: 1)正离子和电子对电极的冲撞力2)电磁收缩 力3)电极材料蒸发产生的反作用力 9、焊接电弧力的影响因素:1、焊接电力和电弧压力 2 、焊丝直径 3 、电极的极性 4 、气体介质 5、钨极 端部的几何形状 6、电流的脉动 10、焊接电弧的静特性(大题) 焊接电弧的静特性是指在电极材料、气体介质和弧长一定的情况下,电弧稳定燃烧时,焊接电流与电弧电压变化的关系,也称伏-安特性。 1、弧柱电压降:由Uc=I(lc/Scrc)=jc(lc/rc)可知,电压降Uc与电流密度jc成正比,而与其电导率rc 成反比。在ab段,电流I较小,当电流I增加时弧柱的温度和电离度增加使rc增大,同时Sc也增加,而且Sc比I增得快,使电流密度jc减小,所以Uc减小,曲线呈下降特性;在bc段,I适中电导率达到一定程度不再增加,Sc也相应增加,使Ic基本不变,Uc近似等于常数,曲线呈平特性;在cd段 I很大,Sc受到限制,已不能再增大了,所以Uc随电流I增加而增加,曲线呈上升特性。 2、阴极电压降:小电流区:当增加电流时,阴极区遵循最小电压原理,通过成比例的增加阴极斑点面积,来维持阴极区电压降基本不变。而增加电流I时,随着AB和CD面积的扩大,从AD和BC面耗散热量比例减小,因此阴极电压降降低,呈下降特性。中等电流区:仅发生随着电流的增加阴极斑点面积成比例地增加的过程。这使得电弧的电流密度基本不变,因而阴极电压降呈现平特性。大电流区:阴极斑点的面积已覆盖阴极端部的全部面积,阴极斑点面积已不再增大。随着电流的增大阴极区的电流密度增大,导致阴极电压降增高,呈现上升特性。 3、阳极电压降:在小电流区,当电流增加时,温度增加,粒子V加快,碰撞和电离加剧,因此阳极电压降下降,呈下降特性。当I增加到一定值时,阳极区温度T很高,通过热电离就能满足弧柱区对正离子的需要,阳极压降到很低,当I继续增加时,阴极电压降基本不发生变化。所以在中等电流和大电流区呈平特性。 11、焊接电弧稳定性及其影响因素:焊接电弧稳定性:焊接时电弧保持稳定燃烧的程度。 1焊接电源:焊接电源的空载电压越高,越有利于场致发射和场致电离,因此电弧的稳定性越高。 2 焊接电流和电弧电压:焊接电流大时的电弧温度要比焊接电流小时高,因而电弧中的热电离要比焊接电流小 时强烈,能够产生更多的带电粒子,因此电弧更为稳定。电弧电压增大意味着电弧长度的增大,当电弧过长时,电弧会发生剧烈摆动,使电弧的稳定性下降。 3电流种类和极性:焊接电流可分为直流、交流和脉冲直流三种类型,其中直流电弧为最稳定,脉冲直流次之,交流电弧稳定性最差。 4 焊条药皮和焊剂:当焊条药皮或焊剂中含有较多电离能低的元素或他们的化合物时,由于容易电离,使电弧 气氛中的带电粒子增多,因此可以提高电弧的稳定性。 5 磁偏吹:所谓磁偏吹,是指焊接时由于某种原因使电弧周围磁场分布的均匀性受到破坏,从而导致焊接电弧 偏离焊丝的轴线而向某一方向偏吹的现象。 6 其他因素:焊件上如果偶铁锈、水分以及油污等时,由于分解时需要吸热而减少电弧的热能,因此会降低电 弧的稳定性。

