文档库 最新最全的文档下载
当前位置:文档库 › 地震沉积学的研究步骤、研究方法

地震沉积学的研究步骤、研究方法

地震沉积学的研究步骤、研究方法
地震沉积学的研究步骤、研究方法

地震沉积学方法:根据地震沉积学的定义,地震岩性学和地震地貌学是地震沉积学的两个核心组成部分。利用地震岩性学方法可将一个三维地震数据体转化为一个地层岩性数据体,对这种地层岩性数据进行地震地貌学分析,可以将物理意义上的地震属性参数转换为含有岩性标记的高分辨率沉积相平面图。对多层沉积相平面图按地质时间顺序综合分析,可得出有关盆地沉积史、有利砂体分布的地质信息。地震岩性学主要利用地震资料确定或预测主要沉积岩性。

在目前技术条件下,实现常规地震资料岩性标定最经济、最有效的方法是地震道90°相位。90°相位子波将地震响应的主波瓣最大振幅点移至薄层中间点,此时的地震响应对应于薄层中点,这使主要地震同相轴对应地质上定义的储集层单元,如砂岩层。如此,在0~1 个波长范围,地震极性即可与岩性相对应。虽然当地层厚度小于四分之一波长时准确度不高,但地层的顶底面可以被确定在振幅过零点上。当将上述方法应用于实际资料时,地震同相轴和薄地层岩性单元之间将建立一一对应关系,这将使沉积岩性的地震解释工作变得更容易,如区分砂岩和泥岩。这些优点是零相位及其他相位地震资料所不具备的。另外,地震资料的岩性转换也可通过地震反演技术、地震参数分析和时频分析技术实现。

地震地貌学主要依据现代沉积学和主要沉积砂体的地貌形态,推断沉积类型。沉积体系作图要借助合适的地层切片工具以及以此为基础的地质体追踪和三维显示工具。建立准确的时间地层格架是地震地貌学作图成功的关键,应选择产状基本不随地震资料频率变化而变化的同相轴,或至少是来自最大洪泛面或特殊岩性的地震反射作为等时地层格架中的标志同相轴;避免将角度不整合面用作标志界面或使角度不整合面出现在两个标志界面之间;避免不经检验将任何已追踪层位直接当作标志界面使用。

至于具体地层切片方法,应根据特定的构造和地层条件选择:如果地层是席状且平卧的,时间地层切片可能足以满足需要;如果地层是席状但不平卧,沿层切片是适合的;如果地层既不是席状也不是平卧的,则必须选择地层切片,或两个标志层之间的等分切片。在实际应用时,地层切片法是首选方法,因为其对所有上述 3 种情况都适用。在地层简单、地震资料质量很好的情况下,有时也可以用地震异常体自动追踪的方法直接获取地震参数平面图。

地震沉积学工作流程:常规高分辨率层序地层学和沉积学研究主要依靠高分辨率(厘米级别)的钻井和测井资料,传统的地震地层学研究利用的则是低垂向分辨率(10~30 m)地震剖面,二者在分辨率上的巨大

差异是造成资料综合解释困难的主要原因。地震沉积学的关键作用在于利用三维地震薄层(1~10 m)检测能力强的优点,弥补二者的不足。因此,在实际工作流程中(见图1),除进行地震沉积学研究外,还应进行层序地层学/沉积学、地震地层学方面研究,以使各种资料互相补充。

①建立联井基干地震剖面网。井-震剖面设计应包括沿盆地倾向和走向 2 个方向的剖面,其数量视盆地构造、沉积复杂程度而定,以能满足地震沉积相研究要求为原则。如果条件允许,亦应参考周边大地构造及区域二维地震解释成果。这些联井基干地震剖面除

用于地震沉积学研究外,亦可用于层序地层学/沉积学研究和地震地层学研究。

②测井-地震联合对比,建立高精度层序地层格架。测井曲线与地震剖面的对比包括制作典型井地震合成记录和进行测井曲线深-时转换。如果有可能,应参考使用地震测井及垂直地震剖面资料。在基干剖面上同时标注岩心-测井资料高等级层序划分、地震资料三级层序划分以及地震资料频率成分调整结果,经综合分析后得出高精度层序格架。由于地震频率调整(步骤⑥)滞后于本步骤,因此这是一个逐步迭代的过程。

③地震子波相位调整。根据储集层相对厚度决定最佳子波相位,对地震意义上的薄层(单层厚度小于四分之一波长),子波相位应调整到90°;对地震厚层段(单层厚度大于四分之一波长),子波相位调整到零相位。

④追踪地震地质等时标志层。选择与地震波频率变化无关的同相轴所代表的地质标志层,如最大洪泛面凝缩层、平行不整合和特殊岩性层(煤、薄层灰岩)等进行追踪,形成地震地质时间格架。追踪时应参考测井曲线层序地层对比时识别的标志层和地震层序划分时使用的地震标志层。

⑤地震分辨率估算。包括用频谱分析估计地震波有效频率范围和主频;用井资料制作正演模型以确定薄层时间分辨厚度极限(即地震分辨率极限,它是地震沉积学最小作图单元)以及地震切片检测最小厚度(即地层切片上薄层识别的最小厚度,或切片检测率极限);与用测井曲线识别的高等级层序对比,以评估用地震沉积学研究高等级层序的可行性.

⑥地震频率调整。为实现高等级层序地层格架与地震资料的最佳配合,应尽可能将地震沉积学最小作图单元调整到高级层序或高级层序体系域的平均厚度范围。这一配合可用调整地震资料主频的手段来实

现。当地震资料主频增大时,地震沉积学最小作图单元将变薄;反之则变厚。为避免旁瓣增大,保持地震子波地层分辨能力,处理中应尽量保持子波宽频特征。

⑦岩石物理关系分析。用岩心的实验室测定数据或关键井测井曲线统计目的层段不同岩性间的波阻抗对应关系及极性/振幅对应关系;确定用地震参数预测岩性的可行性。

⑧地震参数筛选。对多种地震参数进行试验,以确定预测岩性和沉积相的最佳地震属性参数或参数组合。如可能,还应对反演数据体进行试验。结果需在地层切片上对比验证。

⑨地层切片处理。用专用软件或用简单内插法制作地层切片;建立地层切片和高等级层序的对应关系;必要时将处理结果反馈到步骤⑧。以地层切片或等时反射上的振幅异常为种子,在一定时窗内进行地质异常体自动追踪也属这类处理。

⑩地震沉积相分析。根据地层切片上显示的地震岩性学信息和地震地貌特征,以及岩心-测井相标定结果,辅以剖面地震相特征,解释沉积相、沉积环境和沉积体系域分布。储集层和石油地质评价。综合多学科研究成果,预测砂体厚度、分布范围、储集层质量、地层岩性圈闭等。

