文档库 最新最全的文档下载
当前位置:文档库 › 韩布信离子液体-二氧化碳化学转化研究获新进展

韩布信离子液体-二氧化碳化学转化研究获新进展

韩布信离子液体-二氧化碳化学转化研究获新进展
韩布信离子液体-二氧化碳化学转化研究获新进展

韩布信离子液体-二氧化碳化学转化研究获新进展

在国家自然科学基金委、科技部和中国科学院的大力支持下,中国科学院化

学所胶体、界面与化学热力学实验室的研究人员在CO

2

化学转化研究领域取得系

列研究成果。CO

2

是重要的温室气体,又是丰富的碳源,具有廉价、无毒、不燃

烧等优点。将CO

2

转化为有用的化学物质具有重要意义。

在前期工作中,他们制备了高度交联聚合物负载的功能离子液体催化剂、聚

苯胺催化剂和可生物降解的负载型氯化胆碱催化剂,并用于催化CO

2

与环氧化合物合成环状碳酸酯的反应,取得良好效果(Angew. Chem. Int. Ed., 2007, 46,7255-7258; Chem. Eur. J., 2007, 13, 6992-6997;Green Chem., 2007,9, 169-172.)。

功能离子液体负载于高度交联聚合物用于催化CO

2

环加成反应

CO

2与H

2

反应合成甲酸是一个重要的反应。如何循环利用反应过程中的碱助

剂和催化剂是有待进一步解决的重要问题。该实验室研究人员合成了碱性功能离

子液体和固体催化剂,用于超临界条件下CO

2与H

2

合成甲酸的反应,实现了碱助

剂和催化剂的循环利用,研究成果发表在近期的《德国应用化学》(Angew. Chem. Int. Ed., 2008, 47, 1127-1129.)上。

功能离子液体用于CO

2

与H2合成甲酸

他们还制备了碱性离子液体催化剂,利用CO

2

和胺反应合成了一系列具有重要用途的脲类化合物,过程具有高效、无溶剂、不使用脱水剂等优点(Green Chem., 2008, 10, 465-469.)。

碱性离子液体催化CO

2

与胺反应合成脲类化合物

(来源:中国科学院化学所)

(《德国应用化学》(Angew. Chem. Int. Ed.),doi:10.1002/anie.200704487,Zhaofu Zhang,Buxing Han)

离子液体及其研究进展

正离子部分是有机阳离子,如:1-丁基-3-甲基咪唑[bmim]+,1-乙基-3-甲基咪唑[emim]+,体积比无机离子大,因此有较低的熔点[3]。阳离子中电荷越分散,分子的对称性越低,生成化合物的熔点越低。阴离子的大小对熔点有较大的影响。大的阴离子,与阳离子的作用力小,晶体中的晶格能小。因此,易生成熔点低的化合物。 2.2 溶解性 离子液体的分子结构还影响它们对化合物的溶解性能。例如,[bmim]+BF-4是亲水的,而[bmim]+PF-6是疏水的,与水不互溶。选择性地溶解催化剂但与反应物和产物不溶的离子液体是很有价值的,因为这样,产物的分离简单,可节省能源。有机化合物在一些离子液体中也有一定的溶解度。 Bonhote等[3]研究了有机溶剂在离子液体[emim]+CF3SO-3中的溶解性。二氯甲烷、四氢呋喃可与其互溶,而甲苯、二氧六环是不溶的。Waffensehmidt等[4]的研究结果表明,调节阳离子中烷基链的长短可改变溶解度。如卜辛烯在(MeEt3N)+ (P-MePh-SO3)-溶,但溶解在[Me(n-C6H11)3N]+(P-MePhSO3)-中。 2.3 热稳定性[5] 离子液体的热稳定性分别受杂原子-碳原子之间作用力和杂原子-氢键之间作用力的限制,因此与组成的阳离子和阴离子的结构和性质密切相关。例如在氧化铝上测定的多种咪唑盐离子液体的起始热分解温度大多在400℃左右,同时也与阴阳离子的组成有很大关系。当阴离子相同时,咪唑盐阳离子2位上被烷基取代时,离子液体的起始热分解温度明显提高;而3位氮上的取代基为线型烷基时较稳定。相应的阴离子部分稳定性顺序为:PF6>Beti>Im≈BF4>Me≈AsF6≥I、Br、Cl。同时,离子液体的水含量也对其热稳定性略有影响。 2.4 密度 离子液体的密度与阴离子和阳离子有 离子液体及其研究进展 吴清文 天津工业大学材料化工学院 300160 前言 离子液体是由一种含氮杂环的有机阳离子和一种无机阴离子组成的盐,在室温或室温附近温度下呈液态,又称为室温离子液体、室温熔融盐、有机离子液体等。与传统的有机溶剂和电解质相比,离子液体具有一系列突出优点:(1)几乎没有蒸气压、不挥发、无色、无味;(2)有较大的稳定温度范围,较好的化学稳定性及较宽的电化学稳定电位窗口;(3)通过阴阳离子的设计可调节其对无机物、水、有机物及聚合物的溶解性,并且其酸度可调至超酸。最初的离子液体主要用于电化学研究,近年来在作为环境友好的溶剂方面有很大的潜力,故也称之为“绿色溶剂”。 1 离子液体的组成 目前被人们关注的液体离子的种类比较多,但大体上说起来,其中的阳离子主要有以下四类[1,2]:烷基季铵离子;烷基季鳞离子:N-烷基取代吡啶离子;1,3-二烷基取代咪唑离子。阴离子则可以是AlC1-4、BF-4、PF-4、CF3COO-、CF3SO-3、(CF3SO2)2N-、SbF-等有机离子和配合物离子。 2 离子液体的物理化学特质 2.1 熔点 离子液体是低熔点的季铵、膦盐。 很大关系。比较含不同取代基咪唑阳离子的氯铝酸盐的密度发现,密度与咪唑阳离子上N-烷基链长度呈线性关系,随着有机阳离子变大,离子液体的密度变小。这样可以通过阳离子结构的轻微调整来调节离子液体的密度。阴离子对密度的影响更加明显,通常是阴离子越大,离子液体的密度也越大。因此设计不同密度的离子液体,首先选择相应的阴离子来确定大致范围,然后认真选择阳离子对密度进行微调。 2.5 酸碱性[6] 离子液体的酸碱性实际上由阴离子的本质决定。将Lewis酸如A1C13加入到离子液体[bmim]C1中,当A1C13的摩尔分数x(A1C13)<0.5时,离子液体呈碱性;当x(A1C13)=0.5时,为中性,阴离子仅为A1C1-4;当x (A1C13)>0.5时,随着A1C13的增加会有Al2Cl-7和Al3Cl-10等阴离子存在,离子液体表现为强酸性。研究离子液体的酸碱性时,必须注意其“潜酸性”和“超酸性”。例如把弱碱吡咯或N、N’-二甲基苯胺加入到中性[bmim]+A1C1-4中,离子液体表现出很明显的潜酸性。把无机酸溶于酸性氯铝酸盐离子液体中,可观察到离子液体的超强酸性。与传统的超酸系统相比,超酸性离子液体处理起来更安全。 综上所述离子液体具有独特的物理化学特性,而且还可以在一定程度上进行调变。但总体上讲,对离子液体的物理化学性质还了解得相对较少,这也成为今后离子液体研究的主要内容。 3 离子液体的合成 离子液体种类繁多,改变阳离子/阴离子的不同组合,可以设计合成出不同的离子液体。离子液体合成大体上有两种基本方法:直接合成法和两步合成法[7] 。 3.1 直接合成法 通过酸碱中和反应或季铵化反应一步合成离子液体,操作经济简便,没有副产物,产品易纯化。例如,硝基乙胺离