熔焊方法及设备

2.焊接熔池通常受哪些力作用,各力对焊缝成形的影响。 熔池金属的重力:水平位置焊接时,熔池金属的重力有助于熔池的稳定性。空间位置焊接时,熔池金属的重力可能破坏熔池的稳定性,使焊缝成形变坏。 表面张力:表面张力将阻止熔池金属在电弧力或熔池金属重力的作用下的流动,同时对熔池金属在熔池界面上的接触角(即润湿性)的大小也有直接影响。所以,表面张力既影响熔池的轮廓形状,也影响熔池金属在坡口里的堆敷情况,即熔池表面形状。 焊接电弧力:斑点压力会使熔池形成涡流现象,使熔深加大;电弧静压力作用于熔池液体表面,是熔池形成下凹的形态;等离子流力比较明显时,也对焊缝成形产生大影响。 熔滴冲击力:富氩气体保护熔化极电弧焊射流过渡时,焊丝前段熔化金属以比较小的熔滴及很高的速度沿焊丝轴向冲向熔池,对熔池形成较大的冲击力,因此也容易形成指状熔深。 7.熔滴在电弧中收哪些力作用? 重力:平焊时,重力促使熔滴脱离焊丝;立焊和仰焊时,重力阻碍熔滴从焊丝末端脱离。 表面张力:是焊丝端头保持熔滴的主要作用力,径向力使熔滴在焊丝末端产生缩颈,轴向力则使熔滴保持在焊丝末端,阻碍熔滴过渡。 电弧力:1)电磁收缩力:在熔滴端部与弧柱间导电的弧根面积的大小将决定该外电磁力方向,如果弧根直径小于熔滴直径,此外电磁合力向上,阻碍熔滴过渡,反之,若弧根面积笼罩整个熔滴,此处电磁合力向下,促使熔滴过渡。 2)等离子流力:有助于熔滴过渡。 3)斑点压力:阻碍熔滴过渡。 爆破力:易造成飞溅。 电弧气体气力:利于熔滴过渡。 8.焊缝在成型时的缺陷通常有哪几种?对应的措施。主要有未熔合、未焊透、烧穿、塌陷、咬边、焊瘤、气孔、加渣、表面波纹不均匀,余高不均匀、熔宽不均匀、缩处有弧坑、蛇形焊缝、火口裂纹、收缩处有弧坑。 为防止产生未熔合和未焊透,应选择合适的焊接参数及焊接热输入量,设计合适的焊接坡口形式及装配间隙,确保焊丝对准焊缝中心进行正确的施焊过程;为防止烧穿和塌陷,要特别注意焊接电流不要过大,焊接速度不要过小等;为防止咬边,高速焊时,要适当的调节焊速,保证焊缝两边金属熔化,横焊位置焊接或角焊缝焊接时,焊接电流不宜过大,电压不宜过高,焊枪角度要合适;为防止焊瘤,焊接时应该选用合适的焊接电流及焊接速度,采用合适的焊条角度及焊接位置;因此,对于其他焊缝成形缺陷的防止措施,依上所述,严格控制焊接工艺参数及焊接工艺。 12.脉冲MIG焊工艺特点:①扩大了焊接电流的调节范围②有效控制熔滴过渡及熔池尺寸,有利于全位置焊接③可有效地控制热输入,改善接头性能④脉冲电弧具有加强熔池搅拌的作用,可以改善熔池冶金性能,有利于消除气孔。 9.埋弧焊的工艺参数,及各对焊缝的影响? 埋弧焊的焊接参数主要有:焊接电流、电弧电压、焊接速度、焊丝直径和伸出长度等。 ①焊接电流 一般焊接条件下,焊缝熔深与焊接电流成正比。随着焊接电流的增加,熔深和焊缝余高都有显著增加,而焊缝的宽度变化不大。同时,焊丝的熔化量也相应增加,这就使焊缝的余高增加。随着焊接电流的减小,熔深和余高都减小。 ②电弧电压 电弧电压的增加,焊接宽度明显增加,而熔深和焊缝余高则有所下降。但是电弧电压太大时,不仅使熔深变小,产生未焊透,而且会导致焊缝成形差、脱渣困难,甚至产生咬边等缺陷。所以在增加电弧电压的同时,还应适当增加焊接电流。 ③焊接速度 当其他焊接参数不变而焊接速度增加时,焊接热输入量相应减小,从而使焊缝的熔深也减小。焊接速度太大会造成未焊透等缺陷。为保证焊接质量必须保证一定的焊接热输入量,即为了提高生产率而提高焊接速度的同时,应相应提高焊接电流和电弧电压。 ④焊丝直径与伸出长度 当其他焊接参数不变而焊丝直径增加时,弧柱直径随之增加,即电流密度减小,会造成焊缝宽度增加,熔深减小。反之,则熔深增加及焊缝宽度减小。 当其他焊接参数不变而焊丝长度增加时,电阻也随之增大,伸出部分焊丝所受到的预热作用增加,焊丝熔化速度加快,结果使熔深变浅,焊缝余高增加,因此须控制焊丝伸出长度,不宜过长。 ⑤焊丝倾角 焊丝的倾斜方向分为前倾和后倾。倾角的方向和大小不同,电弧对熔池的力和热作用也不同,从而影响焊缝成形。当焊丝后倾一定角度时,由于电弧指向焊接方向,使熔池前面的焊件受到了预热作用,电弧对熔池的液态金属排出作用减弱,而导致焊缝宽而熔深变浅。反之,焊缝宽度较小而熔深较大,但易使焊缝边缘产生未熔合和咬边,并且使焊缝成形变差。 ⑥其他 a.坡口形状 b.根部间隙 c.焊件厚度和焊件散热条件。1.能量密度:采用某种热源来加热工件时,单位 有效面积上的热功率称为能量密度。 2.热阴极:当使用熔点和沸点很高的材料(如C、 W等)做阴极时,阴极可以被加热到很高的温 度,电弧的阴极区的电子可以主要依靠阴极热 发射来提供,这种电极被称为热阴极型电极。 