子波基本理论与提取方法

子波基本理论与提取方法 1地震子波基本原理 由震源激发、经地下传播并被人们在地面或井中接收到的地震波通常是一个短的脉冲振动,称该振动为振动子波。它可以理解为有确定起始时间和有限能量,在很短时间内衰减的一个信号。地震子波其振动的一个根本属性是振动的非周期性。因此,它的动力学参数应有别于描述周期振动的振幅、频率、相位等参数,而用振幅谱、相位谱等概念来描述。 子波一般是物理可实现的,特别是地震子波,作为一个物理滤波器的响应函数,自然是物理可实现的,所有必定为非零相子波,但不同子波相位延迟不同。子波包括最小相位子波、最大相位子波、混合相位子波。 子波的Z 变换是一个多项式: n n z b z b z b b z B ++++=...)(221 若此多项式的全部零点均在单位圆外,则为最小相位子波;在单位圆内,为最大相位子波;零点在单位圆的内外都有,则为混合相位子波。

2地震子波的数学模型 实际中的地震子波是一个很复杂的问题,因为地震子波与地层岩石性质有关,地层岩石性质本身就是一个复杂体。为了研究方便,仍需要对地震子波进行模拟,目前普遍认为雷克提出的地震子波数学模型具有广泛的代表性,即称雷克子波。最小相位的地震子波的数学模型为: ft e t b at π2sin )(2-= 式中:f 为子波的主频;)ln(22M f =α为子波衰减系数;|/|21m m M =为最 大波峰值1m 和最大波谷值2m 之对比。其波形大致如图所示: 3地震子波提取的基本方法 地震子波的提取方法有两大类:第一类是确定性子波提取方法;第二类是统计性子波提取方法。确定性子波提取方法指的是利用测井资料首先计算出反射系

地震数据处理方法(DOC)

安徽理工大学 一、名词解释(20分) 1、、地震资料数字处理:就是利用数字计算机对野外地震勘探所获得的原始资料进行加工、改进,以期得到高质量的、可靠的地震信息,为下一步资料解释提供可靠的依据和有关的地质信息。 2、数字滤波:用电子计算机整理地震勘探资料时,通过褶积的数学处理过程,在时间域内实现对地震信号的滤波作用,称为数字滤波。(对离散化后的信号进行的滤波,输入输出都是离散信号) 3、模拟信号:随时间连续变化的信号。 4、数字信号:模拟数据经量化后得到的离散的值。 5、尼奎斯特频率:使离散时间序列x(nΔt)能够确定时间函数x(t)所对应的两倍采样间隔的倒数,即f=1/2Δt. 6、采样定理: 7、吉卜斯现象:由于频率响应不连续,而时域滤波因子取有限长,造成频率特性曲线倾斜和波动的现象。 8、假频:抽样数据产生的频率上的混淆。某一频率的输入信号每个周期的抽样数少于两个时,在系统的的输出端就会被看作是另一频率信号的抽样。抽样频率的一半叫作褶叠频率或尼奎斯特频率fN;大于尼奎斯特频率的频率fN+Y,会被看作小于它的频率fN-Y。这两个频率fN+Y和fN-Y相互成为假频。 9、伪门:对连续的滤波因子h(t)用时间采样间隔Δt离散采样后得到h (nΔt)。如果再按h (nΔt)计算出与它相应的滤波器的频率特性,这时在频率特性图形上,除了有同原来的H (ω)对应的'门'外,还会周期性地重复出现许多门,这些门称为伪门。产生伪门的原因就是由于对h(t)离散采样造成的。 10、地震子波:由于大地滤波作用,使震源发出的尖脉冲经过地层后,变成一个具有一定时间延续的波形w(t)。 11、道平衡:指在不同的地震记录道间和同一地震记录道德不同层位中建立振幅平衡,前者称为道间均衡,后者称为道内均衡。 12、几何扩散校正:球面波在传播过程中,由于波前面不断扩大,使振幅随距离呈反比衰减,即Ar=A0/r,是一种几何原因造成的某处能量的减小,与介质无关,叫几何扩散,又叫球面扩散。为了消除球面扩散的影响,只需A0=Ar*r即可,此即为几何扩散校正, 13、反滤波(又称反褶积):为了从与干扰混杂的地震讯息中把有效波提取出来,则必须设法消除由于水层、地层等所形成的滤波作用,按照这种思路所提出的消除干扰的办法称为反滤波,即把有效波在传播过程中所经受的种种我们不希望的滤波作用消除掉。 14、校正不足或欠校正:如果动校正采用的速度高于正确速度,计算得到的动校正量偏小,动校正后的同相轴下拉。反之称为校正过量或过校正。 15、动校正:消除由于接受点偏离炮点所引起的时差的过程,又叫正常时差校正。 16、剩余时差:当采用一次波的正常时差公式进行动校正之后,除了一次反射波之外,其他类型的波仍存在一定量的时差,我们将这种进过动校正后残留的时差叫做剩余时差。

地震勘探常用术语及计算公式

地震勘探缩写术语 2-D Two Dimensional 二维。 3-C Three Component 三分量。 3C3D 三分量三维。 3-D Three Dimensional三维。 9-C Nine Component 九分量。3分量震源╳3分量检波器=九分量。 9C3D 九分量三维。 A/D Analog to Digital模数转换。 AGC Automatic Gain Control 自动增益控制。 A V A Amplitude Variation With Angle 振幅随采集平面的方位角的变化。 A VO Amplitude Variation With Offset 振幅随偏移距的变化。 A VOA 振幅随炮检距和方位角的变化。 CDP Common Depth Point 共深度点。 CDPS Common Depth Point Stack共深度点迭加。 CMP Common Mid Point 共反射面元。共中心点。 CPU Central Processing Unit 中央控制单元。 CRP Common Reflection Point 共反射点。 D/A Digital to Analog 数模转换。 d B/octa d B/octv e 分贝/倍频程。 DMO Dip Moveout Processing 倾角时差校正。 G波G-wave 一种长周期(40—300秒)的拉夫波。通常只限于海上传播。H波H-wave 水力波。 IFP Instantaneous Floating Point 仪器上的瞬时沸点放大器。 K波K-wave 地核中传播的一种P波。 LVL Low Velocity Layer 低速层。 L波L-wave 天然地震产生的长波长面波。 NMO Normal Moveout Correction 正常时差校正,动校正。 OBS Ocean Bottom Seismometer 海底检波器。 P波P-wave 即纵波。也称初始波、压缩波、膨胀波、无旋波。 QC Quality Control 质量控制。

