文档库 最新最全的文档下载
当前位置:文档库 › 用小型棱镜摄谱仪测量激光的主谱线波长

用小型棱镜摄谱仪测量激光的主谱线波长

用小型棱镜摄谱仪测量激光的主谱线波长
用小型棱镜摄谱仪测量激光的主谱线波长

用小型棱镜摄谱仪测定光波波长(完整)

姓名:小田田学号:5502211070 班级:本硕111班 实验日期:2012年10月23日(第八周) 用小型棱镜摄谱仪测定光波波长 我们知道物质的原子和分子都能够辐射和吸收自己的特征光谱。分析物质的辐射或吸收光谱,就可以了解物质的组成和各成分的含量。由于光谱分析具有较高的灵敏度,特别是对低含量元素的分析准确度较高,分析速度快。因此,它在科学实验和研究中有着重要应用。 【实验目的】 1.了解棱镜摄谱仪的构造原理。 2.掌握棱镜摄谱仪的调节方法和摄谱技术。 3.学会用照相法测定某一光谱线的波长。 【实验仪器】 玻璃棱镜摄谱仪,汞灯,氦—氖激光器,氦—氖辉光器,读数显微镜,暗室设备等。 【实验原理】 1,棱镜摄谱仪的构造 (1)准直管 准直管由狭缝S1和透镜L1组成。S1位于L1的物方焦平面上。被分析物质发出的光射入狭缝,经透镜L1后就成为平行光。实际使用中,为了使光源S射出光在S1上具有较大的照度,在光源与狭缝之间放置会聚透镜L,使光束会聚在狭缝上。 (2)棱镜部分 主要是一个(或几个)棱镜P,利用棱镜的色散作用,将不同波长的平行光分解成不同方向的平行光。 (3)光谱接收部分 光谱接收部分实际上就是一个照相装置。它包括透镜L2和放置在L2像方焦平面上的照相底板F,透镜L2将棱镜分解开的各种不同波长的单色平行光聚焦在F的不同位置上,如图5—14—1所示。由于透镜对不同波长光的焦距不同,当不同波长的光经L2聚焦后并不分布在与光轴垂直的同一平面上,所以,必须适当地调整照相底板F的位置,方可清晰的记录各种波长的谱线。 分别是波长为和的光所成的狭缝的像,叫做光谱线。各条光谱线在底板上按波长依次排列就形成了被摄光源的光谱图。若光源辐射的波长等为分立值,则摄得的光谱线也是分立的,叫做线光谱;若光源辐射 的波长为连续值,则摄得的是连续光谱。

多普勒谱线展宽

多普勒谱线展宽 The Standardization Office was revised on the afternoon of December 13, 2020

2. 多普勒谱线展宽 谱线展宽主要有自然展宽、碰撞展宽和多普勒展宽。多普勒展宽直接于气体分子速度分布律有关,这一效应首先被里普奇(Lippich )在1870年提出,瑞利经过多年研究得到定量公式。下面就导出多普勒谱线型函数。 假设发出激光的原子静止时其发光频率为0υ,当原子以x v 的速度沿x 轴向“接受器”运动时,由于多普勒效应使得“接受器”收到的频率为: ??? ? ?+≈-= c c x x υυυυυ1100 (14) 由于不同原子的x v 不同,所以“接受器”收到的是不同频率的光,使得激光谱线以0υ为中心被展宽。由麦克斯韦速度分量分布律可以得到,速度x 分量在x v — x x dv v +的分子数比率为: ()x kT mv x x M dv e kT m dv v f x 2212 2-?? ? ??=π (15) 令()υg 代表其辐射频率落在υ附近单位频率间隔内的发光原子数比率,则有 ()()x x M dv v f d g =υυ ()υg 与辐射强度()υI 成正比。将c v x 00υυυ-=和υυd c dv x 0 =代入(15)式,可得 ()()()υπυυυυυυd e kT m c d g kT mc 20 20222--= 式中()υg 就是多普勒展宽的线型函数。 下面看一个例子。 例1:试由来自星体的光谱线或多普勒宽度确定星体的温度。 解: 静止原子由激发态回到基态发出的光波的频率0ν决定于两个态的能级差:E h ?=0ν,h 为普朗克常数。由于原子在运动,因而发射出来的光的频率

元素光谱

VICSEN-V元素分析分析光谱系统 ----紧凑 ----精确 ----自动化 ----易于使用 VICSEN-V元素分析系统用高分辨率CCD检测器取代了笨重的光电倍增管,结合其它的紧凑化设计,在不牺牲分析精度的前提下大大降低了VICSEN-V元素分析系统的体积和重量,使其成为目前世界上最为紧凑小巧和自动化程度最高的油液分析元素光谱仪.而且分析效能完全满足乃至超过ASTM D6595标准的要求。 VICSEN-V元素分析系统内置有功能强大的专家诊断系统,因此不需要仪器操作人员具备很高的专业知识.每次测试得出的数 据都会经过专家系统的汇总与分析而生成为精确的设备诊断报告或维修措施. 工作原理: 和其它火花激发光谱仪不同之处在于VICSEN-V元素分析系统不使用石墨盘棒电极,而是用一对高纯度银电极,油样被泵送到下面电极的空心通道,然后到达两电极的间隙而被激发。所产生的光束经过梳理后经由两个光缆传输到光栅,分光后由CCD检测器进行检测,再通过数模转换给出各种元素的浓度数值。 用泵送式而不是通过盘电极携带)问题,可以检测50微米以下的大颗粒.这就彻底解决了多年来困扰发射光谱仪的大颗粒分析问题. 丰富的设备数据库:本系统的研发公司的前身是专业化的油液分析公司。VICSEN-V元素分析系统配备了包含有上万种型号发动机,传动系统,压缩机和发电机等设备监测界限值库,是众多专家几十年丰富油液分析经验的结晶。专家系统通过对比实测数据和数据库中所规定的界限值,就可以精确有效地判断设备的整体运转状况。使管理人员对设备的状况一目了然,在制定维修计划时既不会维修不足又不会过度维修.对人员的合理配置和备件及易耗品的储备等问题都可从报告中获益。同时数据库为开放式设计,用户可以根据自身设备的实际情况对其进行针对性的修改和调整. 适合机动部署:VICSEN-V元素分析系统设计坚固耐用,可以部署在各种恶劣的使用环境之中.比如对于海军来说,可以很方便的把系统部署在舰上,在工矿企业可以部署在车间等一线场合,也可以放在各种车辆上以满足机动的要求.因此可以说VICSEN-V元素分析系统就相当于一个“可机动的油料分析试验室+高水平的油料分析和设备状态监测专家”,这个突出优势是其它油液监测仪器所无法比拟的. 技术配置: 测试元素: Fe, Cr, Pb, Cu, Sn, Al, Mo, Si, Na, K(基本型) Ni, Ti, Mn, V, B, Mg, Ca, Ba, P, Zn(扩展型) 操作软件: Windows XP MS SQL 2000 规格: 56cm×51cm×38cm 重量: 23.7Kg 工作温度:5-40oC 粘度范围: 0-800cSt@40 oC 样品量: 28ml 网络传输:支持LAN网络传输