3.冷阴极:当使用钢、铜、铝等材料做阴极时, 其熔点和沸点较低,阴极温度不可能很高,热 发射不可能提供足够的电子,这种电极被称为 冷阴极型电极。 3.焊条电弧有那几部分组成?各部分有何特点? 焊接电弧是由阴极区,阳极区和弧柱区三部分组 成 特点:①阴极区:阴极附近的区域很狭窄,电压降 U K比较大,电场强度很大,电弧燃烧时,会出现阴 极斑点。 ②阳极区:阳极附近的区域比阴极区稍宽,电压降 U A比阴极区低,电场强度比阴极区小得多。通常可 见阳极斑点。 ③弧柱区:阴极区与阳极区之间的区域,它的长度很 长,电弧压降U C比前两者均小,电场强度也比较小, 在弧柱长度方向上,带电粒子分布均匀,电压降U C 与电弧长度成正比,在其径向方向上,中心的带电粒 子密度大,而周围小。 4.简述焊接电弧的产热机构。 焊接电弧是具有很强能量的导电体,其能量来 自于焊接电源。单位时间焊接电源向阴极区、弧柱区 和阳极区提供的总热量P可表示为 P=P K+P C+P A=IU K+IU C+IU A①阴极区的产热: P k=I(U K-U W-U T).②阳极区的产热:P A=I(U K+U W+U T). ③弧柱区的产热:P c=IU C. 10.常用电弧焊设备的组成及工艺 2)TIG焊设备:手工TIG焊设备:焊接电源、程序 控制系统、引弧装置、稳弧装置(交流焊接设备用)、 焊枪、供气系统和供水系统等部分。TIG焊焊接电源 交流电源和直流电源。直流电源分为直流正接和直流 反接。在生产中,焊接铝、镁及其合金时一般都采用 交流电。这是因为在工件为阴极的半周里有去除工件 表面氧化膜的作用,在钨极为阴极的半周里钨极可以 得到冷却,并能发射足够的电子以利于电弧稳定。高 频高压式引弧和稳弧装置、高压脉冲式引弧和稳弧装 置应用最多。焊枪的作用:夹持钨极、传导焊接电流 和输送并喷出保护气体。焊枪需满足的要求:①喷出 的保护气体具有良好的流动状态和一定的挺度,以获 得可靠的保护;②枪体有良好的气密性和水密性(用 水冷时),传导电流的零件有良好的导电性;③枪体 能被充分冷却,以保证持久地工作;④喷嘴和钨极之 间有良好绝缘,以免喷嘴和工件不慎接触而发生电 路、打弧;⑤质量轻、结构紧凑,可达到性好,装拆 维修方便。焊枪分为气冷式和水冷式两种。实用的喷 嘴材料有陶瓷、纯铜和石英三种。一般钨极氩弧焊时, 供气系统由气源(高压气瓶)、气体减压阀、气体流量 计、电磁气阀和软管组成。水冷系统重要用来冷却焊 接电缆、焊枪和钨棒。TIG焊焊接过程涉及送气、引 弧、电源输出、焊丝送进以及焊车行走等。自动TIG 焊设备:比手工TIG焊设备多了焊枪移动装置。如 果需要填充焊丝,则包括一个送丝机构,通常将焊枪 和送丝机构共同安装在一台可行走的小车上。 3)MIG焊(熔化极氩弧焊)设备:弧焊电源、送丝 系统、焊枪、行走台车(自动焊)、供气系统、水冷 系统、控制系统等部分组成。熔化极氩弧焊通常采用 直流弧焊电源,电源分为变压器抽头二极管整流式、 晶闸管可控整流式、逆变式等几种。送丝系统:推丝 式、拉丝式、推拉丝式。熔化极氩弧焊焊枪按其应用 方式分为半自动焊枪(手工操作)和自动焊枪(安装 在行走台车上)。纯惰性气体供气系统由气源(高压 气瓶)、气压减压阀、气体流量计、电磁气阀、和送 气软管等组成。水冷式焊枪的水冷系统由水箱、水泵、 水管、水流开关等组成,由水泵打压循环系统流动, 实现冷却水的循环应用。MIG焊设备的控制系统包 括焊接过程程序控制电路、送丝驱动电路等。其中焊 接过程程序控制可以采用两步控制方式或四部控制 方式。 5)等离子弧焊接设备:焊接电源、控制系统、焊枪、 气路系统、水路系统、送丝系统、机械旋转系统、行 走系统以及装夹系统。等离子弧的静特性曲线呈略上 升状,因此等离子弧焊接电源应具有下降或垂降的外 特性。在穿透型焊接时,要求等离子弧焊接电流在气 焊阶段随等离子气体流量一起递增,在收弧阶段两者 同步衰减。等离子弧焊接使用两路气体:等离子气和 保护气。气体从气瓶→减压器→电磁气阀→流量计→ 焊枪所经过的回路构成气路。水冷作用:带走钨极和 喷嘴上的热量。冷却水路为水泵→水冷导线→焊枪下 枪体→喷嘴→焊枪上枪体→水冷导线→水流开关→ 水箱。等离子弧自动焊接纵缝或环缝时,焊枪或焊件 作直线或旋转运动。当焊件间隙大、要求有余高或进 行坡口焊接,要向熔池自动送进焊丝,其驱动电机多 为直流电动机。等离子弧焊机的控制系统包括引弧电 路、程序控制电路、水和气体控制电路、送丝和行走、 或转动控制与调节电路等。 4)CO2气体保护焊设备:CO2半自动焊设备:焊接 电源、控制系统、送丝系统、焊枪和气路系统。