纳米材料的研究进展及其应用全解

纳米材料的研究进展及其应用 姓名:李若木 学号:115104000462 学院:电光院

1、纳米材料 1.1纳米材料的概念 纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型人介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著不同。 1.2纳米材料的发展 自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。

2、纳米材料:石墨烯 2.1石墨烯的概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的猫。 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。 另外,石墨烯几乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。 作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。极有可能掀起一场席卷全球的颠覆性新技术新产业革命。

阴离子交换膜的卤甲基化改性研究进展

阴离子交换膜的卤甲基化改性研究进展 叶 丽*,管 蓉,王姝姗,袁 园 (湖北大学化学与化工学院,湖北武汉430062) 摘要:卤甲基化是近年来在阴离子交换膜开发过程中最常用的一种改性方法;综述了阴离子交换膜材料的卤甲基化的研究进展,重点介绍了聚合物的直接卤甲基化法和间接卤甲基化法,并对这两种改性方法作了详细的比较。讨论了用这两种方法制得的阴离子膜在结构与性能方面的差异,同时对其在阴离子交换膜材料探索研究中的应用前景进行了探讨。关键词:阴离子交换膜;卤甲基化;改性中图分类号:TM911.4 文献标志码:A 文章编号:1008-7923(2010)02-0124-05 Research progress in modification of halomethylation for anion exchange membrane YE Li *,GUAN Rong,WANG Shu-shan,YUAN Yuan (College of Chemistry and Chemical engineering,Hubei University,Wuhan,Hubei 430062,China) Abstract :Halomethylation as a general modification method,commonly used in the development of anion exchange membrane (AEM),was reviewed.The direct polymer halomethylation and indirect halomethylation were introduced,a detailed comparison was also carried out between them.The structure and performance of the AEM from the two methods were discussed,of which applications to halomethylation in the AEMs'research were explored. Key words :anion exchange membrane(AEM);halomethylation;modification 收稿日期:2010-01-08 基金项目:深圳市功能高分子重点实验室开放基金(SP20090001)作者简介:叶丽(1987-),女,湖北省人,硕士生;主要研究方向为燃料电池;导师:管蓉(1956-),女,四川省人,教授,主要研究方向为燃料电池。 Biography:YE Li (1987-),female,candidate for master;tutor: GUAN Rong(1956-),female,professor.*本文通讯联系人。 由于膜分离通常为高效分离过程,且能耗低[1],该技术已经受到各国的充分关注,属当代高新技术范畴。离子交换膜分为阳离子交换膜和阴离子交换膜。目前阴离子交换膜已经广泛应用于各种工业领域,如:用作氯碱工业中电解液电解的隔膜,在电解质法中对盐溶液进行浓缩或脱盐[2]、用于酸性电解质中 通过扩散渗析回收酸[3]、作为阴离子选择电极、电池隔膜[4]等。就其在世界范围的发展情况而言,它在水处理行业的工艺比较成熟,已经得到了广泛的应用。此外,在医药、食品、冶金等工业领域中采用离子膜法工艺的也日益增多[5]。与阳离子膜相比,阴离子膜具有许多独特的优点[6-7],因此开发出综合性能良好且能应用于工业领域的阴离子膜显得更为迫切。 对于膜材料,发展最早的阴离子交换膜是有机膜,因无机膜不能在碱性介质中使用,所以这方面开展的研究比较少。与无机膜相比,有机膜虽机械强度、化学稳定性、耐有机物污染性稍差,但其成膜性及柔韧性都比较好。有机阴离子交换膜一般由3部