棱镜摄谱仪实验报告

竭诚为您提供优质文档/双击可除 棱镜摄谱仪实验报告 篇一:棱镜摄谱和光谱分析 棱镜的摄谱和光谱分析 第90组姓名:龚俊辉学号:pb05013225实验目的:学会使用棱镜摄谱仪并能用它摄取光谱线,对所摄取的光谱进行光谱分析. 实验器材:棱镜摄谱仪,氦放电管,电弧发生器等.实验 原理: (1)棱镜摄谱仪: 棱镜摄谱仪的构造可以平行光管、棱镜、光谱接收三部分,其原理如图 : 按所用的波长的不同,摄谱仪可分为紫外、可见、红外三大类,它们所用的棱镜材料也不同;对紫外用水晶或萤石,对可见光用玻璃,对红外线用岩盐等材料. 本次实验所用的是可见光范围内的小型棱镜摄谱仪,s 为光源,L为透镜,使s发出的发散光会聚后均匀照亮狭缝,

s1为狭缝,以控制入射光的宽度,缝前有光阑,以调节狭缝透光部分的高度.L1的焦距位于s1,这样可以产生平行光,经棱镜折射后再由L2和L3会聚到照相底板F. 本实验中所用的氦放电管是获得氦原子光谱的元件,管内充有一定气压的氦气,两端有金属电极,两端加高电压时,管中的游离电子受到电场的加速作用飞向阳极的过程中,与管中的原子相撞使之处于激发态,当这些处于高能量的氦原子跃迁回到低能态时,辐射出光子. (2)光谱的定性分析: 本次实验中使用铁谱作为已知谱,中间为氦谱作为 未知谱.因为铁光谱谱线丰富,而且几乎每一条谱线的波长都被准确地测定,故只要并列拍摄铁光谱与未知样品光谱.并对所摄的底片进行测量,通过计算即可求出未知谱线的波长. ?1和?2为已知的两条铁谱谱线,?x为未知谱线的波 长,l1,l2和lx分别为?1,?2和?x处的读数,当?1和?2很靠近 时,?2??1与l2?l1近拟成线性关系,因此我们由插入法可得: ?x??1?2??1 即: ?

测量激光谱线线宽

测量激光谱线线宽 一.实验目的 加深了解法布里—泊罗标准具的多光束干涉原理;加深了解频域—时域对应测量的基本方法;掌握谱线线宽的测量方法。 二.实验内容 掌握线宽测量光路的调整方法,掌握CCD系统在线宽测量上的应用;测量单频He-Ne 激光器的线宽;测定F-P标准具的精细常数。 三.实验原理 1.F-P标准具多光束干涉原理 使用F—P干涉仪测量He-Ne激光器谱线线宽的光路如下图1所示: 图1:F—P干涉仪测量He-Ne激光器谱线线宽光路示意图 激光束经凸透镜L1扩束,投射到F—P标准具上,F—P标准具将不同角度入射的光束变换为一组一组方向不同的平行光,换言之,某一角度入射的光线,经标准具两面多次反射之后,变成与光轴成某一角度的一组平行光,各组平行光经过透镜L2聚焦在L2焦平面不同半径位置上,形成一系列同心干涉条纹。透镜L2实际为CCD前的镜头。 F—P是多光束干涉仪,其原理如图2所示:

图2:多光束干涉原理图 由多光束干涉计算结果表明:F—P腔标准具对于不同的波长的光波有不同的透射T: 出(1) 其中,I0:入射光强、I出:出射光强、r1:第一面的反射率、r2:二面的反射率、t1:第一面的透射率、t2:第二面的透射率、v:标准具内衰减系数、λ:波长、L:标准具厚度、α:折射角、L’ = Ln (n为玻璃折射率),R1=r12,R2=r22。 2.F-P标准具透过率T 透射率T为极大值的条件即为: 即: (2) 3.自由光谱区 当入射光为单色光时F—P仪的频谱是一系列的投射峰,相应地在屏空间上形成多级干涉条纹。当射入光具有一定带宽时,当频率最小的m级与频率最大的m+1级重合时,即为仪器的自由光谱区。 (3) 4. 标准具的透过率谱线宽度 标准具的透过率谱线宽度,即透过率为最大值的一半时所对应的频率宽度,在垂直入射近似下:

汞光谱546.07nm谱线塞曼分裂能级跃迁和偏振分析(精)