CO2 自动焊设备是在半自动焊设备的基础上增加了焊接 行走机构。CO2焊一般采用直流反接。因直流反接 时,使用各种焊接电流值都能获得比较稳定的电弧, 熔滴过渡平稳、飞溅小、焊缝成形好。CO2焊设备 的控制系统应具备以下功能:(1)空载时,可手动调 节下列参数:焊接电流、电弧电压、焊接速度、保护 气体流量以及焊丝的送进与回轴等(2)焊接时,实 现程序自动控制,即:①提前送气、之后停气;②自 动送进焊丝进行引弧和焊接;③焊接结束后,先停丝 后断电。送丝系统分为半自动焊送丝系统和自动焊送 丝系统两类。CO2焊焊枪分为半自动焊枪和自动焊 枪,半自动CO2焊推丝式焊枪有鹅颈式和手枪式, 拉丝式焊枪均为手枪式,因CO2焊多采用细丝焊, 故焊枪多采用空冷式。CO2焊供气系统由CO2气瓶、 预热器、干燥器、减压器、气体流量计和电磁气阀等 组成,与MIG焊不同在于气路中接入预热器和干燥 器。预热器作用:为了防止CO2气体中的水分在钢 瓶出口处及减压表中结冰,使气路堵塞。干燥器作用: 吸收CO2气体中的水分和杂质,以避免焊缝出现气 孔。 11.埋弧焊工作原理:焊接时,颗粒状焊剂由焊剂漏 斗经软化管均匀地堆敷到焊件的待焊处,焊丝由焊丝 盘经送丝机构和导电嘴送入焊接区,电弧在焊剂下面 的焊丝与母材之间燃烧。电弧热使焊丝、焊剂及母材 局部熔化和部分蒸发。金属蒸气、焊剂蒸气、和冶金 过程中析出的气体在电弧的周围形成一个空腔,熔化 的焊剂在空腔的上部形成一层熔渣膜。这层熔渣膜如 同一个屏障,使电弧、液体金属与空气隔离,而且能 将弧光遮蔽在空腔中。在空腔的下部,母材局部熔化 形成熔池;空腔的上部,焊丝熔化形成焊滴,并以渣 壁过渡的形式向熔池中过渡,只有少数熔滴采取自由 过渡。随着电弧的向前移动,电弧力将液态金属推向 后方并逐渐冷却凝固成焊缝,熔渣则凝固成渣壳覆盖 在焊缝表面。在焊接的过程中,焊剂不仅起着保护焊 接金属的作用,而且起着冶金处理的作用,即通过冶 金反应清除有害的杂质和过渡有益的合金元素。 埋弧焊的应用范围:由于埋弧焊具有生产效率高、 焊缝质量好、熔深大、机械化程度高等特点,其应用 范围很广,至今仍是锅炉、压力容器、船舶、桥梁、 起重机械、工程机械、冶金机械、海洋机构、核电设 备等制造的主要焊接手段,特别是对于中厚板、长焊 缝的焊接具有明显的优越性。可焊接的钢种有,碳素 结构钢、低合金结构钢、不锈钢、耐热钢、以及复合 钢等。此外,用埋弧焊堆焊耐热、耐腐蚀合金,或焊 接镍基合金、铜基合金等也能获得很好的效果。 钨极氩弧焊(TIG焊)工作原理:钨极被夹持在电 极夹上,从TIG焊焊枪的喷嘴中伸出一定长度。在 伸出的钨极端部与焊件之间产生电弧,对焊件进行加 热。同时,惰性气体进入腔体,从钨极的周围通过喷 嘴喷向焊接区,以保护钨极、电弧及熔池。使其免受 大气的侵害。当焊接薄板时,一般不需要填充焊丝, 可以利用焊件被焊部位自身熔化形成焊缝。当焊接厚 板和开有坡口的焊件时,可以从电弧的前方把填充金 属以手动或自动的方式,按一定的速度向电弧中送 进。填充金属熔化后进入熔池,与母材熔化金属一起 冷却凝固形成焊缝。钨的熔点高达3653K,与其他金 属相比,具有难熔化。可长时间在高温状态下工作的 性质。TIG焊利用钨的这一性质,在圆棒状的钨极与 母材间产生电弧进行焊接。电弧燃烧过程中,钨极是 不熔化的,故易于维持恒定的电弧长度,保持焊接电 流不变,使焊接过程稳定。惰性气体具有不与其他物 质发生化学反应和不熔于金属的性质。利用这一性 质,TIG焊使用惰性气体完全覆盖电弧和熔化金属, 使电弧不受周围空气的影响和避免熔化金属与周围 的氧、氮等发生反应,从而起到保护的作用。 应用范围:TIG焊的应用很广泛,它可以用于几乎所 有金属和合金的焊接。适用于各种长度焊缝的焊接, 既可以焊薄板,也可焊焊接厚件,可使用于各种位置 焊接。 13.通常减少CO2焊时产生的气孔有哪些方法:①增 强气体的保护效果②选用含有固氮元素(如Ti和Al) 的焊丝③提高CO2气体纯度④采用直流反接,可减 少氢气孔⑤在焊缝金属中添加Si元素,即熔池中含 有足够的脱氧剂。 14.CO2保护焊时为何有较高的抗锈低氢能力? 因为锈是含结晶水的氧化铁,即FeO.H2O。在电弧 热作用下,该结晶水将分解,发生如下的反应:H2O ≒2H+O 由于氢量增加,将增加形成氢气孔的可能性。可是, 在CO2焊的电弧气氛中的二氧化碳和氧的含量很 高,它们将发生如下反应:CO2+2H≒CO+H2O CO2+H≒CO+OH O+2H≒H2O O+H≒OH 这时,反应都向右进行,其生成物是在液体金属中溶 解度很小的水蒸汽和羟基,从而减弱了氢的有害作 用。所以,一般认为CO2焊具有较强的抗潮和抗锈 能力