纳米氧化锡的研究进展

纳米氧化锡的用途及研究进展 付高辉0909404018 高分子材料与工程 1 前言 氧化锡是一种宽带系半导体材料,带宽范围为 3.6~4.0 eV。它用途广泛,在有机合成中,可用作催化剂。在陶瓷工业中,可作为釉料和搪瓷乳浊剂。由于小尺寸效应及表面效应,纳米氧化锡具有特殊的光电性能、气敏性能、催化性能以及具有化学和机械稳定性,在气敏元件、半导体元件、电极材料、液晶显示器、保护性涂层及太阳能电池等方面有着潜在的应用。是一种重要的半导体金属氧化物功能材料。 鉴于纳米材料的表面原子数与体相原子数之比随颗粒尺寸的减小而急剧增大,从而显示出体积效应、量子尺寸效应、表面效应和宏观量子隧道效应,在光、电、磁、力、化学等方面呈现出一系列独特的性质,人们自然致力研究SnO 纳米 2 材料的制备。[1-3 ] 2 纳米氧化锡的性质 2.1 化学稳定性 纳米氧化锡材料因其也为惰性金属氧化物,不易发生化学反应。因此在好多反应中都保持了自己的性质,这为开发多功能的新型材料提供了保证。 2.2 量子尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射 周边性的边界条件将被破坏,导致声、深度等物理尺寸相当或更小时,纳米SnO 2 光、电、磁、热、力学等性质呈现出新的小尺寸效应。利用这些小尺寸效应,在使用技术方面开辟了一些新的领域。 2.3 宏观量子隧道效应 宏观量子隧道效应即当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦有隧道效应,称为宏观的量子隧道效应。而纳米SnO 的宏观量 2 子隧道效应为其在微电子器件发面的发展奠定了良好的基础。

高考中有关离子交换膜的电化学试题

高考中有关离子交换膜的电化学试题 离子交换膜是一种对溶液里的离子具有选择透过能力的高分子膜。因在应用时主要是利用它的离子选择透过性,又称为离子选择透过性膜.离子交换膜法在电化学工业中应用十分广泛。教材中并未专门介绍,一般是在讲解氯碱工业时介绍阳离子交换膜的应用,但在近年考试中涉及离子交换膜原理的考题屡见不鲜.一、交换膜的功能: 使离子选择性定向迁移(目的是平衡整个溶液的离子浓度或电荷)。 二、交换膜在中学电化学中的作用: 1.防止副反应的发生,避免影响所制取产品的质量;防止引发不安全因素。(如在电解饱和食盐水中,利用阳离子交换膜,防止阳极产生的氯气进入阴极室与氢氧化钠反应,导致所制产品不纯;防止与阴极产生的氢气混合发生爆炸)。 2.用于物质的制备、分离、提纯等。 三、离子交换膜的类型: 常见的离子交换膜为:阳离子交换膜、阴离子交换膜、特殊离子交换膜等。 四、试题赏析: 1.某同学按如图所示装置进行试验,A、B为常见金属,它们的硫酸盐可溶于水。当K闭合时,SO42-从右向左通过阴离子交换膜移向A极.下列分析正确的是 A.溶液中c(A2+)减小 B.B极的电极反应:B-2e-= B2+ C.Y电极上有H2产生,发生还原反应

D.反应初期,X电极周围出现白色胶状沉淀,不久沉淀溶解 2.(2014·全国大纲版理综化学卷,T9)右图是在航天用高压氢镍电池基础上发展起来的一种金属氢化物镍电池(MH-Ni电池)。下列有关说法不正确的是 A.放电时正极反应为:NiOOH+H 2O+e-→Ni(OH) 2 +OH- B.电池的电解液可为KOH溶液 C.充电时负极反应为:MH+OH-→M+H 2 O+e- D.MH是一类储氢材料,其氢密度越大,电池的能量密度 越高 3.(2014·福建理综化学卷,T11)某原电池装置如右图所示,电池总反应为 2Ag+Cl 2 =2AgCl。下列说法正确的是 A.正极反应为AgCl +e-=Ag +Cl- B.放电时,交换膜右侧溶液中有大量白色沉淀生成 C.若用NaCl溶液代替盐酸,则电池总反应随之改变 D.当电路中转移0.01 mol e-时,交换膜左侧溶液中约减少0.02 mol离子4.(2013·浙江高考·11)电解装置如图所示,电解槽内装有KI及淀粉溶液,中间用阴离子交换膜隔开。在一定的电压下通电,发现左侧溶液变蓝色,一段时间后, 蓝色逐渐变浅。已知:3I 2+6OH-=I+5I-+3H 2 O 下列说法不正确的是( ) A.右侧发生的电极反应式:2H 2O+2e-=H 2 ↑+2OH-