汞光谱546.07nm 谱线塞曼分裂能级跃迁和偏振分析 07级光信息科学与技术 徐钰晨 0730******* This issue is about transitions between splitting energy levels of the 546.07nm spectral line of atom Hg and the polarization characteristics of the photons. I used an F-P interferometer and a CCD camera to observe the splitting lines. The nine spectral lines are corresponding to the transitions denoted by the Dirac Notation |1 M 〉→|2 M±1,0〉. When observed along the magnetic field, the lines with ΔM =-1 are rotating left, and the lines with ΔM=+1 are rotating right. No lines with ΔM=0 was observed. When observed in the direction normal to the magnetic field, the lines with ΔM=±1 vibrate in the direction normal to both the magnetic field and the direction in which you observe, and the lines with ΔM=0 vibrate along the magnetic field. 近代物理实验 塞曼效应 能级跃迁 偏振 CCD 拍摄 F-P 干涉 汞光谱 引言 本文选取汞的绿谱线(546.07nm ),研究它在磁场中发生塞曼分裂得到的9条谱线对应的子能级跃迁(总自旋量子数J 和磁量子数M )的变化,以及各条谱线的偏振特点。 经过塞曼分裂,可以得到到3条π线(ΔM=0)和6条σ线(ΔM=±1),在纵向观察时看不到π线。在实验中,用F-P 干涉仪进行分光,用CCD 摄像机来观察成像条纹,用偏振片和1/4波片来确定辐射光子的偏振态。 确定偏振态的原理十分简单,用1/4波片可以将圆偏振光转化为线偏振光,偏振片可以使偏振方向与其透振方向一致的光通过而将偏振方向与其透振方向垂直的光完全阻挡。 对于塞曼效应,在本文需要了解的知识不是很多,只是要假定我们已经知道绿谱线是由能级 3 312S P →跃迁产生的,并且总共有9条分裂谱线。 对于F-P 干涉,需要知道的是不同频率的谱线经过F-P 干涉仪分光后在成像面上的排布情况。 此外,我们还需知道1/4波片具体的工作原理,光子-电子体系角动量守恒,以及光子自旋和光的偏振态之间的关系。 以上的知识已经足够分析出各分裂谱线对应的子能级跃迁和偏振态。 理论 1.赛曼分裂 汞的绿谱线由于塞曼效应分裂成9条谱线,3条π线和6条σ线。他们的频率各不相同,具体可表示为: 01122()M g M g Lc νν=+- ν0表示原来谱线的频率,M 1、M 2是相应能级的磁量子数,L 是洛伦兹单位,c 是光速,g 1、g 2是LS 耦合时的朗德因子,它们为 (1)(1)(1) 2(1) J J L L S S g J J +-+++= + 已知绿谱线对应的能级跃迁为3312S P →,则可计算得g 1=2,g 2=3/2。继而可以计算得

试验11小型棱镜摄谱仪的使用

实验二十八 小型棱镜摄谱仪的使用 实验内容 1.了解摄谱仪的结构、原理和使用方法,学习小型摄谱仪的定标方法。 2.观察物质的发射光谱,测定氢原子光谱线的波长,验证原子光谱的规律性,测定氢原子光谱的里德堡常数。 教学要求 1.进一步认识原子辐射的微观机理,学习借助分析原子光谱的规律性研究微观世界 的方法。 2.学习物理量的比较测量方法。 实验器材 小型摄谱仪、汞灯及镇流器、氢灯及电源、调压变压器。 任何一种原子受到激发后,当由高能级跃迁到低能级时,将辐射出一定能量的光子,光子的波长为λ,由能级间的能量差E ?决定: E hc ?=λ 式中,h 为普朗克常数,c 为光速。E ?不同,λ也不同。同一种原子所辐射的不同波长的光,经色散后按一定程序排列而成的光谱,称发射光谱。 不同元素的原子结构是不相同的,因而受激发后所辐射的光波具有不同的波长,也就是有不同的发射光谱。通过对发射光谱的测量和分析,可确定物质的元素成分,这种分析方法称为光谱分析。通过光谱分析,不仅可以定性地分析物质的组成,还可以定量地确定待测物质所含各种元素的多少。发射光谱分析常用摄谱仪进行。 小型棱镜摄谱仪,是以棱镜作为色散系统,观察或拍摄物质的发射光谱。 实验原理 1.氢原子光谱的规律 1885瑞士物理学家巴尔末发现,氢原子发射的光谱,在可见光区域内,遵循一定的规律,谱线的波长满足巴尔末公式: )4 (22 0-=n n n λλ (28-1) 式中,n=3,4,5 ,组成一个谱线系,称为巴尔末线系。用波数(λν 1~=)表示的巴尔 末公式为:

)121(1~2 2n R H n n -==λν n=3,4,5 (28-2) 式(28-2)中,H R 称为氢原子光谱的里德堡常数。 用摄谱仪测出巴尔末线系各谱线的波长后,就可由式(28-2)算出里德堡常数H R ,若与公认值H R =1.0967761710--?m 相比,在一定误差范围内,就能验证巴尔末公式和氢原子光谱的规律。 2.谱线波长的测量 先用一组已知波长s λ的光谱线做标准,测出它们移动到读数标记位置处时螺旋刻度尺的读数S TT 后,以S TT 为横坐标,s λ为纵坐标,作S TT ~s λ定标曲线。 对于待测光谱波长的光源只要记下它各条谱线所对应的螺旋尺上读数x TT ,对照定标校正曲线就可确定各谱线的波长x λ。 本实验利用汞灯为摄谱仪进行定标校正。然后测出氢原子光谱巴尔末线系各谱线的波长,再根据式(28-2)算出H R 。 操作步骤: 1.对着仪器参考图或仪器使用说明书,在A A '处装上看镜目镜,熟悉摄谱仪各部分的结构及操作方法。 2.将汞灯置于 “S ”处,前后移动聚光镜1,使光源清晰地成像于狭缝处。在目镜中观察出射光谱,转动转角调节轮,使任一条光谱进入视场,轻轻转动出射聚光镜2的调焦手轮,使光谱线像聚焦清晰;再转动角调节轮,逐个观察光源的各条光谱线并与附表中列出的谱线颜色核对无误后,开始测量。依次记下各光源不同波长谱线的s λ所对应的读数S TT 。 3.将氢灯置于“S ”处,(注意:氢灯用的是是高压,调压变压器输出指示数不能超过规定的值),测出氢原子光谱中红、蓝、紫三条谱线所对应的鼓轮读数x TT 。 4.数据处理与分析: (1)列表记录所有数据,表格自拟。 (2)用毫米方格作图纸,作出光谱仪的s λ~S TT 定标曲线。 (3)由定标校正曲线及氢光谱测得的x TT ,求出巴尔末谱线系中三条谱线的波长,并与氢光谱的标准波长比较。 (4)由氢光谱所测得的三个波长,按式(28-2)算出里德堡常数H R ,求出其平均值H R ,并与公认值比较,算出测量的不确定度。