焊接标准

标准号标准名称 焊接基础通用标准 GB/T3375--94 焊接术语 GB324--88 焊缝符号表示法 GB5185--85 金属焊接及钎焊方法在图样上的表示代号 GB12212--90 技术制图焊缝符号的尺寸、比例及简化表示法 GB4656--84 技术制图金属结构件表示法 GB985--88 气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式和尺寸GB986--88 埋弧焊焊缝坡口的基本形式与尺寸 GB/T12467.1—1998 焊接质量要求金属材料的熔化焊第1部分:选择及使用指南GB/Tl2468.2--1998 焊接质量保证金属材料的熔化焊第2部分:完整质量要求GB/Tl2468.3--1998 焊接质量保证金属材料的熔化焊第3部分:一般质量要求GB/Tl2468.4--1998 焊接质量保证金属材料的熔化焊第4部分:基本质量要求GB/T12469--90 焊接质量保证钢熔化焊接头的要求和缺陷分级 GBl0854--90 钢结构焊缝外形尺寸 GB/T16672—1996 焊缝----工作位置----倾角和转角的定义 焊接材料标准 焊条 GB/T5117--1995 碳钢焊条 GB/T5118--1995 低合金钢焊条 GB/T983—1995 不锈钢焊条 GB984--85 堆焊焊条 GB/T3670--1995 铜及铜合金焊条 GB3669--83 铝及铝合金焊条 GBl0044--88 铸铁焊条及焊丝 GB/T13814—92 镍及镍合金焊条 GB895--86 船用395焊条技术条件 JB/T6964—93 特细碳钢焊条 JB/T8423—96 电焊条焊接工艺性能评定方法 GB3429--82 碳素焊条钢盘条 JB/DQ7388--88 堆焊焊条产品质量分等 JB/DQ7389--88 铸铁焊条产品质量分等 JB/DQ7390--88 碳钢、低合金钢、不锈钢焊条产品质量分等 JB/T3223--96 焊接材料质量管理规程 焊丝 GB/T14957—94 熔化焊用钢丝 GB/T14958--94 气体保护焊用钢丝

支架制造焊接工艺

液压支架制造工艺规程 焊接 总体要求:严格按照图纸施工,分部件焊接,严格执行焊接参数及 多层多道,严格焊丝选用,磁粉探伤,压架试验。 1、操作前按要求准备必备的工具和设备: (1)图纸; (2)火焰预热; (3)钢刷; (4)清理工具; (5)焊缝测量工具; (6)锤子; 2、焊前准备: (1)检查焊缝根部间隙及坡口尺寸,如发现不合格不得施焊。 (2)发现定位焊缝出现裂纹时,必须清除,重新点焊。 (3)焊道及焊道边缘必须清理干净,不得有影响焊接质量的铁锈、油污、水和涂料等杂物,清 理边缘单侧不得小于20mm。 (4)检查工艺加强筋,加固板安装的是否准确。 (5)检查成型工件是否符合图纸要求。 (6)检查电源的状态,送丝装置,电线和固定器。 检查焊接参数,并作出相应的调整。 检查保护气体流量(建议流量为15 L/分)。 确保焊接结构位置准确。 在焊接处安上接地导线。 检查焊丝的等级和类型,看是否符合焊接和技术要求。 焊接前,需用合适的工具检查预热的温度,看是否达到要求。 3、结构件焊接宜在室内进行;冬季环境温度不得低于5℃,否则应加热到要求温度。 4、加热时用中性焰,不能用切割头加热,也不能定点加热。 5、预热后要等大约一分钟,待温度均匀、稳定后达到80℃左右再开始焊接。 6、焊缝周围75毫米的地方需要检查温度。可能的话,另一面也要检查。焊接处如果有水分 的话,需要加热到60度烘干水分。 7、焊接位置:支架部件应在专用的工装架上施焊,必须要有防倒措施,尽量采用平焊和横焊,