超临界二氧化碳离子液体两相体系

超临界二氧化碳/离子液体两相体系 许多有机溶剂易挥发到大气中,对环境和人类健康产生不利的影响,而离子液体在室温下没有蒸汽压且粘度低,物理性质可以调节,例如,含有BF4-的离子液体是亲水的,而含有PF6-的就不溶于水。因此离子液体逐渐替代有机溶剂作为反应介质。然而,由于水只适用于亲水性产品的提取,蒸馏法不适用于具有不挥发性或热不稳定性的产品,且液液萃取使用有机溶剂会导致交叉污染,使得离子液体中的产品难以回收。基于scCO2可溶于离子液体而离子液体不溶于scCO2的原理,由于多数有机化合物可以溶解于scCO2,scCO2在离子液体中具有高溶解度,产品可以从离子液体中转移到超临界相。(1) Hajime Kawanami*利用scCO2/ILs合成碳酸丙二酯,并发现使用[C8-mim]+[BF4]-离子液体,在5min内产率能达到100%,选择性也为100%,反应速率是其他报道过的方法的77倍。DMF曾作为scCO2的可溶性碱性酸催化剂,但由于DMF较低的催化活性,所需反应时间超过12h。而在scCO2/ILs两相体系中,IL既能作为优异的碱性酸催化剂,又是合适的反应介质。非极性有机组分比如说环氧化合物和碳酸盐在高密度的scCO2中有更高的溶解性,而在非极性的IL中的溶解度很小,可以忽略。(2) 图1 碳酸丙二酯的合成反应 除了回收产物外,scCO2/ILs还用于对均相催化剂的回收。与之相比,前人提出的氟/有机相、水/有机相、scCO2/水相等两相体系具有催化剂在有机相中部分溶解,不环保,pH等问题。根据Richard等人的研究,Ru(O2CMe)2((R)-tolBINAP 在[bmim]PF6离子液体中催化巴豆酸的不对称氢反应,产物可以被scCO2从离子液体中提取出来,tolBINAP复合物在离子液体中的溶解度远远大于在scCO2中的溶解度,被留在反应器中进行重复使用(至少可以重复使用4次)。使用回收利用的催化剂所得到产物的对映体超量(ss)比使用新催化剂所得产物的还高,

全钒液流电池离子交换膜的研究进展_陈栋阳

第25卷第4期高分子材料科学与工程 Vol .25,No .4 2009年4月 POLYMER MA TERIALS SCIENCE AND ENGINEERING Apr .2009 全钒液流电池离子交换膜的研究进展 陈栋阳,王拴紧,肖 敏,孟跃中 (光电材料与技术国家重点实验室,中山大学光电及功能复合材料研究院,中山大学物理科学 与工程技术学院,广东广州510275) 摘要:液流电池离子交换膜的主要作用是物理分隔正负极电解液同时又允许载电荷的离子的通过以实现完整的电流回路。全钒液流电池的电解液具有强的氧化性,且易于渗透而引起电池容量的降低,决定了其离子交换膜应具有独特的结构与性能。文中对近年来用于全钒液流电池的离子交换膜做了比较全面的归纳与分析,并对质子传导机理与膜的基本性能指标进行了阐述。 关键词:离子交换膜;全钒液流电池;质子传导机理;膜结构 中图分类号:T B383 文献标识码:A 文章编号:1000-7555(2009)04-0167-03 收稿日期:2008-02-23 基金项目:广东省科技计划项目(20062060303)和广州市科技攻关项目(034j2001)通讯联系人:王拴紧,主要从事功能高分子材料的研究, E -mail :w angshj @mail .sysu .edu .cn 全钒液流电池是一种新型的液流电池体系,它是 由钒元素的四个不同价态组成的电解液构成氧化还原电对,储存于两旁的储液罐中,再通过两个泵的推力,在离子交换膜的两边分别循环流动,由离子导电来完成电流回路的特殊的电池储能系统。其结构如Fig .1所示 。 Fig .1 Constructional illustration of all -vanadium flow battery 它除了具备一般液流电池的典型优点,如不存在浓差极化、可深度放电和瞬时充电、额定功率和额定能量相互独立以及充放电电压可随意调节等外,还具备如下优点:(1)因为正负极电解液都是钒离子的电解液,无交叉污染问题;(2)电池维护简单,只需定期将两边的电解液相互混合,平衡里面的离子浓度,再进 行充电,即可使容量完全恢复;(3)把我国的钒矿资源 变成能源材料,对经济的发展具有重要的战略意义。 最早发现钒可作为氧化还原液流电池的电解质的是美国航空航天局(NASA )(1974年),之后澳大利亚New South Wales 大学的Sum E 等人于1985年研究了各价态钒在石墨电极上的电化学行为,次年,该大学的Skyllas -Kazacos M [1]由V 5+/V 4+和V 2+/V 3+组成一个性能良好的静止型钒氧化还原单电池,从此,全钒液流电池得到了很大的发展[2~5]。 作为一种新型的储能装置,全钒液流电池可用于电网的昼夜调峰和太阳能与风能发电站的蓄电,且在军事上也有重要的地位。多个单电池可以串联成电压可调的电堆,多个电堆又可并联成电流可调的配电系统。可见,通过简单的设计就可以满足不同的用电需求。而系统对于充电电流的大小并无要求,使得该氧化还原液流电池蓄电的应用领域更为广阔。该电池所 发生的电化学反应如下 : 1 膜的性能指标