电子跃迁

电子跃迁 电子跃迁本质上是组成物质的粒子(原子、离子或分子)中电子的一种能量变化。根据能量守恒原理,粒子的外层电子从低能级转移到高能级的过程中会吸收能量;从高能级转移到低能级则会释放能量。能量为两个轨道能量之差的绝对值。 跃迁的分类 电子跃迁过程中吸收、释放能量的形式是多样的。与辐射无关的称为无辐射跃迁,与辐射(光)相关的称为辐射跃迁。 无辐射跃迁 参与无辐射跃迁的能量有多种形式,有热能、电能等等。最常见的形式是热能。如电子从高能级向低能级跃迁时,即有可能释放出热量。 辐射跃迁 辐射跃迁分为受激吸收、自发辐射和受激辐射三类(由爱因斯坦最先提出)。 辐射(光)入射入物质,电子吸收光子能量,从低能级转移到高能级称为受激吸收。 在没有外界辐射(光)激励的情况下,电子从高能级转移到低能级并释放出光子,称为自发辐射。因为自发辐射具有随机性,所以这种情况辐射出的光的相位也是随机的。而且光强较弱,称为荧光。 在有外界辐射(光)激励的情况下,电子从高能级转移到低能级并释放出光子,称为受激辐射。由于受激辐射是由外界入射光子引起的,所以电子跃迁产生光子与入射光子具有相关性。即入射光与辐射光的相位相同。如果这一过程能够在物质中反复进行,并且能用其他方式不断补充因物质产生光子而损失的能量。那么产生的光就是激光。 普朗克认为光子能量是孤立的,因此跃迁吸收或者放出的光子能量可表示为:

其中h为普朗克常数6.626196×10^(-34)J·s。ν为产生光子的频率。在氢原子中光子能量又可以与轨道数联系起来,他们之间有一个李德博格常数联系起来,该理论可以预测电子的所处的轨道,从而预测氢原子的谱线,同时也可以拓展到其他元素谱线的预测。 跃迁实例编辑 电子跃迁的一个例子就是焰色反应。某些金属或它们的挥发性化合物在无色火焰中灼烧时使火焰呈现特征的颜色的反应.灼烧金属或它们的挥发性化合物时,原子核外的电子吸收一定的能量,从基态跃迁到具有较高能量的激发态,激发态的电子回到基态时,会以一定波长的光谱线的形式释放出多余的能量,从焰色反应的实验里所看到的特殊焰色,就是光谱谱线的颜色.每种元素的光谱都有一些特征谱线,发出特征的颜色而使火焰着色,根据焰色可以判断某种元素的存在.如焰色洋红色含有锶元素,焰色玉绿色含有铜元素,焰色黄色含有钠元素等. 如权能量子活化磁电子跃迁技术原理现在流行与各个行业当中最为普及的权能量子是高能生物陶瓷的能量材料,这种量子技术生产的工艺相当复杂,此产品是由近几十种的稀有金属经过特殊氧化的工艺后在2000度的高温下综合烧结为一体,这种特殊的材料具有卓越的电子跃迁属性,有着超强光、力、磁、电吸收及催化维一体的敏感性能。自然界有无数的放射源:宇宙星体、太阳、地球上的海洋、山岭、岩石、土壤、森林、城市、乡村、以及人类生产制造出来的各种物品,凡在绝对零度(-273℃)以上的环境,无所不有地发射出不同程度的红外线。现代物理学称之为热射线。由能量守恒定律得知,宇宙的能量不能发生,也不会消失,只可以改变能量的方式。热能便是宇宙能量的一种,可以用放射(辐射)、传导和对流的方式进行转换。在放射的过程中,便有一部份热能形成红外线、白金线。几十年前,航天科学家调查研究,太阳光当中波长为8~14微米的远红外线是生物生存必不可少的因素。因此,人们把这一段波长的远红外线称为“生命光波”。这一段波长的光线,与人体发射出来的远红外线的波长相近,能与生物体内细胞的水分子产生最有效的“共振”,同时具备了渗透性能,有效地促进动物及植物的生长。21世纪开始,权能量子带领光谱领域进入新的纪元,材料科技研究进入奈米科技的等级,可生成比远红外线光谱更长的光谱,就是白金线被现代科学命名为“权能量子光谱”。新技术权能量子的发现,释放波长为1000-1600微米,把跃迁的实际效能体现的淋漓尽致。 权能量子材料有多种形态体现和利用,如:用于微波炉、光波炉、炒锅、电饭煲、烤箱水溶喷涂态;也有30%、50%、70%、100%的粉末态,用在与食品级ABS塑料相溶,可注塑成千姿百态的、绝无塑化剂的隐患的环保制品;也有各种规格的颗粒状权能量子球,光线大致可分为可见光及不可见光。可见光经三棱镜后会折射出紫、蓝、青、绿、黄、橙、红颜色的光线(光谱)。红光外侧的光线,在光谱中波长自0.76至1000微米的一段被称为红外光,又称红外线。光谱波长能自1000至1600微米,被称为“权能量子能量”光谱。