各种地震监测方法内容简介

附件2 各种监测方法内容简介 目前监测手段总体分为两类:测震(地震监测和强震)、前兆(形变、地磁、地电、流体、电磁波等),这里介绍潼南拟上的监测项目或手段。 地震监测和强震监测属于地震已经发生后监测地震发 生的时间、地点、震级、强度等,是人们常说的“事后诸葛亮”类型的监测,主要是为了确定地震发生的上述几要素,为政府抗震救灾和应急救援提供决策依据,否则,不知地震发生的一切信息,救灾就无从谈起。因此这一监测手段也是目前各国、各地区发展最早、技术最为先进和完善的监测方法。其他的监测手段统称为前兆手段,主要是通过各种方法的监测数据来预测预报地震。 一、地震监测、GPS监测 地球动力学是从地球的整体运动出发,由地球内部和表层的构造运动来探讨其动力演化过程,进而寻求其驱动机制。其基本问题是研究地球的变形及其变形机理。 板块构造概念带动了地学的一次重大革命,板间构造和板块运动理论能否成立或被人接受,均需得到全球板块运动的最新直接测量结果的支持。此外,板块运动的动力学机制、板内和板缘运动的复杂性的精细描述等方面,有待更多测量结果去完善。 中国大陆东部受西太平洋洋型板块俯冲、削减的影响,造成了一系列与弧后扩张有关的陆缘海伸展和断陷盆地;西部和西南受印度板

块与青藏块体陆壳碰撞后的构造效应,形成不同地质构造时期的推覆构造带。现代地壳运动则以青藏高原的快速隆起和沿巨型活动带的走滑或逆走滑的强烈变动为特征。据有限的观测,其水平运动速率每年高达l~4cm,垂直运动速率每年达1cm。这说明同时存在当代板块构造学说两种最具代表性的边界,即陆-陆壳相碰撞型和洋 陆壳俯冲型边界,既具有主要的全球构造意义,又具有独特的演化特征。这里的现代地壳运动类型多样,性质复杂,地貌清晰,是全球动力学研究中具有重要特殊地位的实验场。 因此,不论从地球动力学、板块运动还是青藏高原隆起,运用高精度、高时空分辨率、动态实时定量的观测技术,建立符合实际的地球动力学基础的全国统一的观测网络,势在必行。 对于地震监测预报而言,这种紧迫性尤为显著,因为我国地震台网,尤其是地震前兆网,存在着严重的三个主要缺陷: 第一,自1988~1999年,我国大陆共发生6级以上地震53次,其中7级以上地震9次,若以东经105°为界,西部地区发生8次,东部地区为1次,为8∶1。可是,在东经105°以西,由于人烟稀少,交通不便,台网布局极为稀少。一个释放地震能量90%以上的地区,台网过稀,无疑浪费了宝贵的地震信息的天然资源,大大延迟了人类的实践,从而延缓了提高地震预报水平的进程。 第二,全国地震前兆台网都是以“点测”形式进行相对变化量的日常观测,各台站的观测数据都是相对独立的,台站之间数据没有相

地震资料数字处理试卷合集

一、名词解释 1.道均衡:是指在不同或同一地震记录道建立振幅平衡。 2.数字信号:相对于模拟信号,记录瞬间信息的离散的信号。 模拟信号:随时间连续变化的信号. 有效信号:能为我们所利用的信号就叫有效信号。 3.最小相位:能量集中在序列前部。 4.反射波:在波速突变的分界面上,波的传播方向要发生改变,入射波的一部分被反 射,形成反射波。 折射波:滑行波在传播过程中也会反过来影响第一种介质,并在第一种介质中激发新的波。这种由滑行波引起的波,叫折射波。 5.共深度点:CDP。地下界面水平时,在共中心点下方的点,界面倾斜时无共深度点。 6.解编:地震数据是按各道同一时刻的样点值成列排放的,解编就是将数据重排成行。 12. 最大相位:能量集中在序列后部。 16.地震波:地震波是在岩石中传播的弹性波。 多次波:在地下经过多次反射接收到的波叫多次波。 17. 切除:地震信号经动校正后被拉伸畸变,目前处理动校正拉伸畸变的方法是切除, 即把拉伸严重部分的记录全部充零。 18. 混合相位:能量集中在序列中部。 自相关:一个时间信号与自身的互相关。 互相关:一个时间信号与另一个时间信号的相关。 21.环境噪音:交流电、人、风吹草动等环境因素所引起的对地震波有干扰的信号。 随机噪音:交流电、人、风吹草动等随机因素所引起的对地震波有干扰的信号。 22.反射系数:反射振幅与入射振幅的比值。 28.模拟记录:把地面振动情况,以模拟的方式录制在磁带上。 二、简答题 1、地震资料数字处理主要流程?地震资料的现场处理主要包括哪些内容? 地震勘探资料数据处理中的预处理主要包括哪些内容? 简述地震资料数据中有哪些目标处理方法? 地震资料数字处理如何分类? 地震资料数字处理质量控制有哪些? 地震资料数字处理主要流程:输入→定义观测系统→数据预处理(废炮道、预滤波、反褶积)→野外静校正→速度分析→动校正→剩余静校正→叠加→偏移→显示。 地震资料的现场处理主要有:预处理、登录道头、道编辑、切除初至、抽道集、增益恢复、 设计野外观测系统、实行野外静校正、还可以进行频谱分析、速度分析、水平叠加等(2分)。 地震勘探资料数据处理中的预处理主要包括登录道头、废炮道编辑、切除初至、抽道集(4分)、增益恢复、预滤波、反褶积等. 地震资料数据中目标处理方法有高分辨率地震资料处理、三维地震资料处理、叠前深度偏移处理、井孔地震资料处理(4分)、多波多分量地震资料处理、时间推移地震资料处理等地震资料数字处理分类有数据预处理、数据校正、叠加和偏移归位、振幅处理、滤波、分析、正反演、复地震道技术等。(3分) 地震资料数字处理质量控制包括野外原始资料检查与验收、处理流程及主要参数确定、