纳米限域研究取得新进展

纳米限域研究取得新进展 分子在纳米孔道限域环境中扩散和反应显示了非常独特的物理化学特性,理论工作者已经进行了大量的计算和模拟。最近,我所包信和研究员带领的“界面和纳米催化”研究组(502组)在自行研制的一套与固体核磁共振仪耦合的动态催化反应系统中,采用激光诱导超极化129Xe技术,首次在模拟催化反应条件下直接观察到了甲醇分子在孔径为0.8nm的CHA分子筛孔道扩散和脱水过程,并精确获得了分子扩散和反应的动力学参数。相关方法和实验结果以研究论文形式(Article)发表在最近一期的《美国化学会志》(J.Am.Chem.Soc.,131(2009)13722-13727),被认为是“一种对纳米孔催化反应研究具有重要意义”的发明。 纳米限域效应在光学、电子器件以及催化反应等领域具有很大的应用前景,分子在纳米限域空间中的吸附和反应动力学一直受到理论和实验研究者的广泛关注。理论研究已经预示,限域在纳米空间中物质将会显示出与自由状态下明显不同的物理化学特性,但是,由于在真实条件下分子的扩散速度很快,而且纳米孔道中分子浓度极低,实验研究需要发展原位-动态和高灵敏的检测手段。该研究组张维萍、包信和研究员和博士研究生徐舒涛等对商用核磁共振“魔角旋转”(Magic Angle)的探头进行改进,自行研制了一套与固体核磁共振仪器相耦合、适合于分子扩散和催化研究的高

温原位-动态研究系统,并将国际上已广泛采用的激光诱导超极化129Xe技术引入动态反应过程的研究,使NMR的检测灵敏度提高了1万多倍,从而使固体核磁采谱时间缩短到10秒以内。将该技术成功用于研究甲醇在CHA纳米分子筛笼内的吸附、扩散和脱水反应过程,首次获得了接近真实反应条件下纳米孔道中活性位在反应过程中的动力学参数,大大加深了对甲醇在分子筛孔道中酸助脱水和转化过程机理的理解和认识。 近年来,该研究组系统地将高灵敏核磁共振技术用于催化反应过程和材料合成过程的原位-动态研究,不断取得重要进展。相关信息: 纳米收音机 纳米科学技术 "纳米"饭,香不? 纳米污染:看不见的子弹

纳米材料国内外研究进展

纳米材料国内外研究进展 一、前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)[1]。自20世纪80年代初, 德国科学家 Gleiter[2]提出“纳米晶体材料”的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料已引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1~100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)[3]。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域。 二、国内外研究现状 1984年德国科学家Gleiter首先制成了金属纳米材料, 同年在柏林召开了第二届国际纳米粒子和等离子簇会议, 使纳米材料成为世界性的热点之一;1990年在美国巴尔的摩召开的第一届NST会议, 标志着纳米科技的正式诞生;l994年在德国斯图加特举行的第二届NST会议,表明纳米材料已成为材料科学和凝聚态物理等领域的焦点。近年来,世界各国先后对纳米材料给予了极大的关注,对纳米材料的结构与性能、制备技术以及应用前景进行了广泛而深入的研究,并纷纷将其列人近期高科技开发项目。2004年度纳米科技研发预算近8.5亿美元,2005年预算已达到10亿美元,而且在美国该年度预算的优先选择领域中,纳米名列第二位。现在美国对纳米技术的投资约占世界总量的二分之一[4]。 自70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料, 至今已有 30多年的历史, 但真正成为材料科学和凝聚态物理研究的前沿热点是在 80年代中期以后。因此 ,从其研究的内涵和特点来看大致可划分为三个阶段[5]。 第一阶段(1990年以前)主要是在实验室探索,用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。研究的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。 第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复

高考化学复习 专题7-离子交换膜在电化学装置中的应用 (2)

专题7 离子交换膜在电化学装置中的应用 日期:2019年11月10日 学号姓名 1.(2018年11月浙江选考17题)最近,科学家研发了“全氢电池”,其工作原理如图所示。 下列说法不正确 ...的是() A.右边吸附层中发生了还原反应 B.负极的电极反应是H2-2e-+2OH-=2H2O C.电池的总反应是2H2 +O2=2H2O D.电解质溶液中Na+向右移动,ClO4-向左移动 2.(2019年高考天津卷6题)我国科学家研制了一种新型的高比能量锌--碘溴液流电池,其工作原理示意图如下。图中贮液器可储存电解质溶液,提高电池的容量。下列叙述不正确的是 A.放电时,a电极反应为I2Br-+ 2e-=2I-+ Br- B.放电时,溶液中离子的数目增大

C.充电时,b 电极每增重0.65 g ,溶液中有0.02mol I - 被氧化 D.充电时,a 电极接外电源负极 3.(2019 年全国卷 I 12) 利用生物燃料电池原理研究室温下氨的合成,电池工作时MV 2+/MV +在电极与酶之间传递电子,下列说法错误的是 A .相比现有工业合成氨,该方法条件温和,同时还可提供电能 B .阴极区,在氢化酶作用下发生反应H 2 + 2MV 2+ = 2H + + 2MV + C .正极区,固氮酶为催化剂,N 2发生还原反应生成NH 3 D .电池工作时,质子通过交换膜由负极区向正极区移动 4.(2016年全国卷 I 11)三室式电渗析法处理含 Na 2SO 4 废水的原理如图3所示,采用惰性电极,ab 、cd 均为离子交换膜,在直流电场的作用下,两膜中间的Na +和SO 42- 可通过离子交换膜,而两端隔室中离子被阻挡不能进入中间隔室.下列叙述正确的是(B ) A .通电后中间隔室的SO 42-向正极迁移,正极区溶液pH 增大 B .该法在处理含Na 2SO 4。废水时可以得到NaOH 和H 2SO 4产品 C .负极反应为2H 2O - 4e - = O 2+ 4H +,负极区溶液pH 降低 D .当电路中通过1mol 电子的电量时,会有0.5 mol 的O 2生成 5.(2018年全国卷Ⅰ 27节选)焦亚硫酸钠(Na 2S 2O 5)在医药、橡胶、印染、食品等方面应有广泛,加答下列问题: MV + MV 2+ N 2 NH 3 H 2 H + MV + MV 2+ 电 极 电 极 氢化酶 固氮酶 2SO 4负极区正极区 浓Na 2SO 4溶液a b c d +-