摄谱仪的使用及氦原子光谱

前言 光谱学是研究各种物质的光谱的产生及其同物质之间相互作用。光谱是电磁波辐射按照波长的有序排列;通过光谱的研究,人们可以得到原子、分子等的能级结构、电子组态、化学键的性质、反应动力学等多方面物质结构的知识。在化学分析中也提供了重要的定性与定量的分析方法。发射光谱可以分为三种不同类别的光谱:线状光谱、带状光谱、连续光谱。线状光谱主要产生于原子,带状光谱主要产生于分子,连续光谱则主要产生于白炽的固体或气体放电。 摄谱仪的原理 【实验目的】 1、 了解小型摄谱仪的结构、原理和使用方法; 2、 学习摄谱仪的定标方法及物理量的比较测量方法(线形插值法); 【实验原理】 1. 棱镜摄谱仪的工作原理 复色光经色散系统(棱镜)分光后,按波长的大小依次排列的图案,称为光谱。 棱镜摄谱仪的构造由准直系统、偏转棱镜、成像系统、光谱接收四部分组成;按所用的波长的不同,摄谱仪可分为紫外、可见、红外三大类,它们所用的棱镜材料也不同;对紫外用水晶或萤石,对可见光用玻璃,对红外线用岩盐等材料。 棱镜把平行混合光束分解成不同波长的单色光是根据折射光的色散原理。各向同性的透明物质的折射率与光的波长有关,短波长光的折射率要大些,例如一束平行入射光由1λ、2λ、3λ三色光组成,并且 123λλλ<<,通过棱镜后分解成三束不同方向的光,具有不同的偏向角δ,如图1所示。 45?角全反射棱镜组成,如图2所示。 本实验系统就是利用了棱镜的色散功能进行工作的摄谱仪。在摄谱仪中棱镜的主要作用是用来分光,即利用棱镜对不同波长的光有不同折射率的性质来分析光谱。折射率n 与光的波长λ有关,这一现象叫做色散。当一束白光或其它非单色光入射棱镜时,由于折射率不同,不同波长(颜色)的光具有不同的偏向角σ,从而出射线方向不同。通常棱镜的折射率n 是随波长λ的减小而增加的(正常色散),所以可见光中紫光偏折最大,红光偏折最小。一般的棱镜摄谱仪 都是利用这种分光作用制成的。

跃迁规律

2.5.5 跃迁选律 内容更新如下: 原子光谱是原子能级之间的跃迁产生的。但在原子世界中, 这种跃迁也必须遵从某些规则, 并不是任何两个能级之间都可以随便跃迁。这些规则就是所谓的“跃迁选律”。允许的电偶极跃迁选律如下: ΔS = 0 ΔL = 0,±1(但从L=0到L=0禁阻。单电子原子基态为s态,L=0,对于它们来说,如果跃迁是ΔL = 0, 就只能从L=0到L=0, 而这是禁阻的。因此,只有ΔL=±1) ΔJ = 0,±1(但从J=0到J=0禁阻) ΔM J = 0,±1(但ΔJ = 0时, 从M J = 0到M J = 0禁阻) 这些选律在轨道-自旋耦合作用变强时会逐渐失效, 而在j-j耦合方案中会变得完全不起作用。因为在这种情况下,就连量子数L和S本身都已经越来越没有确定值,用量子力学的语言说,它们不再是好量子数。所以, ΔS≠0的跃迁在轻原子中非常弱, 而在重原子中可能相当强,因为轨道-自旋耦合随原子序数的4次方增长。 此外, 原子都是中心对称的, 所以, 跃迁还要受到Laporte选律的限制。为了搞清什么是Laporte选律, 首先需要知道谱项的宇称。 我们还记得, 原子轨道都有确定的宇称。电子排布在轨道上形成组态, 进而确定了谱项, 所以, 谱项也有确定的宇称。用下列两种方法的任意一种,很容易求出谱项的宇称:

(1) 对于组态中各个电子的轨道角量子数l 求和,总和的奇偶性就等于该组态产生的所有谱项的奇偶性。即: 总和若为偶数, 谱项的宇称为g; 总和若为奇数, 谱项的宇称为u 。 (2) 将组态中各个电子按所在轨道的宇称相乘(同样是,每个电子一项, 而不是每个轨道一项),这种乘积叫做“直积”,所以使用特殊的乘号?。乘法规则是:g ?g=u ?u=g , g ?u=u ?g=u 。 谱项的宇称为u 时,以O 作为右上标。 电偶极跃迁的Laporte 选律: 电偶极跃迁只能发生在宇称不同的态之间。 这一选律依据的数学原理是极其简单的。无疑,你对函数f (x )的奇偶性很熟悉,并且知道,若被积函数f (x )为奇函数,则 ()d 0a a f x x ?=∫ 反之,若f (x )为偶函数,则 ()d 2()d a a a f x x f x x ?=∫∫ 光谱的跃迁强度I 正比于“跃迁矩阵元”的绝对值平方(下式中最后一种写法用了Dirac 符号): 2 2d i *j i j ??I M |M |ψψτψψ∝≡<>∫ 这种跃迁矩阵元也是一种积分,其中的算符?M 是跃迁矩算符,具体形式取决于光谱的性质;ψi 、ψj 分别是跃迁的始态和终态。若ψi 、?M 、ψj 三

棱镜摄谱实验报告

南昌大学物理实验报告课程名称:普通物理实验(3) 实验名称:用小型棱镜摄谱仪测定光波波长 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间:

一、实验目的: 1.了解棱镜摄谱仪的构造原理。 2.掌握棱镜摄谱仪的调节方法和摄谱技术。 3.学会用照相法测定某一光谱线的波长。 二、实验仪器: 玻璃棱镜摄谱仪,汞灯,氦—氖激光器,氦—氖辉光器,读数显微镜,暗室设备等。 三、实验原理: 1.棱镜摄谱仪的构造 (1)准直管 准直管由狭缝S1和透镜L1组成。S1位于L1的物方焦平面上。被分析物质发出的光射入狭缝,经透镜L1后就成为平行光。实际使用中,为了使光源S射出光在S1上具有较大的照度,在光源与狭缝之间放置会聚透镜L,使光束会聚在狭缝上。 (2)棱镜部分 主要是一个(或几个)棱镜P,利用棱镜的色散作用,将不同波长的平行光分解成不同方向的平行光。 (3)光谱接收部分 光谱接收部分实际上就是一个照相装置。它包括透镜L2和放置在L2像方焦平面上的照相底板F,透镜L2将棱镜分解开的各种不同波长的单色平行光聚焦在F的不同位置上,如图(1)所示。由于透镜对不同波长光的焦距不同,当不同波长的光经L2聚焦后并不分布在与光轴垂直的同一平面上,所以,必须适当地调整照相底板F的位置,方可清晰的记录各种波长的谱线。 图(1)

