文档库 最新最全的文档下载
当前位置:文档库 › 89C51基本硬件电路

89C51基本硬件电路

89C51基本硬件电路
89C51基本硬件电路

系统硬件电路设计

单片机

89C52机是高性能单片机,因为受引脚数目的限制,所以有不少引脚具有第二功能。VCC:供电电压。GND:接地。

P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL 门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FLASH编程时,P0 口作为原码输入口,当FLASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:P1口是一个部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。

P2口:P2口为一个部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写1时,其管脚被部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址1时,它利用部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的容。P2口在FLASH

编程和校验时接收高八位地址信号和控制信号。

P3口:P3口管脚是8个带部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入1后,它们被部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流。

P3口也可作为AT89C52一些特殊功能口,如下所示:

P3口管脚备选功能

P3.0 RXD(串行输入口)

P3.1 TXD(串行输出口)

P3.2 INT0(外部中断0)

P3.3 INT1(外部中断1)

P3.4 T0(记时器0外部输入)

P3.5 T1(记时器1外部输入)

P3.6 WR(外部数据存储器写选通)

P3.7 RD(外部数据存储器读选通)

P3口同时为闪烁编程和编程校验接收一些控制信号。

RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:当访问外部存储器时,地址锁存允许端的输出电平用于锁存地址的地址字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。

如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。

PSEN:外部程序存储器的选通信号端。在由外部程序存储器取指期间,每个机器周期两次PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

EA/VP:当EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有部程序存储器。注意加密方式1时,EA 将部锁定为RESET;当EA端保持高电平时,此间部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源。

XTAL1:反向振荡放大器的输入及部时钟工作电路的输入。

XTAL2:反向振荡器的输出,如采用外部时钟源驱动器件,应不接。

复位电路

复位方法一般有上电自动复位和外部按键手动复位,单片机在时

钟电路工作以后, 在RESET端持续给出2个机器周期的高电平时就可以完成复位操作。例如使用晶振频率为12MHz时,则复位信号持续时间应不小于2us。本报警器是上电自动复位。

为确保单片机在系统中电路稳定可靠工作,复位电路是必不可少的一部分,复位电路的第一功能是上电复位。一般单片机电路正常工作需要供电电源为5V±5%,即4.75~5.25V。由于单片机电路是时序数字电路,它需要稳定的时钟信号,因此在电源上电时,只有当VCC 超过4.75V低于5.25V以及晶体振荡器稳定工作时,复位信号才被撤除,电路开始正常工作。因此只要在RST复位输入引脚上接一电容至Vcc端,下接一个电阻到地即可。对于CMOS型单片机,由于在RST 端部有一个下拉电阻,故可将外部电阻去掉,而将外接电容减至10uF。上电复位的工作过程是在加电时,复位电路通过电容加给RST端一个短暂的高电平信号,此高电平信号随着Vcc对电容的充电过程而逐渐回落,即RST端的高电平持续时间取决于电容的充电时间。为了保证系统能够可靠地复位,RST端的高电平信号必须维持足够长的时间。上电时,Vcc的上升时间约为10ms,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz,起振时间为1ms;晶振频率为1MHz,起振时间则为10ms。当Vcc掉电时,必然会使RST端电压迅速下降到0V 以下,但是,由于部电路的限制作用,这个负电压将不会对器件产生损害。另外,在复位期间,端口引脚处于随机状态,复位后,系统将端口置为全“l”态。如果系统在上电时得不到有效的复位,则程序计数器PC将得不到一个合适的初值,因此,CPU可能会从一个未被

定义的位置开始执行程序。

时钟电路

XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片振荡器。石晶振荡和瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。

因为一个机器周期含有6个状态周期,而每个状态周期为2个振荡周期,所以一个机器周期共有12个振荡周期,如果外接石英晶体振荡器的振荡频率为12MHZ,一个振荡周期为1/12us,故而一个机器周期为1us。

单片机运行需要时钟支持——就像计算机的CPU一样,如果没有时钟电路来产生时钟驱动单片机,那单片机还能执行程序吗?单片机可以看成是在时钟驱动下的时序逻辑电路。

声音报警电路

用一个蜂鸣器、三极管和电阻接到单片机P3.0引脚上,当单片机的P2.1引脚被置低电平后蜂鸣器响,当单片机的P3.0引脚被置高电平后,蜂鸣器不响。系统检测到信号时,蜂鸣器发出“滴答滴答”的声音,这样就实现了声音报警的功能。

报警电路:系统设置了声音报警,使得随时可以知觉系统的运行状态,从而起到了很大的提醒作用;