离子交换膜

离子交换膜的研究进展与工业应用 摘要:简要介绍了离子交换膜的发展背景及工业应用,主要介绍了均相离子交换膜,也是未来离子交换膜的主要研究发展方向 关键词:离子交换膜、发展背景、工业应用、均相离子交换膜 1 离子交换膜技术 1.1离子交换膜的基本概念 离子交换膜是一种含离子基团的、对溶液里的离子具有选择透过能力的高分子膜。因为一般在应用时主要是利用它的离子选择透过性,所以也称为离子选择透过性膜。[1]离子交换膜按功能及结构的不同,可分为阳离子交换膜、阴离子交换膜、两性交换膜、镶嵌离子交换膜、聚电解质复合物膜五种类型。离子交换膜的构造和离子交换树脂相同,但为膜的形式。根据膜体结构(或按制造工艺)的不同,离子交换膜分为异相膜、均相膜和半均相膜三种。无论是均相膜还是非均相膜,在空气中都会失水干燥而变脆或破裂,故必须保存在水中[2]。 1.2离子交换膜的原理[3] 和粒状离子交换树脂一样,离子交换膜中的功能团在水溶液中会发生离解,产生阳(或阴)离子进入周围的溶液,致使膜带有负(或正)电荷,为保持电性中和,膜就会吸引外部溶液中的阳(或阴)离子,通过膜的离解和吸引作用全过程,使得外部溶液中的阳(或阴)离子从膜的一侧选择透过到另一侧,而不会或很少使溶液中与膜带同性电荷的离子透过。如果使用阴离子交换膜,因为膜孔骨架上的正电基构成强烈的正电场,就使得只准阴离子透过,而阳离子不会透过。同时,阳极 2-)来说,区产生的H+不能进入阴极区。对于溶液中各种不同的反电离子(OH-;S0 4 由于它们在膜中的扩散系数各不相同(例如水合离子半径不同),以及膜中空隙筛过离子的能力不同,因此,采用离子交换膜能够进行分离,正是利用这种选择透过性。从以上膜的工作原理看,外部溶液与膜之间的离子传递,并不是真正的离子交换,而是选择渗析,这两者的工作原理差别很大。粒状离子交换树脂在使用上需要分为吸附一淋洗(解吸)一再生等步骤。而离子交换膜不需再生等步骤,可以连续作用,同时,两者在工业上的使用范围也有很大的不同,前者主要用于富集和分离相似元素,后者主要用于渗析、电渗析和作为电解过程的隔膜等。 1.3离子交换膜的发展背景 Juda[1]在1949年发明了离子交换膜,并于1950年成功地研制了第一张具有商业用途的离子交换膜,1956年首次成功地用于电渗析脱盐工艺上[4]。从此离子交换膜成为一个新的技术领域受到日本及欧美等国的充分重视。50余年来,在应用过程中对离子交换膜做了很多改进,从初期性能差的非均相发展到适合于工业生产的、性能较好的均相离子交换膜,从单一电渗析水处理用膜发展到扩散渗析用膜、离子选择透过性膜和抗污染用膜.应用方面除了通常的电渗析外,还拓展到电解、渗透蒸发、质子燃料电池及其电渗析为基础的过程集成[6]。 我国离子交换膜的研制始于20世纪60年代,当时研制的是非均相膜,主要用于苦

2010-离子液体在分离领域的研究进展

中国科学: 化学 2010年第40卷第10期: 1487 ~ 1495 SCIENTIA SINICA Chimica https://www.wendangku.net/doc/b36993665.html, https://www.wendangku.net/doc/b36993665.html, 《中国科学》杂志社SCIENCE CHINA PRESS 评述 离子液体在分离领域的研究进展 韩彬①②, 张丽华②*, 梁振②, 屈锋①, 邓玉林①, 张玉奎② ①北京理工大学生命学院, 北京 100081 ②中国科学院分离分析化学重点实验室; 中国科学院大连化学物理研究所国家色谱研究分析中心, 大连 116023 *通讯作者, E-mail: lihuazhang@https://www.wendangku.net/doc/b36993665.html, 收稿日期: 2009-11-23; 接受日期: 2009-12-15 摘要室温离子液体, 又称离子液体, 是一种在室温及接近室温的环境中完全以离子状态存在的液态物质. 由于其具有不可燃、蒸汽压极低、黏度大、导电性和溶解能力好、高温稳定等特点, 已被广泛应用于有机合成、催化、电化学、分析化学等领域. 本文侧重介绍离子液体在样品预处理、毛细管电泳、高效液相色谱、气相色谱、质谱等分离领域的最新研究进展, 并对其发展方向进行了展望. 关键词 离子液体样品预处理色谱 分离 1 引言 室温离子液体(room temperature ionic liquids, RTILs), 又称离子液体(ionic liquids, ILs), 是一种在室温及接近室温的情况下完全以离子状态存在的液体. 由一个不对称的大体积阳离子和小体积阴离子组成. 如图1所示, 阳离子主要有咪唑型、吡啶型、季铵型等, 阴离子主要有卤素、四氟硼酸根、六氟磷酸根等. 理论上, 离子液体可由不同的阴阳离子任意组合, 数目庞大. 它们的极性、疏水或亲水性、溶解度、熔点等物理化学性质不仅与阳离子和阳离子的取代基相关, 而且也与阴离子的大小和极性有重要关系[1].因此可以通过阴阳离子的组合或基团修饰来调节上述性质 . 离子液体具有一些传统有机和无机化学试剂不可比拟的优点, 如蒸汽压极低、不易挥发、黏度大、不可燃、导电性和溶解能力好、高温稳定、电化学窗口较宽等[2]. 早期的离子液体研究主要集中在氯化铝型离子液体, 但此类离子液体遇湿敏感, 易产生氯化氢气体, 腐蚀性强. 后来发展了咪唑型、吡啶型等离子液体[3], 应用研究领域扩展到催化合成[4]、电化学[5]、生物传感器[6]、分析化学[7~11]等领域. 图1 离子液体的主要阳离子和阴离子组成示意图 国内外学者曾对2008年以前的离子液体在毛细管电泳[7]、液相色谱[8]、色谱及电迁移技术[9]、分离技术中的应用[10]以及咪唑类离子液体在分析化学中的应用[11]等诸多方面进行了相关综述, 而有关近期离子液体在样品预处理、色谱、质谱等分离领域较为全面的综述尚未见报道. 本文侧重于对离子液体在分离领域中的最新研究进展进行综述. 2 样品预处理 样品预处理是对复杂样品中目标分析物进行提取、浓缩富集、基团保护等的物理化学过程, 它能够改善后续的分离分析和检测结果. 因此对于目标分析物的鉴定、验证和量化分析都至关重要[12].