地震勘探参数选择

地震勘探注意参数 1.最大偏移距;如果偏移距太大,记录最重要的反射波便不能达到额定的叠加次数;如果偏移距太小,则在一次和多次反射之间在时差内的差值便小于它可能分辨的值,因此减弱了多次波的衰减功能。所以一般而言,最大偏移距要尽可能大,以利于速度分析;同时为避免宽角反射波畸变,它又必需足够小。对一个排列来说,合适的最大偏移距应使最重要的反射波正好在最远记录道的削减带(mute zone)之后到达。它使得记录道加长30~40%。削减消除了NMO校正造成的畸变,经验法则是选取远道偏移距等目标反射面的深度。 2.近道偏移距(炮点离最近一个检波器的距离,用X1表示);在最浅的反射波上至少要保持一次覆盖。近道偏移距越小,则浅部反射波的叠加次数越高。一般的原则是近道偏移距应尽可能地小,以保证对速度和计时的控制,并有利于静校正和基准校正。 3.道间距(相邻两道检波器的间距,用△X表示。);对偏移技术来说,道间距的选择应该能提供足够的空间取样。这一规则通常在数据采集时都必须遵循。显然,道间距大,排列长度大,工作效率高。不宜太大,相位追踪对比困难,远处能量衰减大。 △X取决于最大最小炮检距,地震仪道数,空间采样率,空间分辨率。选取原则是:△X选择要有利于有效波的对比;△X要考虑对反射界面进充分采样,在倾角较大或有断时,应小一些;1M左右即可;△X选取不宜过大,会造成空间采样率不足,产生假频;一般横向二分之一波长,纵向四分之一。对于深层:反射波波速大,△X大,

对于浅层:反射波波速小,△X小。而波速,折射波>反射波,△X,折射波>反射波。因此,很多情况下,反射波法的道间距应小于折射波法的道间距。 4.记录长度,采样间隔;记录长度必须能记录到最深目的层产生的反射波,并有一定余量;采样间隔越小,对地震波形记录精度越高,相应的记录长度越小,反之也对;在满足记录长度要求时,采样间隔选取应在反射波的每一个视周期内大约10个样点。 5.最大最小炮检距的选择在于使目的层反射波尽量不被噪声所掩盖;最大炮检距(离开炮点最远的检波点与炮点的距离,用Xmax表示)大一点对速度分析但太大会带来广角反射畸变,经验上取与目的层深度相近,为其0.7-1.5倍之间(与探测深度有密切关系。折射:目的层深度的5~7倍);最小炮检距也称偏移距,应尽量小一些,便于分析各种波速度与时间的关系,但是震源附近,最小炮检距应避开强干扰。

地震监测系统

GIS地震探测系统 一、概述 地震又称地动、地振动,是地壳快速释放能量过程中造成振动,期间会产生地震波的一种自然现象。全球每年发生地震约五百五十万次。地震常常造成严重人员伤亡,能引起火灾、水灾、有毒气体泄漏、细菌及放射性物质扩散,还可能造成海啸、滑坡、崩塌、地裂缝等次生灾害。 地球的构造分为三层:即中心层地核、中间层地幔、外层地壳; 1.地壳:分为上地壳和下地壳。是岩石圈上部次极圈层。 2.地幔:分为上地幔和下地幔。岩石圈是它的一部分,软流层以上。地幔多以流体形式的岩浆等物质存在 3.地核:分为外核和内核。外核是液体的,所以又称外核液体圈。内核,是固体的,主要由铁、镍组成,又称内核固体圈。 地壳与地幔之间由莫霍面界开,地幔于地核之间由古登堡面界开。地震一般发生在地壳之中。地壳内部在不停地变化,由此而产生力的作用,使地壳岩层变形、断裂、错动,于是便发生地震。超级地震指的是指震波极其强烈的大地震。但其发生占总地震7%~21%,破坏程度是原子弹的数倍,所以超级地震影响十分广泛,也是十分具破坏力。 下图为全球板块构造运动图:

地震是地球内部介质局部发生急剧的破裂,产生的震波,从而在一定范围内引起地面振动的现象,地震就是地球表面的快速振动,在古代又称为地动,他就像海啸、龙卷风、冰冻灾害一样,是地球上经常发生的一种自然灾害,大地振动是地震最直观、最普遍的表现;在海底或滨海地区发生的强烈地震,能引起巨大的海浪,称为海啸。地震是极其频繁的,全球每年发生地震约550万次。 地震波发源的地方,称为震源。震源在地面上的垂直投影,地面上离震源最近的一点称为震中,它是接受振动最早的部位,震中到震源的深度叫做震源深度。通常将震源深度小于70公里的叫做浅源地震,深度在70~~300公里的叫做中源地震,深度大于300公里的叫做深源地震。对于同样大小的地震,由于震源深度不一样,对地面造成的破坏程度也不一样;震源越浅,破坏越大,但波及范围也越小,反之亦然。 破坏性地震一般是浅源地震。如1976年的唐山大地震的震源深