发光报警电路

当单片机的P2.3/P2.4引脚被置低电平后,发光二极管被点亮,P2.3/P2.4引脚被置高电平后,发光二极管被熄灭,这样起到报警作

用。

报警电路:系统设置了灯光报警,使得在声音报警的基础上有添加了一个新的报警系统,在报警系数上大大提高;

硬件电路设计基础知识

硬件电子电路基础

第一章半导体器件 §1-1 半导体基础知识 一、什么是半导体 半导体就是导电能力介于导体和绝缘体之间的物质。(导电能力即电导率)(如:硅Si 锗Ge等+4价元素以及化合物)

二、半导体的导电特性 本征半导体――纯净、晶体结构完整的半导体称为本征半导体。 硅和锗的共价键结构。(略) 1、半导体的导电率会在外界因素作用下发生变化 ?掺杂──管子 ?温度──热敏元件 ?光照──光敏元件等 2、半导体中的两种载流子──自由电子和空穴 ?自由电子──受束缚的电子(-) ?空穴──电子跳走以后留下的坑(+) 三、杂质半导体──N型、P型 (前讲)掺杂可以显著地改变半导体的导电特性,从而制造出杂质半导体。 ?N型半导体(自由电子多) 掺杂为+5价元素。如:磷;砷P──+5价使自由电子大大增加原理:Si──+4价P与Si形成共价键后多余了一个电子。 载流子组成: o本征激发的空穴和自由电子──数量少。 o掺杂后由P提供的自由电子──数量多。 o空穴──少子 o自由电子──多子 ?P型半导体(空穴多) 掺杂为+3价元素。如:硼;铝使空穴大大增加 原理:Si──+4价B与Si形成共价键后多余了一个空穴。 B──+3价 载流子组成:

o本征激发的空穴和自由电子──数量少。 o掺杂后由B提供的空穴──数量多。 o空穴──多子 o自由电子──少子 结论:N型半导体中的多数载流子为自由电子; P型半导体中的多数载流子为空穴。 §1-2 PN结 一、PN结的基本原理 1、什么是PN结 将一块P型半导体和一块N型半导体紧密第结合在一起时,交界面两侧的那部分区域。 2、PN结的结构 分界面上的情况: P区:空穴多 N区:自由电子多 扩散运动: 多的往少的那去,并被复合掉。留下了正、负离子。 (正、负离子不能移动) 留下了一个正、负离子区──耗尽区。 由正、负离子区形成了一个内建电场(即势垒高度)。 方向:N--> P 大小:与材料和温度有关。(很小,约零点几伏)

硬件电路设计过程经验分享 (1)

献给那些刚开始或即将开始设计硬件电路的人。时光飞逝,离俺最初画第一块电路已有3年。刚刚开始接触电路板的时候,与你一样,俺充满了疑惑同时又带着些兴奋。在网上许多关于硬件电路的经验、知识让人目不暇接。像信号完整性,EMI,PS设计准会把你搞晕。别急,一切要慢慢来。 1)总体思路。 设计硬件电路,大的框架和架构要搞清楚,但要做到这一点还真不容易。有些大框架也许自己的老板、老师已经想好,自己只是把思路具体实现;但也有些要自己设计框架的,那就要搞清楚要实现什么功能,然后找找有否能实现同样或相似功能的参考电路板(要懂得尽量利用他人的成果,越是有经验的工程师越会懂得借鉴他人的成果)。 2)理解电路。 如果你找到了的参考设计,那么恭喜你,你可以节约很多时间了(包括前期设计和后期调试)。马上就copy?NO,还是先看懂理解了再说,一方面能提高我们的电路理解能力,而且能避免设计中的错误。 3)没有找到参考设计? 没关系。先确定大IC芯片,找datasheet,看其关键参数是否符合自己的要求,哪些才是自己需要的关键参数,以及能否看懂这些关键参数,都是硬件工程师的能力的体现,这也需要长期地慢慢地积累。这期间,要善于提问,因为自己不懂的东西,别人往往一句话就能点醒你,尤其是硬件设计。 4)硬件电路设计主要是三个部分,原理图,pcb,物料清单(BOM)表。 原理图设计就是将前面的思路转化为电路原理图。它很像我们教科书上的电路图。