高考化学专项突破 离子交换膜在电化学装置中的应用

高考化学专项突破----离子交换膜在电化学装置中的应用 一、离子交换膜的功能:使离子有选择性的定向迁移(目的是平衡整个溶液的离子浓度或电荷)。 二、离子交换膜在电化学中的作用 (1)能将两极区隔离,阻止两极区产生的物质接触。 防止副反应的发生,避免影响所制取产品的质量; 防止引发不安全因素。(如在电解饱和食盐水中,利用阳离子交换膜,防止阳极产生的Cl2进入阴极室与氢氧化钠反应,导致所制产品不纯;防止与阴极产生的H2混合发生爆炸)。 (2)能选择性地通过离子,起到平衡电荷、形成闭合回路的作用。 (3)用于物质的制备、分离、提纯等。 三、离子交换膜的类型 根据透过的微粒,离子交换膜可以分为多种,在高考试题中主要出现阳离子交换膜、阴离子交换膜和质子交换膜三种。阳离子交换膜,简称阳膜,只允许阳离子通过,阻止阴离子和气体通过;阴离子交换膜,简称阴膜,只允许阴离子通过,质子交换膜只允许质子(H+)通过,不允许其他阳离子和阴离子通过。可见离子交换膜的功能在于选择性地通过某些离子和阻止某些离子来隔离某些物质。 注意:①反应物相同,不同的交换膜,迁移的离子种类不同。②同种交换膜,转移相同的电子数,如果离子所带电荷数不同,迁移离子数不同。③离子迁移依据电荷平衡,而离子数目变化量可能不相等。 四、离子交换膜类型的判断

根据电解质溶液呈中性的原则,判断膜的类型。判断时首先写出阴、阳两极上的电极反应,依据电极反应式确定该电极附近哪种离子剩余,因该电极附近溶液呈电中性,从而判断出离子移动的方向,进而确定离子交换膜的类型,如电解饱和食盐水时,阴极反应式为2H++2e-=H2↑,则阴极区域破坏水的电离平衡,OH-有剩余,阳极区域的Na+穿过离子交换膜进入阴极室,与OH-结合生成NaOH,故电解食盐水中的离子交换膜是阳离子交换膜。 五、真题再现 1、(2019·全国卷Ⅰ)利用生物燃料电池原理研究室温下氨的合成,电池工作时MV2+/MV+ 在电极与酶之间传递电子,示意图如下所示。下列说法错误的是 A.相比现有工业合成氨,该方法条件温和,同时还可提供电能 B.阴极区,在氢化酶作用下发生反应H 2+2MV2+2H++2MV+ C.正极区,固氮酶为催化剂,N2发生还原反应生成NH3 D.电池工作时质子通过交换膜由负极区向正极区移动 【答案】B 【解析】 【分析】由生物燃料电池的示意图可知,左室电极为燃料电池的负极,MV+在负极失电子发生氧化反应生成MV2+,电极反应式为MV+?e?= MV2+,放电生成的MV2+在氢化酶的作用下与H2反应生成H+和MV+,反应的方程式为H2+2MV2+=2H++2MV+;右室电极为燃料电池