层序地层学--考试资料

层序地层学考试资料 一、名词解释 层序地层学:是研究以不整合面或与之相对应的整合面为边界的年代地层格架中具有成因联系的、旋回岩性序列间相互联系的地层学分支学科。 层序:一套相对整一的、成因上存在联系的、顶底以不整合面或与之相对应的整合面为界的地层单元。 体系域:一系列同期沉积体系的集合体,是一个三维沉积单元,体系域的边界可是层序的边界面、最大海泛面、首次海泛面。 准层序:一个以海泛面或与之相应的面为界、由成因上有联系的层或层组构成的相对整合序列。在层序的特定位置,准层序上下边界可与层序边界一致。 首次海泛面:Ⅰ型层序内部初次跨越陆架坡折的海泛面,即响应于首次越过陆棚坡折带的第一个滨岸上超对应的界面,也是低位与海侵体系域的物理界面。 凝缩层:沉积速率极慢、厚度很薄、富含有机质、缺乏陆源物质的半深海和深海沉积物,是在海平面相对上升到最大,海侵最大时期在陆棚、陆坡和盆地平原地区沉积形成的。 Ⅰ型层序:底部以Ⅰ型层序界面为界,顶部以Ⅰ型或Ⅱ型层序界面为界的层序类型。 陆棚坡折带:陆架向海盆方向坡度陡然增加的地方。 低位体系域:Ⅰ型层序中位置最低、沉积最老的体系域,是在相对海平面下降到最低点并且开始缓慢上升时期形成的。并进型沉积:常出现于正常的富含海水的陆棚环境,海平面上升速率相对较慢,足以使得碳酸盐的产率与可容空间的增加保持同步,其沉积以前积式或加积式颗粒碳酸盐岩沉积准层序为特征,并且只含极少的海底胶结物。 二、层序地层学理论基础是什么? (1)海平面升降变化具有全球周期性。 层序地层学是在地震地层学理论基础上发展起来的,它继承了地震地层学的理论基础,即海平面升降变化具有全球周期性,海平面相对变化是形成以不整合面以及与之相对应的整合面为界的、成因相关的沉积层序的根本原因。 (2)4个基本变量控制了地层单元的几何形态和岩性。 这四个基本变量是构造沉降、全球海平面升降、沉积物供给速率和气候变化,其中构造沉降提供了可供沉积物沉积的可容空间,全球海平面变化控制了地层和岩相的分布模式,沉积物供给速率控制沉积物的充填过程和盆地古水深的变化,气候控制沉积物类型以及沉积物的沉积数量。一般说来,前三者控制沉积盆地的几何形态,沉降速率和海平面升降变化综合控制沉积物可容空间的变化。 三、图示并说明三种准层序组序列特征 进积式准层序组:是在沉积物沉积速率大于可容空间增长速率的情况下形成的,所以较年轻的准层序依次向盆地方向进积,形成向上砂岩厚度增大、泥岩厚度减薄、砂泥比值加大、水体变浅的准层序堆砌样式。常为HST和LST的前积楔状体的沉积特征。 退积式准层序组:是在沉积速率小于可容空间增长速率的情况下形成的,所以较年轻的准层序依次向陆方向退却,尽管每个准层序都是进积作用的产物,但就整体而言,退积式准层序组显示出向上水体变深、单层砂岩减薄、泥岩加厚、砂泥比值降低的特征。常为TST的特征。 加积式准层序组:是在沉降速率基本等于可容空间变化速率时形成的,相邻准层序之间未发生明显的侧向移动,自下而上,水体深度、砂泥岩厚度和砂泥比值基本保持不变。常为HST早期和陆架边缘体系域的沉积响应。 四、对比具陆棚坡折的碎屑岩Ⅰ型层序与具台地边缘的碳酸盐岩Ⅰ型层序之间的特征(含成因、边界特征、体系域构成及LST、TST、HST特征、主控因素) 具陆棚坡折的碎屑岩Ⅰ型层序界面是在全球海平面下降速率大于盆地沉降速率时产生的,它响应于区域性不整合界面,其上下地层岩性、沉积相和地层产状可以发生很大变化,具有陆上暴露标志和河流回春作用形成的深切谷。随着相对海平面下降,河流深切作用不断向盆地中央推进,形成了岩相向盆地中央方向的迁移特征。 具台地边缘的碳酸盐岩Ⅰ型层序界面是在海平面迅速下降且速率大于碳酸盐岩台地或滩边缘盆地沉降速率、海平面位置低于台地或滩边缘时形成的,以台地或滩的暴露和侵蚀、斜坡前缘侵蚀、区域性淡水透镜体向海方向的运动以及上覆地层上超、海岸上超向下迁移为特征。 这两类层序都包含低位体系域LST、海侵体系域TST和高位体系域HST这三个体系域。 具陆棚坡折的碎屑岩Ⅰ型层序中,LST的底为Ⅰ型不整合界面及其对应的整合面,其顶为首次越过陆棚坡折带的初次海泛面,它经常由盆底扇、斜坡扇和低位楔状体组成。TST的底界为首次海泛面,顶界为最大海泛面,它由一系列较薄层的、不断向陆呈阶梯状后退的准层序组构成,当海泛面达到最大时形成薄层富含古生物化石、以低沉积速率沉积的凝缩层。HST广泛分布于陆棚之上,下部以加积式准层序组的叠置样式向陆上超于层序边界之上,向海方向下

高阶统计量地震子波估计建模

2006年10月 第41卷 第5期  3山东省东营市中国石油大学(华东)信息与控制工程学院,257061本文于2005年12月21日收到,修改稿于2006年5月12日收到。 本项研究受高等学校博士学科点专项科研基金(No.20020008004)部分资助。 ?处理方法? 高阶统计量地震子波估计建模 戴永寿3①② 郑德玲① 魏 磊② 霍志勇② (①北京科技大学信息工程学院;②中国石油大学(华东)信息与控制工程学院) 摘 要 戴永寿,郑德玲,魏磊,霍志勇.高阶统计量地震子波估计建模.石油地球物理勘探,2006,41(5):514~518,540 本文在反射系数序列为非高斯、平稳和统计独立的随机过程,地震子波为非因果、混合相位的假设条件下,分别应用滑动平均(MA )和自回归滑动平均(ARMA )模型对地震记录进行建模,并采用运算代价较小的基于高阶累积量的线性化求解方法———累积量矩阵方程法进行了子波提取和模型适应性的研究。数值模拟结果和实际地震数据处理结果表明:自回归滑动平均(ARMA )模型比滑动平均(MA )模型具有参数节省、模型更为高效的特点;累积量矩阵方程法可以有效地压制加性高斯噪声,但对累积量样本估计的准确性要求较高;如果累积量样本估计的误差和方差适度,结合自回归滑动平均(ARMA )模型描述的累积量矩阵方程法可以高效、准确地估计出地震子波。 关键词 高阶累积量 子波 自回归滑动平均(ARMA ) 滑动平均(MA ) 建模 1 引言 作为地震资料反褶积处理、波阻抗反演以及正演模拟的基础工作,准确的地震子波估计对于高分辨率、高信噪比、高保真度的地震勘探数据处理具有极为重要的意义。统计性子波提取方法的基本原理是首先对反射系数序列的分布做某种假设,然后利用地震记录的统计信息进行子波估计。在没有任何先验知识的情况下,通常假设反射系数序列为一个非高斯、平稳和统计独立的随机过程,假设子波为一个非因果、非最小相位系统,加性噪声为高斯色噪声。因此在利用地震记录的统计信息进行子波估计时,其高阶累积量不仅能保留系统的相位信息,而且能较好地压制高斯色噪声,显示出此法的优越性。 近年来,基于高阶累积量的参数化子波估计方法得到了快速发展。Lazear [1]首先引入滑动平均(MA )模型描述地震记录,然后将子波四阶矩和地震资料的四阶累积量在最小均方误差意义下进行拟合,并用梯度下降法求解目标函数。随后,Velis 等人[2]及尹成等人[3]试图应用特性更好的全局最优化 方法解拟合函数,但求解效率普遍较低。石殿祥等 人[4]基于高阶累积量研究了非最小相位子波提取问题,虽取得了一定的成果,但依然沿用了滑动平均(MA )模型来描述地震记录。 本文分别采用滑动平均(MA )模型和自回归滑动平均(ARMA )模型来描述地震记录,并借助基于高阶累积量的线性化参数估计方法———矩阵方程法求解模型参数,最终精确估计了地震子波。 2 地震记录的滑动平均(MA)模型描 述及矩阵方程法子波提取 地震记录y (n )可视为一个零均值的平稳随机过程,且符合如下褶积模型 y (n )= ∑q i =0 w (i )r (n - i )+v (n ) =w (n )3r (n )+v (n ) (1) 式中:w (n )为地震子波;r (n )为反射系数序列;v (n )为环境噪声。显然,式(1)符合典型的滑动平均(MA )模型表达式,因此可以把地震记录看作是有限脉冲响应(FIR )系统的含噪输出。对于上述模型有如下假设:

地震数据处理vista软件使用手册

Vista 5.5的基本使用方法 数据输入 地震分析窗口 一维频谱 二维频波谱 观测系统 工作流 一、数据输入 1.1 把数据文件加入Project 首先选择File/New Project,新建一个Project,按住不放,出现按钮组合,可以选择不同类型 的数据集,选择,向Project中增加一个新的2-D数据集,按住不放,出现按钮组合, 可以选择加入不同类型的地震数据,选择,选择一个SEG-Y数据,即可将该数据文件加入新建的数据集。 1.2 命令流中数据的输入 双击进入如下界面 1.2.1 Input Data List 数据输入列表,选择已加入到Project的数据集,下面的文本框中会显示选择的数据的基本信息。 1.2.2 Data Order 选择输入数据的排列方式,对不同的处理步骤可以选择不同的数据排列方式 Sort Order a. NO SORT ORDER 输入数据原始排列方式 b. SHOT_POINT_NO 输入数据按炮点排列方式 c. FIELD_STATION_NUMBER d. CMP_NO 输入数据按共中心点排列方式 e. FIELD_STATION_NUMBER 1.2.3 Data Input Control 数据输入控制 右键-->Data Input Control a. Data Input 进入Flow Input Command(见上) b. Data Sort List 查看数据排列方式的种类 c. Data/header Selection 输入数据的选择,可以控制输入数据的道数和CMP道集 查看所有已经选择的数据 如果没有定义任何可选的数据信息,则如下图所示: 可以选择一种选择方式,单击并设置选择信息。定义有可选的数据信息后,在查看,则如下图所示,会显示选择的信息。 选择共炮点集 单击后,会弹出如下界面:

国内外微地震检测技术现状与应用

国内外微地震检测技术现状与应用 一、国内技术应用现状 基于微震监测的裂缝评价技术正发展成为油层压裂生产过程中直观而又可靠的技术。近几年来,国内众多油气田纷纷投入人力、物力和资金,积极开展该技术的应用与研究工作,广泛用于油气勘探开发工作。 1、2011年,东方物探公司投入专项资金,积极开展压裂微地震监测技术研究,压裂微地震监测技术水平得到快速提升。截止2011年11月,东方物探公司已成功对11口钻井实施了压裂微地震监测。 2、同年,华北油田物探公司针对鄂尔多斯工区大力推广水平井分段压裂技术、不断提高储量动用率及单井产量的要求,2011年年初就对微地震检测技发展状况进行调研,并对检波器、记录仪器、处理软件进行实际考察。 他们与科研院校合作,在鄂南工区富县牛东4井与洛河4井开展微地震监测裂缝评价技术攻关,采用微地震技术对储层压裂进行监测,结果与人工电位梯度方法(ERT)监测结果一致。该公司还通过组建微地震监测项目组,加强相关专业知识的培训和学习,并与科研院校“高位嫁接”,开发微地震检测特色技术,打造差异化竞争优势。 3、近年来,胜利油田积极开展微地震压裂检测技术应用研究,并把它作为油气勘探开发的重要技术手段和技术储备。 据了解,“十二五”期间,非常规油气藏将成为胜利油田的一个重要接替阵地,而微地震压裂检测技术是非常规油气藏勘探领域中的一项重要新技术。 通过开展对国内外微地震压裂检测技术现状、微地震压裂检测采集方法、数据处理及裂缝预测方法、目前成熟的处理反演软件、微地震压裂检测技术应用实例分析等方面调查研究,全面了解和掌握微地震压裂检测技术的技术特点、技术关键、技术实用性及其发展方向,为胜利油田下一步开展非常规油气资源的勘探开发工作提供先进的技术支持,更好地为油气藏勘探开发工作服务。 二、国外技术研究与应用 在20世纪40年代,美国矿业局就开始提出应用微地震法来探测给地下矿井造成严重危害的冲击地压,但由于所需仪器价格昂贵且精度不高、监测结果不明显而未能引起人们的足够重视和推广。 近10年来,地球物理学的进展,特别是数字化地震监测技术的应用,为小范围内的、信号较微弱的微地震研究提供了必要的技术基础。为了验证和开发微地震监测技术在地下岩石工程(如地热水压致裂、水库大坝、石油、核废料处理等)中所具有的巨大潜力,国外一些公司的研究机构和大学联合,进行了一些重大工程应用实验。如1997年,在美国德州东部的棉花谷进行了一次全面而深入的水压致裂微地震成像现场实验,以验证微地震成像技术的实用价值。该实验取得了巨大成功,证明微地震成像技术相对于其它技术来讲,分辨率高、覆盖范围广、经济实用及可操作性强,很有发展潜力。 美国之所以成为目前世界上页岩油气开发的领跑者,就是因为它已经熟练掌握了利用地面、井下测斜仪与微地震检测技术相结合先进的裂缝综合诊断技术,可直接地测量因裂缝间距超过裂缝长度而造成的变形来表征所产生裂缝网络,评价压裂作业效果,实现页岩气藏管理的最佳化。该技术有以下优点: ①、测量快速,方便现场应用; ②、实时确定微地震事件的位置; ③、确定裂缝的高度、长度、倾角及方位;

《地震地层学》第三章

第三章地震相分析 地震相分析是根据地震资料解释沉积环境背景和岩相。 第一节地震相的概念 一、相和沉积相 1、相的定义 相是一种具有特定特征的岩石体。 2、沉积相的概念 在理想情况下,沉积相是在一定的沉积条件下形成的一种有特色的岩石,这种沉积条件反映一种特定的沉积作用或沉积环境。简单地讲,沉积相是沉积环境的产物。 3、沉积相的相标志 沉积相类型划分的依据是那些能够反映沉积相特征和类型的相标志。相标志包括八种类型: 1)颜色; 2)岩石类型; 3)自生矿物; 4)颗粒结构(粒度参数曲线,形态,圆度,颗粒定向,颗粒表面结构); 5)原生构造(层理,层面,生物扰动,其它沉积构造); 6)岩性组合; 7)韵律; 8)化石。

二、地震相的定义 地震相是一个可以在区域圈定的,由地震反射层组成的三维单元,共反射结构,外形,振幅,连续性,频率和层速度等要素,与邻近相单元不同。 实际上,地震相是沉积相的宏观特征在地震反射资料中的表现;或者说,地震相是岩相的声学响应。 由于地震分辨率的局限,地震资料不可能分辨出很细微的沉积结构和岩性变化,而只反映沉积相的宏观特征。如外形,较大规模的层面(大型交错层)。 三、地震相参数 1、反射结构揭示地下总的层理模式,根据反射结构可以解释沉积过程,侵蚀现象和古地形,另外,流体接触面(如一平点)也可通过反射结构识别出来。 2、几何外形地震相单元的总体形态,反映古地形,沉积作用等。 3、反射连续性与地层的连续性密切相关,连续反射表示了分布广泛,均一成层的沉积。 4、反射振幅包含了单个界面的速度,密度差以及它们顶底间隔(距)的信息。它反映侧向的层理变化和烃类的赋存条件。 5、频率与反射层的间距或层速度的变化有关,并且与气体的赋存有关。 6、层速度岩性(砂泥含量),物性(孔隙度),含烃性(流体

地震波数值模拟方法研究综述.