F1(λ1),F2(λ2),…分别是波长λ1,λ2,…为的光所成的狭缝的像,叫做光 谱线。各条光谱线在底板上按波长依次排列就形成了被摄光源的光谱图。若光源辐射的波长λ1,λ2,…等为分立值,则摄得的光谱线也是分立的,叫做线光谱;若光源辐射的波长为连续值,则摄得的是连续光谱。 本实验用的小型玻璃棱镜摄谱仪,可用来拍摄可见光区域的光谱。其结构与图16—1所示的基本相同,但由于采用恒偏棱镜代替三棱镜P,因此,它的照相装置中光学系统的光轴与准直管的光轴垂直如图(2)所示。 2.摄谱仪的性能 (1)色散 色散代表仪器的分光能力,是衡量复色光经仪器色散后各单色光分散的程度。为了得到质量较好的光谱,某一波长的谱线总是以最小偏向角的状态通过棱镜,由于不同波长的谱线有不同的最小偏向角,所以可用角色散表示棱镜色散的特征(相差单位波长的两谱线分开的角距离)。棱镜的角色散D为: D=dδm dλ ? ? √122? ? dn dλ 实际应用时,常使用线色散D1来表示相差单位波长的两谱线在光谱面上分开的距离 D1=dl dλ 得: D1=D f2′cosε 式中,f2是聚光透镜L2的焦距,ε是底片与垂直光轴平面的夹角。显然,

用小型棱镜摄谱仪测定光波波长

实验十四用小型棱镜摄谱仪测定光波波长 我们知道物质的原子和分子都能够辐射和吸收自己的特征光谱。分析物质的辐射 或吸收光谱,就可以了解物质的组成和各成分的含量。由于光谱分析具有较高的灵敏度,特别是对低含量元素的分析准确度较高,分析速度快。因此,它在科学实验和研究中有着重要应用。 实验目的 1.了解棱镜摄谱仪的构造原理。 2.掌握棱镜摄谱仪的调节方法和摄谱技术。 3.学会用照相法测定某一光谱线的波长。 实验仪器 玻璃棱镜摄谱仪,汞灯,氦—氖激光器,氦—氖辉光器,读数显微镜,暗室设备 等。 实验原理 1.棱镜摄谱仪的构造 (1)准直管 准直管由狭缝S1和透镜L1组成。S1位于L1的物方焦平面上。被分析物质发出的光射 入狭缝,经透镜L1后就成为平行光。实际使用中,为了使光源S射出光在S1上具有较大的照度,在光源与狭缝之间放置会聚透镜L,使光束会聚在狭缝上。 (2)棱镜部分 主要是一个(或几个)棱镜P,利用棱镜的色散作用,将不同波长的平行光分解成 不同方向的平行光。 (3)光谱接收部分 光谱接收部分实际上就是一个照相装置。它包括透镜L2和放置在L2像方焦平面上的 照相底板F,透镜L2将棱镜分解开的各种不同波长的单色平行光聚焦在F的不同位置上,如图5—14—1所示。由于透镜对不同波长光的焦距不同,当不同波长的光经L2聚焦后并不分布在与光轴垂直的同一平面上,所以,必须适当地调整照相底板F的位置,图5 —14-1 L S P 1 L 2 L F ( ) 1 1 F λ 1 S ( ) 2 2 F λ 方可清晰的记录各种波长的谱线。 ( ) 1 1 F λ、( )L 2 2 λF 分别是波长为1 λ和L 2 λ的光所成的狭缝的像,叫做光谱线。 各条光谱线在底板上按波长依次排列就形成了被摄光源的光谱图。若光源辐射的波长

摄谱仪

小论文题目:设计用棱镜小型摄谱仪拍摄氢原子光谱的方法,并根据拍摄的铁及氢光谱计算出氢可见光谱(巴耳末线系)波长 棱镜小型摄谱仪拍摄氢原子光谱 (化学与化工学院06化学基地班,翁瑞,20061101115) 原子光谱分析这门学科通常包括原子发射光谱(Atomic Emission Spectroscopy, AES)、原子吸收光谱(Atomic Absorption Spectroscopy, AAS)以及原子荧光光谱(Atomic Fluorescence Spectroscopy, AFS)三种分析技术。它们都是根据自由原子在取得外部能量后,产生光的自发辐射、光的吸收或是荧光辐射的光谱现象以进行元素检测的。它们的分析原理,所采用的实验设备包括光源、原子化器、分光和检测系统等都有所不同,有着各自的发展道路;但也有很多共同点,可以互相借鉴、利用。 对于原子发射光谱分析,物质原子化和激发过程通常是在同一光源中进行的。例如一些热激发光源(电弧,火花,ICP光源等),在高温作用下物质解离形成的原子在其各能级间有不同的布居,此时可由于自发跃迁而产生光辐射,是为原子发射光谱。 通常原子发射出大量的原子及离子光谱,包括自远紫外至可见、近红外很广的光谱域,都有元素灵敏线可选作分析线。原子发射光谱分析法可同时作多元素测定,它几乎可以测定元素周期表中全部元素,并且是一种灵敏,快速的分析方法。它应用范围十分广泛,不论是固态,液态或者气态样品都可以直接分析。虽然它的应用已久,但目前仍是元素检测的一种重要手段。 原子吸收光谱分析,是利用物质的基态原子可以吸收特定波长单色辐射的光量子,其吸收量的大小是与物质原子浓度成比例的关系为基础的。采用的光源多是稳定的元素空心阴极灯或者无极放电灯。它们的光谱简单,一般可采用低色散率的光谱仪器。原子吸收光谱分析装置简单,操作方便,有好的测定精度和低检出限,因而得到广泛应用。 原子荧光光谱分析,是基于自由原子吸收特定波长光量子后激发至高能态,然后再跃迁返回至基态或低能态而发出的光辐射,这样的辐射被称为荧光辐射,荧光辐射的强度除比例于自由原子的浓度外,还随着激发光的强度的增大而增强。这种