pcb涉及到实际的电路板,它根据原理图转化而来的网表(网表是沟通原理图和pcb之间的桥梁),而将具体的元器件的封装放置(布局)在电路板上,然后根据飞线(也叫预拉线)连接其电信号(布线)。完成了pcb布局布线后,要用到哪些元器件应该有所归纳,所以我们将用到BOM表。 5)用什么工具? Protel,也就是altimuml容易上手,在国内也比较流行,应付一般的工作已经足够,适合初入门的设计者使用。 6)to be continued...... 其实无论用简单的protel或者复杂的cadence工具,硬件设计大环节是一样的(protel上的操作类似windwos,是post-command型的;而cadence的产品concept&allegro是pre-command型的,用惯了protel,突然转向cadence的工具,会不习惯就是这个原因)。设计大环节都要有1)原理图设计。2)pcb设计。3)制作BOM 表。现在简要谈一下设计流程(步骤): 1)原理图库建立。要将一个新元件摆放在原理图上,我们必须得建立改元件的库。库中主要定义了该新元件的管脚定义及其属性,并且以具体的图形形式来代表(我们常常看到的是一个矩形(代表其IC BODY),周围许多短线(代表IC管脚))。protel创建库及其简单,而且因为用的人多,许多元件都能找到现成的库,这一点对使用者极为方便。应搞清楚ic body,ic pins,input pin,output pin,analog pin,digital pin,power pin等区别。 2)有了充足的库之后,就可以在原理图上画图了,按照datasheet和系统设计的要

一个硬件电子工程师应掌握二十种基本模拟电路

一个硬件电子工程师应掌握的二十种基本模拟电路一、桥式整流电路 1、二极管的单向导电性: 伏安特性曲线:理想开关模型和恒压降模型: 2、桥式整流电流流向过程:输入输出波形: 3、计算:Vo, Io,二极管反向电压。 二、电源滤波器 1、电源滤波的过程分析:波形形成过程: 2、计算:滤波电容的容量和耐压值选择。 三、信号滤波器 1、信号滤波器的作用:与电源滤波器的区别和相同点: 2、LC 串联和并联电路的阻抗计算,幅频关系和相频关系曲线。 3、画出通频带曲线。 计算谐振频率。

四、微分和积分电路 1、电路的作用,与滤波器的区别和相同点。 2、微分和积分电路电压变化过程分析,画出电压变化波形图。 3、计算:时间常数,电压变化方程,电阻和电容参数的选择。 五、共射极放大电路 1、三极管的结构、三极管各极电流关系、特性曲线、放大条件。

2、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。 3、静态工作点的计算、电压放大倍数的计算 六、分压偏置式共射极放大电路 1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。 2、电流串联负反馈过程的分析,负反馈对电路参数的影响。 3、静态工作点的计算、电压放大倍数的计算。 七、共集电极放大电路(射极跟随器)

1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。电路的输入和输出阻抗特点。 2、电流串联负反馈过程的分析,负反馈对电路参数的影响。 3、静态工作点的计算、电压放大倍数的计算 八、电路反馈框图 1、反馈的概念,正负反馈及其判断方法、并联反馈和串联反馈及其判断方法、电流反馈和电压反馈及其判断方法。 2、带负反馈电路的放大增益 九、二极管稳压电路

硬件电路设计流程系列--方案设计

平台的选择很多时候和系统选择的算法是相关的,所以如果要提高架构,平台的设计能力,得不断提高自身的算法设计,复杂度评估能力,带宽分析能力。 常用的主处理器芯片有:单片机,ASIC,RISC(DEC Alpha、ARC、ARM、MIPS、PowerPC、SPARC和SuperH ),DSP和FPGA等,这些处理器的比较在网上有很多的文章,在这里不老生常谈了,这里只提1个典型的主处理器选型案例。 比如市场上现在有很多高清网络摄像机(HD-IPNC)的设计需求,而IPNC的解决方案也层出不穷,TI的解决方案有DM355、DM365、DM368等,海思提供的方案则有Hi3512、Hi3515、Hi3520等,NXP提供的方案有PNX1700、PNX1005等。 对于HD-IPNC的主处理芯片,有几个主要的技术指标:视频分辨率,视频编码器算法,最高支持的图像抓拍分辨率,CMOS的图像预处理能力,以及网络协议栈的开发平台。 Hi3512单芯片实现720P30 编解码能力,满足高清IP Camera应用, Hi3515可实现1080P30的编解码能力,持续提升高清IP Camera的性能。 DM355单芯片实现720P30 MPEG4编解码能力,DM365单芯片实现720P30 编解码能力, DM368单芯片实现1080P30 编解码能力。 DM355是2007 Q3推出的,DM365是2009 Q1推出的,DM368是2010 Q2推出的。海思的同档次解决方案也基本上与之同时出现。 海思和TI的解决方案都是基于linux,对于网络协议栈的开发而言,开源社区的资源是没有区别的,区别的只在于芯片供应商提供的SDK开发包,两家公司的SDK离产品都有一定的距离,但是linux的网络开发并不是一个技术难点,所以并不影响产品的推广。 作为IPNC的解决方案,在720P时代,海思的解决方案相对于TI的解决方案,其优势是支持了编解码算法,而TI只支持了MPEG4的编解码算法。虽然在2008年初,MPEG4的劣势在市场上已经开始体现出来,但在当时这似乎并不影响DM355的推广。 对于最高支持的图像抓拍分辨率,海思的解决方案可以支持支持JPEG抓拍3M Pixels@5fps,DM355最高可以支持5M Pixels,虽然当时没有成功的开发成5M Pixel的抓拍(内存分配得有点儿问题,后来就不折腾了),但是至少4M Pixel 的抓拍是实现了的,而且有几个朋友已经实现了2560x1920这个接近5M Pixel 的抓拍,所以在这一点上DM355稍微胜出。 因为在高清分辨率下,CCD传感器非常昂贵,而CMOS传感器像原尺寸又做不大,导致本身在低照度下就性能欠佳的CMOS传感器的成像质量在高分辨率时变差,