严禁下坡焊,应力集中处,不允许引弧和收弧。 8、焊接方式可以有:平焊,横焊,平角焊。 9、焊接时在钢板的角上不能停留,一直焊接到离角落大约50毫米的地方。 10、所有待焊部件须进行打底焊,厚度8-10mm , 焊后清理,工件整体每焊完一层的一道清理后再焊第二道。 11、焊接时应该先焊定型焊缝,检查完焊接的质量之后进行其它焊缝。 12、每件工件焊接必须从头到尾一次完成(不能长时间的停留),这样可以保持焊接温度一致。 13、所有的焊接部位的焊缝都必须是一条线,焊缝最宽不能超过12毫米。14、焊缝表面高低差不能超过1.5毫米。15、Q460、Q550高强板相互焊接与δs 大于440Mpa 高强板焊前应预热到80℃~150℃。16、Q460、Q550高强板与27SiMn 钢材焊接、Q460、Q550钢材相互焊接,所用焊丝牌号:SLD-60(H08Mn2Si60E);Q460、Q550高强板与ZG25MnTiB 焊接所用焊丝牌号:SLD-60(H08Mn2Si60E),Q550高强板与Q550焊接应选用焊丝牌号:SLD-70(H08Mn2Si70E)应符合GB/T8110规定。17、焊角小于或等于10mm ,坡口深度小于或等于12mm 时可采用一遍或多层成形的焊接方法。带坡口的平焊缝,其工艺参数焊接电流/A 电弧电压/V 气体流量/L.min 焊接线能量/KJ.cm 焊接速度cm/min 焊道温度/℃260-28030-3218-22≤2020-2280℃~150℃室温不低于5℃18、焊角大于10mm ,坡口深度大于12mm 时可采用多层多道的焊接方法:(1) 焊完第一道要清除焊瘤、飞溅等杂物。Q460高强度板和σS 大于440Mpa 温度降至 80℃~150℃再焊第二道(或层)、第三、第四……依次类推。 (2) 如果中断焊接时,预热到80℃~150℃才能再施焊。 (3)根据标准MT/T587-1996多层多道的焊接方法说明如下: 1) 当焊角≤10mm,焊接坡口≤12mm 时,可采用单层或多层焊接方法及焊接顺序见图1和图4所示。 2) 当焊角大于10mm 至16mm 时应采用两层三道焊接方法及焊接顺序见图2所示。 3)第二次焊接必须紧接着上一次停的地方,并且需要有20-40毫米的重叠。 通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽

焊接方法有哪几种

●闪光焊,钢轨形成对接接头,通电并使其端面逐渐移近,达到局 部接触,利用电阻热加热这些接触点(产生闪光),使端面全部熔化,直至端部在一定深度范围内达到预定温度时,迅速施加顶锻力完成焊接。 优点:闪光焊自动化程度高,工艺稳定,焊接质量优良,焊接接头为致密锻造组织,接头韧性好,力学性能接近钢轨母材,生产效率高,主要用于厂焊或基地焊,部分用于单元轨节焊接。缺点:焊机价格昂贵,一次性投资大,设备复杂且需配备大功率电源、柴油发电机组,焊接工艺参数较多,调节繁琐;同时闪光焊焊接过程中钢轨烧损严重,每个接头消耗钢轨25.1-50mm。 ●气压焊,是利用气体燃料产生的热能将钢轨端部加热到熔化状态 或塑性状态,再施加一定的顶锻压力,完成钢轨焊接。 优点:气压焊的一次性投资少,焊接时间短,焊接质量好,焊接接头也为致密锻造组织,主要用于现场联合接头焊接。钢轨烧损较少,焊接后钢轨缩短约30mm。缺点:焊接时对接头断面的处理要求十分严格,焊接工艺受诸多人为因素影响,接头质量波动较大,不易控制。 ●铝热焊,是利用铝和氧化铁(含添加剂),在一定温度下进行氧化 还原反应,形成高温液态金属注入特制的铸模内,将两个被焊钢轨端部熔化而实现连接的一种焊接方法。 优点:设备简单、操作方便,生产成本较低,且没有顶锻过程,接头外观平顺性好,占用封锁时间短,尤其适用于断轨修复、跨区间无缝线路道岔联焊和运输任务繁忙的线上联焊。缺点:强度低、质量欠稳

定,断头率高,综合性能差,是无缝线路最薄弱环节。 电弧焊,接头间隙,并利用铜挡块强迫成型,冷却后形成焊接接头,属于熔化焊方法。 优点:采用合适的焊条和焊丝成分,电弧焊接头可以得到性能优异的贝氏体组织,综合性能可达到母材水平,抗拉强度和耐磨性能等有时甚至超过钢轨母材。缺点:目前推广较少,此外对焊接工艺、技术水平要求严格。

熔焊方法及设备-复习资料

绪论 焊接定义: 通过加热或加压,或两者并用,并且用或不用填充材料,使焊件达到原子或分子间结合的一种方法。 焊接物理本质 固体材料之所以能保持固定的形状是因为: 1 其内部原子之间的距离足够小,原子之间形成了牢固的结合力。 2焊接使两种材料连接在一起,即连接的材料表面上原子接近到足够小的距离,使之产生足够的结合力。 焊接方法的分类:分类(族系法):熔焊压焊钎焊 (1)熔焊 定义:在不是施加压力的情况下,将待焊处的母材金属熔化以形成焊缝的焊接方法称为熔焊。 电弧焊:熔化极(焊条电弧焊、埋弧焊、熔化极气体保护焊、螺柱焊) 非熔化极(钨极氩弧焊、等离子弧焊、碳弧焊、原子氢焊、气焊、氧氢、氧乙炔、空气乙炔、铝热焊、电渣焊、电子束焊、激光焊) (2)压焊 定义:焊接过程中,必须对焊件施加压力(加热或不加热),以完成焊接的方法称为压焊。 电阻焊(点焊、缝焊、凸焊、对焊、高频焊) 冷压焊(超声波焊、爆炸焊、锻焊、扩散焊、摩擦焊、气压焊)(3)钎焊 定义:采用比母材熔点低的金属材料作钎料,将焊件和钎料加热到高于钎料熔点,低于母材熔化温度,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散实现连接焊件的焊接方法称为钎焊 (火焰、感应、炉中、浸渍、电子束、红外线等)