棱镜摄谱实验

实验1 棱镜光谱实验 光谱学研究的是各物质的光谱的产生及其同物质之间的相互作用。光谱是电磁波辐射按照波长的有序排列,通过光谱的研究,人们可以得到原子、分子等的能级结构、电子组态、化学键的性质、反应动力学等多方面物质结构的知识,在化学分析中也提供了重要的定性与定量的分析方法。发射光谱可以分为三种不同类别的光谱:线状光谱、带状光谱、连续光谱。线状光谱主要产生于原子,带状光谱主要产生于分子,连续光谱则主要产生于白炽的固体或气体放电。 随着科技的进步,当今先进的光谱实验室已不再使用照相干版法获得光谱图形,所使用的都是以CCD 器件为核心构成的各种光学测量仪器。PSP05型CCD 微机棱镜摄谱仪测量系统采用线阵CCD 器件接收光谱图形和光强分布,利用计算机的强大数据处理能力对采集到的数据进行分析处理,通过直观的方式得到我们需要的结果。与其他产品相比,PSP05型摄谱仪具有分辨率高(微米级),实时采集、实时处理和实时观测,观察方式多样,物理现象显著,物理内涵丰富,软件功能强大等明显的优点,是传统棱镜摄谱仪的升级换代产品。 【实验目的】 1.了解小型摄谱仪的结构、原理和使用方法。 2.学习摄谱仪的定标方法及物理量的比较测量方法(线形插值法)。 【实验原理】 1.光谱和物质结构的关系 每种物质的原子都有自己的能级结构,原子通常处于基态,当受到外部激励后,可由基态跃迁到能量较高的激发态。由于激发态不稳定,处于高能级的原子很快就返回基态,此时发射出一定能量的光子,光子的波长(或频率)由对应两能级之间的能量差i E ?决定。0i i E E E ?=-,i E 和0E 分别表示原子处于对应的激发态和基态的能量,即: i i i c E h h νλ?== (1-1) 得:i i hc E λ= ?,式中,i = 1,2,3,…,h 为普朗克常数,c 为光速。 每一种元素的原子,经激发后再向低能级跃迁时,可发出包含不同频率(波长)的光,这些光经色散元件即可得到一对应的光谱。此光谱反映了该物质元素的原子结构特征,故称为该元素的特征光谱。通过识别特征光谱,就可对物质的组成和结构进行分析。 2.棱镜摄谱仪的工作原理 复色光经色散系统(棱镜)分光后,按波长的大小依次排列的图案,称为光

光谱宽度解析

通信词典—光谱宽度 定义1:光谱或光谱特性的波长范围的量度。 基于不同的光源类型,光谱宽度有几种不同的定义: 定义2:均方根谱宽(RMS)。均方根谱宽定义为:在标准工作条件下,光谱包络分布用高斯函数P(λ)来近似。 定义3:-3dB 谱宽(FWHM)。-3dB 谱宽定义为:在标准工作条件下,主纵模峰值波长的幅度下降一半处光谱线两点间的波长间隔,称之为FWHM 谱宽(或称-3dB 谱宽)。 定义4:-20dB 谱宽。-20dB 谱宽定义为:在标准工作条件下,主纵模峰值波长的幅度下降20dB 处光谱线两点间的波长间隔,称之为-20dB 谱宽。 其中RMS和FWHM一般用于描述多纵模光源,-20dB谱宽一般用于描述单纵模光源。 【中文名称】:光谱宽度 【英文名称】:SPECTRAL WIDTH 【定义1】:光谱或光谱特性的波长范围的量度。 【来源】: GB/T 14733.12-2008(术语标准); 【定义2】:基于不同的光源类型,光谱宽度有几种不同的定义:均方根谱宽(RMS)、-3dB 谱宽(FWHM)和-20dB 谱宽。其中RMS和FWHM一般用于描述多纵模光源,-20dB谱宽一般用于描述单纵模光源。 均方根谱宽定义为:在标准工作条件下,光谱包络分布用高斯函数P(λ)来近似,若σrms 为均方根谱宽值,则: 光谱宽度 spectral width 式中: λ——光源波长; λ0——光源中心波长。 -3dB 谱宽定义为:在标准工作条件下,主纵模峰值波长的幅度下降一半处光谱线两点间的波长间 隔,称之为FWHM 谱宽(或称-3dB 谱宽)。 -20dB 谱宽定义为:在标准工作条件下,主纵模峰值波长的幅度下降20dB 处光谱线两点间的波长间隔,称之为-20dB 谱宽。 【来源】: YD/T 1528-2006; 【定义3】:基于不同的光源类型,光谱宽度有几种不同的定义:均方根谱宽(RMS)、-3dB 谱宽(FWHM)和-20dB谱宽。其中RMS 和FWHM 一般用于描述多纵模光源,-20dB 谱宽一般用于描述单纵模光源。 均方根谱宽定义为:在推荐工作条件下,光谱包络分布用高斯函数P(λ)来近似,若σrms 为均方根谱宽值,则: 式中: λ——光源波长; λ0——光源中心波长。 -3dB 谱宽定义为:在推荐工作条件下,主纵模峰值波长的幅度下降一半处光谱线两点间的波