地震波数值模拟方法研究综述 在地学领域,对于许多地球物理问题,人们已经得到了它应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件,但能用解析方法求得精确解的只是少数方程性质比较简单,且几何形状相当规则的问题。对于大多数问题,由于方程的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析解。这类问题的解决通常有两种途径。一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。但这种方法只是在有限的情况下是可行的,过多的简化可能导致很大的误差甚至错误的解答。因此人们多年来寻找和发展了另一种求解方法——数值模拟方法。 地震数值模拟(SeismicNumericalModeling)是地震勘探和地震学的基础,同时也是地震反演的基础。所谓地震数值模拟,就是在假定地下介质结构模型和相应的物理参数已知的情况下,模拟研究地震波在地下各种介质中的传播规律,并计算在地面或地下各观测点所观测到的数值地震记录的一种地震模拟方法。地震波场数值模拟是研究复杂地区地震资料采集、处理和解释的有效辅助手段,这种地震数值模拟方法已经在地震勘探和天然地震领域中得到广泛应用。 地震数值模拟的发展非常迅速,现在已经有各种各样的地震数值模拟方法在地震勘探和地震学中得到广泛而有效

的应用。这些地震波场数值模拟方法可以归纳为三大类,即几何射线法、积分方程法和波动方程法。波动方程数值模拟方法实质上是求解地震波动方程,因此模拟的地震波场包含了地震波传播的所有信息,但其计算速度相对于几何射线法要慢。几何射线法也就是射线追踪法,属于几何地震学方法,由于它将地震波波动理论简化为射线理论,主要考虑的是地震波传播的运动学特征,缺少地震波的动力学信息,因此该方法计算速度快。因为波动方程模拟包含了丰富的波动信息,为研究地震波的传播机理和复杂地层的解释提供了更多的佐证,所以波动方程数值模拟方法一直在地震模拟中占有重要地位。 1地震波数值模拟的理论基础 地震波数值模拟是在已知地下介质结构的情况下,研究地震波在地下各种介质中传播规律的一种地震模拟方法,其理论基础就是表征地震波在地下各种介质中传播的地震波传播理论。上述三类地震波数值模拟方法相应的地震波传播理论的数学物理表达方式不尽相同。射线追踪法是建立在以射线理论为基础的波动方程高频近似理论基础上的,其数学表形式为程函方程和传输方程。积分方程法是建立在以惠更斯原理为基础的波叠加原理基础上的,其数学表达形式为波动方程的格林函数域积分方程表达式和边界积分方程表达式。波

监测地震的方法.doc

监测地震的方法 【 - ,因此在这个过程中将出现地球物理学、地质学、大地测量学、 地球化学及至生物学、气象学等多学科领域中的各种异常现象。经过系统的清理和研究,自1966年邢台地震以来,我国已在70 多次中强以上地震前记录到1000多条前兆异常。 这些前兆异常可归为十大类,即地震学、地壳形变、重力 地磁、地电、水文地球化学、地下流体(水、汽、气、油)动态、应力应变、 气象异常以及宏观前兆现象。每一类前兆又包含多种监测手段和异常分析项目。 如地壳形变包含有大面积水准测量、断层位移测量、海平面观测、湖面观测、

地面倾斜观测等手段。地震学前兆分析项目是各大类前兆中最丰富的,包括地 震活动分布的条带、空区集中、地震频度、能量、应变、b 值、震群、前震、 地震波速、波形、应力降等三十多种异常分析项目。 宏观异常项目亦是丰富多 彩,如地声、地光、火球、喷水、喷油、喷气、地气味、地气雾,井水翻花、 冒泡、突升、突降、变色、变味、井孔变形、各种动物行为的反常现象等等。 总之,由于地震孕育和发生过程的复杂性,决定了地震前兆具有丰富,多样和综合的特点。归纳起来,前兆现象可分为十大类,其中包含的异常分析项目和观测手段可达近百项。 目前应用于地震监测的主要手段及方法有以下几种: 1)测震:记录一个区域内大小地震的时空分布和特征,从而预报大地震。人们常说的“小震闹,大震到”,就是以震报震的一种特例。当然,需要注意的是“小震闹”并不一定导致“大震到”。 2)地壳形变观测:许多地震在临震前,震区的地壳形变增大,可以是平时的几倍到几十倍。如测量断层两侧的相对垂直升降或水平位移的参数,是地震预报重要的依据。

《地震地层学》第二章

第二章地震层序分析 地震层序分析是区域地震地层学的基础,而地震层序分析的基础(或核心任务)是识别沉积层序这种地层单元,然后进行层序的对比和追踪。 第一节地层学的基本概念 一、地层的概念 碎屑物沉积成层状,通常称之为地层或层。这种成层性是由水或风等地质营力在相似地质环境时期将相当薄的席状沉积物散布在一较广阔的地区中造成的。 当沉积区的沉积环境发生变化时,可同时出现以下三种情况: 1)在原生沉积地层的顶部继续沉积其他类型的沉积物; 2)或含有一段时间没有沉积物的沉积; 3)或者原来的沉积物遭受剥蚀。 二、地层概念的引申 由于沉积环境相同,所以层内的沉积物比不同层的沉积物更相似。这很容易理解,但问题往往却很复杂。 (1)虽然层内沉积物比不同层的沉积物更相似,但其横向延续性有一定限度。一个层横向有可能变薄或者尖灭,在尖灭地区会出现这段时间内无地层记录。或者,同一地层内的层状沉积物横向上由一种类型逐渐递变为另一种类型,表明区域沉积环境也已经出现(发生了)渐变的形式。