第一章焊接电弧 1.电弧的物理本质:焊接电弧是由焊接电源供给能量,在具有一定电压的两级之间或者电极与母材之间的气体介质中产生的强烈而持久的气体放电现象。 2.两电极间气体导电条件: ①两电极之间有带电粒子;②两电极之间有电场。 3.电弧中产生带电粒子的产生: ①气体介质的电离②电极电子发射 4.气体的电离 (1)电离与激励 气体电离:在外加能量作用下,使中性的气体分子或原子分离成电子和正离子的过程。 激励:当中性气体粒子受外加能量作用而不足以使其电离,但可能使其内部的电子从原来的能级跃迁到较高的能级的现象。 (2)电离种类(根据外加能量来源分为) 1)热电离:气体粒子受热的作用而产生电离的过程。 2)场致电离:在两电极间的电场作用下,气体中的带电粒子被加速,当带电粒子的动能增加到一定数值时,则可能与中性粒子发生非弹性碰撞而使之产生电离的过程。 3)光电离:中性气体粒子受到光辐射的作用而产生的电离过程。5.电子发射:阴极表面接受一定外加能量作用时,使其内部的电子冲破电极表面的束缚而飞到电弧空间的现象。 电子发射的类型 1)热发射:阴极表面因受热的作用而使其内部的自由电子热运动速度加大,动能增加,一部分电子动能达到或超出逸出功时产生的电子发射现象。 ¤2)场致发射:当阴极表面中间存在一定强度的正电场时,阴极内部的电子将受到电场力的作用,当此力达到一定程度时电子便会逸出阴极表面的现象。 3)光发射:当阴极表向受到光辐射作用时,阴极内的自由电子能量达到一定程度而逸出阴极表面的现象。 4)粒子碰撞发射:电弧中高速运动的粒子(主要是正离子)碰撞阴极时,把能量传递给阴极表面的电子,使电子能量增加而逸出阴极表面的

焊接标准国标汇总

焊接国家标准总汇标准号标准名称 焊接基础通用标准 GB/T3375--94焊接术语 GB324--88焊缝符号表示法 GB5185--85金属焊接及钎焊方法在图样上的表示代号 GB12212--90技术制图焊缝符号的尺寸、比例及简化表示法 GB4656--84技术制图金属结构件表示法 GB985--88气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式和尺寸 GB986--88埋弧焊焊缝坡口的基本形式与尺寸 GB/T12467.1—1998焊接质量要求金属材料的熔化焊第1部分:选择及使用指南GB/Tl2468.2--1998焊接质量保证金属材料的熔化焊第2部分:完整质量要求 GB/Tl2468.3--1998焊接质量保证金属材料的熔化焊第3部分:一般质量要求 GB/Tl2468.4--1998焊接质量保证金属材料的熔化焊第4部分:基本质量要求 GB/T12469--90焊接质量保证钢熔化焊接头的要求和缺陷分级 GBl0854--90钢结构焊缝外形尺寸 GB/T16672—1996焊缝----工作位置----倾角和转角的定义焊接材料标准焊条 GB/T5117--1995碳钢焊条 GB/T5118--1995低合金钢焊条 GB/T983—1995不锈钢焊条 GB984--85堆焊焊条 GB/T3670--1995铜及铜合金焊条 GB3669--83铝及铝合金焊条 GBl0044--88铸铁焊条及焊丝 GB/T13814—92镍及镍合金焊条 GB895--86船用395焊条技术条件 JB/T6964—93特细碳钢焊条 JB/T8423—96电焊条焊接工艺性能评定方法 GB3429--82碳素焊条钢盘条 JB/DQ7388--88堆焊焊条产品质量分等 JB/DQ7389--88铸铁焊条产品质量分等 JB/DQ7390--88碳钢、低合金钢、不锈钢焊条产品质量分等 JB/T3223--96焊接材料质量管理规程焊丝 GB/T14957—94熔化焊用钢丝 GB/T14958--94气体保护焊用钢丝 GB/T8110--95气体保护电弧焊用碳钢、低合金钢焊丝 GBl0045--88碳钢药芯焊丝 GB9460--83铜及铜合金焊丝 GBl0858--89铝及铝合金焊丝 GB4242--84焊接用不锈钢丝