化学元素符号表

化学元素符号表

【化学】常用36元素的一些性质和用途 氢(H) 主要性质和用 熔点为-259.1 ℃,沸点为-252.9 ℃,密度为 0. 089 88 g/L(10 ℃)。无色无臭气体,不溶于水,能在空气中燃烧,与空气形成爆炸混合物。工业上用于制造氨、环已烷、甲醇等。 氦(He) 主要性质和用途 熔点为-272.2 ℃(加压),沸点为-268.9 ℃,密度为0.178 5 g/L(0 ℃)。无色无臭气体。化学性质不活泼。用于深海潜水、气象气球和低温研究仪器。 锂(Li) 主要性质和用途 熔点为180.5 ℃,沸点为1 347 ℃,密度为0.534 g/cm3(20 ℃)。软的银白色金属,跟氧气和水缓慢反应。用于合金、润滑油、电池、玻璃、医药和核弹。 铍(Be) 主要性质和用途 熔点为1 278±5 ℃,沸点为2 970 ℃(加压下),密度为1.848 g/cm3(20 ℃)。较软的银白色金属,在空气和水中稳定,即使在红热时也不反应。用于与铜和镍制合金,其导电性和导热性极好。 硼(B) 主要性质和用途 熔点为2 300 ℃,沸点为3 658 ℃,密度为2.340 g/cm3(β-菱形)(20 ℃)。具有几种同素异形体,无定形的硼为暗色粉末,跟氧气、水、酸和碱都不起反应,跟大多数金属形成金属硼化物。用于制硼硅酸盐玻璃、漂白和防火。 碳(C) 主要性质和用途 熔点约为3 550 ℃(金刚石),沸点约为4 827 ℃(升华),密度为3.513 g/cm3(金刚石)、2.260 g/cm3(石墨)(20 ℃)。用于首饰(金刚石)、炼钢(焦炭)、印刷(炭黑)和精制糖(活性炭)等。 氮(N) 主要性质和用途 熔点为-209.9 ℃,沸点为-195.8 ℃,密度为1.251 g/L(0 ℃)。无色无臭气体。在室温下一般不活泼。用于制硝酸、化肥、炸药、塑料和染料等。 氧(O) 主要性质和用途 熔点为-218.4 ℃,沸点为-183.0 ℃,密度为1.429 g/L(0 ℃)。无色无臭气体。非常活泼,与除稀有气体以外的所有元素形成氧化物,在水中有一定的溶解性。用于炼钢、金属切割和化学工业。氟(F) 主要性质和用途 熔点为-219.6 ℃,沸点为-188.1 ℃,密度为1.696 g/L(0 ℃)。淡黄色气体,是最活泼的非金属元素。用于制氟化试剂以及金属冶炼中的助熔剂等。 氖(Ne) 主要性质和用途 熔点为-248.7 ℃,沸点为-246.1 ℃,密度为0.899 9 g/L(0 ℃)。无色无臭气体。化学性质不活泼。用于装饰灯(霓红灯广告牌)。 钠(Na) 主要性质和用途 熔点为97.81 ℃,沸点为883.0 ℃,密度为0.971 g/cm3(20 ℃)。软的银白色金属,切割时迅速被氧化,跟水剧烈反应。用于原子反应堆的热交换器中。

实验04 小型棱镜读(摄)谱仪测氢原子光谱

小型棱镜读(摄)谱仪测氢原子光谱 实验原理: 1. 氢原子光谱 光谱线波长是由产生这种光谱的原子能级结构所决定的。每一种元素都有自己特定的光谱,所以称它为原子的标识光谱。光谱实验是研究探索原子内部电子的分布及运动情况的一个重要手段。J.J.Balmer(巴尔末,1825-1898)发现,在可见光区氢原子谱线可以由下面公式确定: ) ( 2 21 211 n R H -=λ (4-1) 其中n 是大于2的整数,H R 是实验常数,称为里德伯(Rydberg)常数。由上式确定的氢谱线为巴尔末线系,当n =3,4,5,6时,所得的谱线分别标记为αH 、βH 、 γH 、σH 。 以这些经验公式为基础,N.Bohr (玻尔,1885-1962) 建立了氢原子的理论(玻尔模型),并从而解释了气体放电时的发光过程。根据玻尔理论:当原子从高能量的能级跃迁到低能量的能级时,以光子的形式释放能量。氢原子n 能级上的能量为 2 204 8hn me E n ε= (n 是正整数),所以光子的波数 ())11()11(811 2202202204 0n n R n n c h me E E hc H n -=-=-=ελ (4-2) 其中0n =1,2,3……, n = 0n +1,0n +2,0n +3……。根据玻尔模型得到里德伯常数的理论值为 c h me R H 3 204 8ε= (4-3) 代入各常数值计算,R H =1.097 373 153 4×107m - 1。该值与实验值十分接近。 2. 恒偏向角棱镜 三棱镜的光谱实验一般在最小偏向角附近进行。由于不同波长的光和不同材料棱镜折射的最小偏向角不同,测量时要先寻找各种波长的光的最小偏向角,十分不方便。 为此本实验所用的摄谱仪中采用的是恒偏向角棱镜,其结构如图4-1所示。A ’BD ’是三棱镜,光线以i 角入射。在三棱镜中作一正方形AC ’EC,同时形成了一个包 图4-1 恒偏向角棱镜 A ’

多普勒谱线展宽.

2. 多普勒谱线展宽 谱线展宽主要有自然展宽、碰撞展宽和多普勒展宽。多普勒展宽直接于气体分子速度分布律有关,这一效应首先被里普奇(Lippich)在1870年提出,瑞利经过多年研究得到定量公式。下面就导出多普勒谱线型函数。 假设发出激光的原子静止时其发光频率为,当原子以vx的速度沿x轴向“接受器”运动时,由于多普勒效应使得“接受器”收到的频率为: (14) c 由于不同原子的vx不同,所以“接受器”收到的是不同频率的光,使得激光谱线以为中心被展宽。由麦克斯韦速度分量分布律可以得到,速度x分量在vx—的分子数比率为: (15) 令代表其辐射频率落在附近单位频率间隔内的发光原子数比率,则有 与辐射强度成正比。将和代入(15)式,可得 式中就是多普勒展宽的线型函数。 下面看一个例子。 例1:试由来自星体的光谱线或多普勒宽度确定星体的温度。 解:静止原子由激发态回到基态发出的光波的频率决定于两个态的能级差:为普朗克常数。由于原子在运动,因而发射出来的光的频率不再是而是一个分布,也就是谱线增宽了。一个以速度v运动的原子,沿x轴发射的光的频率与及vx的关系为 , 式中c为光速。横向产生的多普勒效应比纵向小得多而可以忽略。由于在 之间的光强与速度分量在之间的原子数目dNX 成正比,即 dNx 由麦氏分布律 因而

上式表示原子发光的强度,由于多普勒效应引起的谱线强度按频率的分布,分布函数随频率变化的曲线如图1所示, 图1 原子光谱中谱线的多普勒加宽 它是对v0的一个对称分布曲线。物理上定义与谱线极大值I0的一半相对应的两个频率v2与v1之差称为谱线的宽度这里也称为多普勒线宽。由 解得 所以 2ln2kT)1/2 2mc 由上式可知,多普勒宽度与原子的质量m及原子所处系统的温度T有关。若由实验测得了来自星体原子光谱的多普勒宽度及原子的质量m就可知道星体的温度T:

相关文档
相关文档 最新文档