(2)沉积环境的特定组合导致相似沉积地层明显的不连续。例如,由于反复的水道化作用和多次的河水泛滥,河道砂岩和页岩通常是不连续的,而在其他沉积环境中,可形成较连续的地层,例如深海盆地中心的远洋页岩(纵横比例)。 (3)我们讨论的对象一般是横向延伸大于垂向延伸的沉积物。连续层是这样,交错层也是这样。 三、地层面的概念 定义:地层面是分隔沉积岩层的物理沉积面。 地层面包括:①纹层②岩层及③大型地层单元的界线,并代表了无沉积时期或沉积环境的突然变迁。地层面通常表示一个相当小的时间间隔。假如时间间隙大,则这种层面称为不整合面。 四、地层面概念的引申 1) 地层面所表示的时间间隔长短因地而异,不等时是绝对的,等时是相对的。 2) 但地层面表示在它的全部延伸范围内至少有某些小的时间单元是共同的。 3) 地层面概念完全与地质时代和岩石年龄有关。 4) 只有分隔不同地层时才容易辨认出来。 5) 产生地震反射信号需要速度—密度差,即波阻抗差。111V ρZ = , 222V ρZ =,210?Z =Z -Z ≠。 五、地层面的类型 地层面分三种类型:

地震子波的再认识

地震子波的再认识 一、地震子波概念: 地震子波是地震记录褶积模型的一个分量,通常指由2至3个或多个相位组成的地震脉冲,确切地说,地震子波就是地震能量由震源通过复杂的地下路径传播到接收器所记录下来的质点运动速度(陆上检波器)或压力(海上检波器)的远场时间域响应。 一个子波可以由它的振幅谱和相位谱来定义,相位谱的类型可以是零相位、常数相位、最小相位、混合相位等;对零相位和常数相位子波而言,可简单将其看作是一系列不同振幅和频率的正弦波的集合,所有的正弦波都是零相位或常数相位的(如90°);在频率域中,子波提取问题由两部分组成:确定振幅谱和相位谱,确定相位谱更加困难,并且是反演中误差的主要来源。 二、子波提取方法: 子波提取方法分为三个主要类型:1)、纯确定法:即用地表检波器或其它仪器直接测量子波;2)、纯统计法:即只根据地震数据测定子波,这种方法很难测定可靠性的相位谱;3)、使用测井曲线法:即使用测井曲线与地震数据结合,理论上这种方法能够提取井点位置精确的相位信息,但问题是该方法要求测井和地震间必须要有良好的对应关系,而将深度域样点转换为双程旅行时的深时转换可能产生不恰当的对应关系,而这种不恰当的对应关系必将影响子波提取的结果。 子波在各地震道之间是变化的,而且是旅行时间函数,即子波是时变和空变的,也就是说,对每个地震剖面而言,都应该能提取大量的子波,但在实际应用中提取可变子波可能会引起更多的不确定性,比较实用的做法是对整个剖面或某个目的层只提取单一的平均子波。 三、零相位子波和常数相位子波:

零相位子波和常数相位子波(Zero Phase and Constant Phase Wavelets.) 首先,让我们来考虑雷克子波(Ricker Wavelet),雷克子波由一个波峰和两波谷,或叫两个旁瓣组成, 雷克子波依赖它的主频,也就是说,它的振幅谱的峰值频率,或主周期在时间域的反函数(主周期可以通过测量波谷到波谷的时间来获得)。

《地震勘探原理及方法》实验指导书

《地震勘探原理及方法》实验指导书

《地震勘探原理及方法》实验指导书 编写:地震勘探教研室 油气资源学院 2007年5月

《地震仪器和地震数据的认识》 实验指导书 实验学时:2 学时 一、实验目的: 地震仪器和地震数据的认识实验是地震勘探采集技术的方法实验。本实验的具体目的: 1.加深对野外采集仪器的理解和应用。 2.了解地震数据的格式、获取过程以及显示方式。 3. 初步了解野外地震数据采集的步骤和方法。 二、实验内容: 1. 熟悉地震采集系统设备 能够指出地震勘探记录仪、电缆线、检波器等设备的功能,熟悉各种设备的性能和特点。 2. 熟悉地震数据的格式、显示方式和获取过程。 三、实验指标 1.说明地震勘探记录仪、电缆大线、检波器等设备的功能、性能和特点。 2.说明地震数据的常用格式和获取过程。 四、实验报告要求 1、实验报告格式 学生须用西安石油大学实验报告纸完成报告。 2.实验报告内容 1)实验目的任务: 3)结果与分析 4) 体会、建议

常用地震数据的格式:SEGB,SEGD,SEGY(交换格式),SEG2 地震数据的记录形式: SEGY格式道头说明: 字(32位) 字节号说明 1 1-4* 一条测线中的道顺序号。如果一条测线有若干卷带,顺序号连续递增。25-8 在本卷磁带中的道顺序号。每卷带的道顺序号从1开始。 39-12* 原始的野外记录号。 413-16* 在原始野外记录中的道号。 517-20 震源点号(在同一个地面点有多于一个记录时使用)。 621-24 CMP号。 725-28 在CMP道集中的道号(在每个CMP道集中道号从1开始)。 8-1 29-30* 道识别码: 1=地震数据;4=时断;7=记时; 2=死道;5=井口时间;8=水断; 3=DUMMY;6=扫描道;9…N=选择使用(N=32767) 8-2 31-32 产生这一道的垂直叠加道数(1是一道;2是两道相加;…)。 9-1 33-34 产生这一道的水平叠加道数(1是一道;2是两道叠加;…)。 9-2 35-36 数据类型:1=生产;2=试验。 10 37-40 炮检距(如果是相反向激发为负值)。 11 41-44 接收点高程。高于海平而的高程为正,低于海平面为负。 12 45-48 炮点的地面高程。 13 49-52 炮点低于地面的深度(正数)(井深)。 14 53-56 接收点的基准面高程。 15 57-60 炮点的基准面高程。 16 61-64 炮点的水深。 17 65-68 接收点的水深。 18-1 69-70 对41-68字节中的所有高程和深度应用了此因子给出真值。 比例因子=1,±10,±100,±1000或者±10000。如果为正,乘以因子;如果为负,则除以因子。 18-2 71-72 对73-88字节中的所有坐标应用了此因子给出真值。比例因子=1,±10,±100,±1000或者±10000。如果为正,乘以因子;如果为负,则除以因子(在GRISYS中为10)。 19 73-76 炮点坐标--X |- 如果坐标单位是弧度的秒,X值代表 20 77-80 炮点坐标--Y | 径度,Y值代表纬度。正值代表格林 21 81-84 检波点坐标--X | 威治子午线东或者赤道北的秒数。负 22 85-88 检波点坐标--Y |- 值则为西或者南的秒数 23-1 89-90 坐标单位;1=长度(米或者英尺);2=弧度的秒。 23-2 91-92 风化层速度。

相关文档
相关文档 最新文档