8-离子液体催化二氧化碳合成环状碳酸酯的研究进展1

论 文 综 述 Overview of The sise s 离子液体催化二氧化碳合成环状 碳酸酯的研究进展 祁兴国 刘 畅 马守波3 (中国石油大连石化公司,辽宁大连116032;3.北京服装学院,北京100029) 摘要 概述了以离子液体作为催化剂或作为反应介质,用C O 2合成环状碳酸酯的研究进展。离子液体是固定C O 2产生环状碳酸酯的适宜催化剂和溶剂,离子液体的话性可以通过添加本身并无活性或低活性的Lewis 酸性金属卤化物或金属配合物得到改善。使用离子液体使得合成过程变得更加绿色和简单,因为产品易分离,催化剂可以循环利用,而且不必使用挥发性有害的有机溶剂。关键词 二氧化碳 碳酸酯 离子液体   收稿日期:2005-11-21 作者简介:祁兴国(1979~),男,硕士,从事催化与化学反应方面的工作   Development of Cyclic C arbonate Synthesis from CO 2U sing Ionic Liquids Qi X ingguo Liu Chang Ma Shoubo 3 (PetroChina Dalm PetroChemicak C om oany ,Liao nang Dilian 116032; 3.Beijing Institute of Clothing T echnology ,Beijing 100029) Abstract The recent development in the synthesis of cyclic carbonate from C O 2using ionic liquids as catalyst and/or reaction medium was reviewed.S ome ionic liquids were suitable catalysts and/or s olvents to the C O 2fixation to produce cyclic carbonate.The activity of ionic liquid was greatly enhanced by the addition of Lewis acidic com pounds of metal halides or metal com plexes that had no or low activity by https://www.wendangku.net/doc/b36993665.html,ing the ionic liquids ,the synthesis process became greener and sim pler because of easy product separation and catalyst recycling and unnecessary use of v olatile and harm ful or 2ganic s olvents. K eyw ords C O 2 cyclic carbonate lonic liquid 在固定C O 2的反应是利用C O 2和环氧化合物通过环加成反应合成环状碳酸酯的反应。如果在反应和处理过程当中不使用任何有机溶剂,该反应将是一个标准的“原子经济”和“绿色化学”反应,它没有任何副产物产生,生成的环状碳酸酯不仅是一种性能优良的有机溶剂,而且在药物和精细化学品的合成当中有 着广泛的应用[1]。 离子液体具有独特的优点,既可以作为催化剂,又可以作为溶剂。离子液体的蒸气压几乎可以忽略,在较大的室温范围内呈液态,具有极好的化学稳定性和热稳定性,还可以溶解许多有机和无机化学物质[2]。以上特性使得离子液体用作催化剂和溶剂合 — 46—第20卷第5期2006年5月 化工时刊Chemical Industry T imes Vol.20,No.5 May.5.2006

纳米凝胶的研究进展

纳米凝胶的研究进展 摘要:纳米凝胶是由亲水性或两亲性高分子链组成的三维网状结构,它能显着的溶胀于水但是不溶解于水,由于水和凝胶网络的亲和性,水可能以键合水、束缚水和自由水等形式存在于高分子网络中而失去流动性,因此纳米凝胶能够保持一定的形状。它们可以作为一种药物载体,而且也可以通过盐键,氢键或者疏水作用自发的结合一些生物活性分子。高分子电解质的纳米凝胶可以稳定地结合带相反电荷的小分子药物和生物大分子,比如寡或多聚核苷酸(siDNA,DNA)和蛋白质。目前的研究表明纳米凝胶在生物医药方面有很广阔的应用前景。 关键词:纳米凝胶药物载体 前言 纳米凝胶通常指的是由物理或者化学交联的聚合物网络组成的水凝胶颗粒, 它是一种纳米尺度的水分散体。按形成的化学键,凝胶分为两种:一种是化学凝胶(聚合物凝胶),这种凝胶是由交联的共价键而形成的三维网络结构,比如PEG-cl-PEI。另一种是物理凝胶,是由非共价键形成的三维网络结构,比如甘露糖类,右旋糖酐等。按溶剂分,则一般分为有机凝胶和水凝胶。 纳米凝胶可以很好的作为药物运输载体是因为它们有很高的负载能力,高的稳定性,更重要的是相对于普通的药物纳米载体,它们对环境敏感,比如离子强度,pH和温度。至从2002年第一篇关于纳米凝胶的合成与应用的综述发表后,这类新颖的纳米结构材料在药物,大分子和显影剂运输方面受到人们越来越大的关注。这篇综述简单介绍了纳米凝胶的合成与应用,尤其是药剂学方面的应用。 没有负载的纳米凝胶含有大量的水而处于一种溶胀的状态。纳米凝胶可以通过生物活性因子与其多聚链基质之间的静电作用,范德华力或者疏水作用自发的负载这些因子。因此,纳米凝胶塌陷而形成稳定的纳米粒子,生物活性因子负载其中。可以在其结构中加入分散的亲水性聚合物比如聚乙二醇来阻止纳米凝胶的聚集。在负载药物的纳米凝胶络合物塌陷的过程中,这类聚合物可以暴露在其表面并形成一个亲水的保护层从而阻止了相分离。纳米凝胶表面的官能团可以进一步的用各种不同的靶向基团修饰以达到靶向输送特定部位的目的。研究表明纳米凝胶可以将其负载送到细胞里面并穿过生物膜。这种纳米凝胶有很好的稳定性并且可以保护生物活性因子不被细胞内代谢系统降解。纳米凝胶在全身性药物输送及提高口服和脑部位的生物利用度方面表现出很大的潜能。 1 纳米凝胶的制备 目前报道的制备纳米凝胶的方法有以下几种:(1)聚合物之间的物理自组装;(2)均相或微小非均相环境下的单体聚合;(3)形成了的聚合物交联;(4)模板辅助。下面详细介绍这几种方法。 许多研究团队用聚合物之间的物理自组装制备了各种不同的纳米凝胶。这种方法通常包括控制亲水性聚合物之间通过疏水作用或者静电作用或者氢键导致的聚集。这种制备纳米凝胶的方法在温和条件和水介质中进行。亲水性聚合物相互作用将生物大分子包裹其中,并且对于制备负载蛋白质的纳米凝胶非常有用。比如Akiyoshi 等人通过胆固醇修饰的淀粉之间的疏水作用制备了负载胰岛素的纳米凝胶(如图1a)【1】。这种纳米凝胶在一个窄的胆固醇∕糖比例(1:40-1:100)

相关文档