焊接标准

1)IPC-ESD-2020: 静电放电控制程序开发的联合标准。包括静电放电控制程序所必须的设计、建立、实现和维护。根据某些军事组织和商业组织的历史经验,为静电放电敏感时期进行处理和保护提供指导。 2) IPC-SA-61 A: 焊接后半水成清洗手册。包括半水成清洗的各个方面,包括化学的、生产的残留物、设备、工艺、过程控制以及环境和安全方面的考虑。 3) IPC-AC-62A: 焊接后水成清洗手册。描述制造残留物、水成清洁剂的类型和性质、水成清洁的过程、设备和工艺、质量控制、环境控制及员工安全以及清洁度的测定和测定的费用。 4) IPC-DRM -4 0E: 通孔焊接点评估桌面参考手册。按照标准要求对元器件、孔壁以及焊接面的覆盖等详细的描述,除此之外还包括计算机生成的3D 图形。涵盖了填锡、接触角、沾锡、垂直填充、焊垫覆盖以及为数众多的焊接点 缺陷情况。 5) IPC-TA-722: 焊接技术评估手册。包括关于焊接技术各个方面的45 篇文章,内容涉及普通焊接、焊接材料、手工焊接、批量焊接、波峰焊接、回流焊接、气相焊接和红外焊接。 6) IPC-7525: 模板设计指南。为焊锡膏和表面贴装粘结剂涂敷模板的设计和制造提供指导方针i 还讨论了应用表面贴装技术的模板设计,并介绍了带有通孔或倒装晶片元器件的?昆合技术,包括套印、双印和阶段式模板设计。 7) IPC/EIA J-STD-004: 助焊剂的规格需求一包括附录I 。包含松香、树脂等的技术指标和分类,根据助焊剂中卤化物的含量和活化程度分类的有机和无机助焊剂;还包括助焊剂的使用、含有助焊剂的物质以及免清洗工艺中使用的低残留助焊剂。 8)IPC/EIA J-STD -005 :焊锡膏的规格需求一包括附录I 。列出了焊锡膏的特征和技术指标需求,也包括测试方法和金属含量的标准,以及粘滞度、塌散、焊锡球、粘性和焊锡膏的沾锡性能。 9) IPC/EIA J-STD -0 06A: 电子等级焊锡合金、助焊剂和非助焊剂固体焊锡的规格需求。为电子等级焊锡合金,为棒状、带状、粉末状助焊剂和非助焊剂的焊锡,为电子焊锡的应用,为特殊电子等级焊锡提供术语命名、规格需求和测试方法。 10) IPC-Ca-821: 导热粘结剂的通用需求。包括对将元器件粘接到合适位置的导热电介质的需求和测试方法。 11) IPC-3406: 导电表面涂敷粘结剂指南。在电子制造中为作为焊锡备选的导电粘结剂的选择提供指导。 12) IPC-AJ-820: 组装和焊接手册。包含对组装和焊接的检验技术的描述,包括术语和定义;印制电路板、元器件和引脚的类型、焊接点的材料、元器件安装、设计的规范参考和大纲;焊接技术和封装;清洗和覆膜;质量保证和测试。 13) IPC-7530: 批量焊接过程(回流焊接和波峰焊接)温度曲线指南。在温度曲线获取中采用各种测试手段、技术和方法,为建立最佳图形提供指导。 有铅工艺和无铅工艺的区别 有铅工艺和无铅工艺之间的差别到底在哪里?价格差那么大,对生产的影响到底体现在哪些方面?该如何选择? 在传统的印刷电路板组装的焊锡工艺中,一般采用锡铅焊料(Sn-Pb),其中铅是作为合金焊料的一种基本元素存在并发挥作用。 无铅工艺的基本概念就是在焊锡过程中,无论是手工烙铁焊、浸焊、波峰焊和回流焊,所使用的焊料都是无铅焊料(Pb-Feer Soder),但无铅焊料并不是代表100%不含铅。 在有铅焊料中,铅是作为一种基本元素而存在的。在无铅焊料中,基本元素不含铅。但作为一种杂质元素,铅的存在是不可避免的。因为世界上不存在100%的纯金属。实质上无铅焊料的定义就是无铅焊料中铅的上限值的问题。 欧盟出台的ROHS指令明确要求将铅的含量控制在0.1wt%以下。 无铅工艺趋势 首先我们来看看有铅和无铅的趋势,随着国际环保要求逐步提高,无铅工艺成为电子产业发展的一个必然过程。尽管无铅工艺已经推行这么多年,仍有部分企业使用有铅工艺,但无铅工艺完全代替有铅这是一个必然的结果。但是无铅工艺在使用方面有些地方也许还不如有铅工艺,所以我们以后要研究的是如何让无铅工艺更好地替代有铅工艺。让ROHS环保更广泛的普及,达到既盈利又环保的双赢目标。 无铅工艺的现状 当前国内许多大公司也没有完全采用无铅工艺而是采取有铅工艺技术来提高可靠性,在机车行业中西门子和庞巴迪等国际知名公司也没有完全采用无铅工艺进行生产,而是尽量豁免。 当前有许多专业也认为无铅技术还有许多问题有待于进一步认识,如著名工艺专家李宁成博士也认为当前的无铅工艺技术的发展还没有有铅技术成熟,如先前的无铅焊接采用的最多的Sn3Ag0.5Cu焊料合金,最近发现由于Cu的含量稍低,焊点可靠性有些问题,有人建议将Cu的质量分数提高到1%~2%,但是现在时常上还没有这种焊料合金的产品。同时无铅焊接的电子产品的可靠性数据远远没有有铅焊接生产的电子产品丰富。

相关文档