电路硬件设计基础

1.1电路硬件设计基础 1.1.1电路设计 硬件电路设计原理 嵌入式系统的硬件设计主要分3个步骤:设计电路原理图、生成网络表、设计印制电路板,如下图所示。 图1-1硬件设计的3个步骤 进行硬件设计开发,首先要进行原理图设计,需要将一个个元器件按一定的逻辑关系连接起来。设计一个原理图的元件来源是“原理图库”,除了元件库外还可以由用户自己增加建立新的元件,用户可以用这些元件来实现所要设计产品的逻辑功能。例如利用Protel 中的画线、总线等工具,将电路中具有电气意义的导线、符号和标识根据设计要求连接起来,构成一个完整的原理图。 原理图设计完成后要进行网络表输出。网络表是电路原理设计和印制电路板设计中的一个桥梁,它是设计工具软件自动布线的灵魂,可以从原理图中生成,也可以从印制电路板图中提取。常见的原理图输入工具都具有Verilog/VHDL网络表生成功能,这些网络表包含所有的元件及元件之间的网络连接关系。 原理图设计完成后就可进行印制电路板设计。进行印制电路板设计时,可以利用Protel 提供的包括自动布线、各种设计规则的确定、叠层的设计、布线方式的设计、信号完整性设计等强大的布线功能,完成复杂的印制电路板设计,达到系统的准确性、功能性、可靠性设计。 电路设计方法(有效步骤) 电路原理图设计不仅是整个电路设计的第一步,也是电路设计的基础。由于以后的设计工作都是以此为基础,因此电路原理图的好坏直接影响到以后的设计工作。电路原理图的具体设计步骤,如图所示。

图1-2原理图设计流程图 (1)建立元件库中没有的库元件 元件库中保存的元件只有常用元件。设计者在设计时首先碰到的问题往往就是库中没有原理图中的部分元件。这时设计者只有利用设计软件提供的元件编辑功能建立新的库元件,然后才能进行原理图设计。 当采用片上系统的设计方法时,系统电路是针对封装的引脚关系图,与传统的设计方法中采用逻辑关系的库元件不同。 (2)设置图纸属性 设计者根据实际电路的复杂程度设置图纸大小和类型。图纸属性的设置过程实际上是建立设计平台的过程。设计者只有设置好这个工作平台,才能够在上面设计符合要求的电路图。 (3)放置元件 在这个阶段,设计者根据原理图的需要,将元件从元件库中取出放置到图纸上,并根据原理图的需要进行调整,修改位置,对元件的编号、封装进行设置等,为下一步的工作打下基础。 (4)原理图布线 在这个阶段,设计者根据原理图的需要,利用设计软件提供的各种工具和指令进行布线,将工作平面上的元件用具有电气意义的导线、符号连接起来,构成一个完整的原理图。 (5)检查与校对 在该阶段,设计者利用设计软件提供的各种检测功能对所绘制的原理图进行检查与校对,以保证原理图符合电气规则,同时还应力求做到布局美观。这个过程包括校对元件、导线位置调整以及更改元件的属性等。 (6)电路分析与仿真 这一步,设计者利用原理图仿真软件或设计软件提供的强大的电路仿真功能,对原理图的性能指标进行仿真,使设计者在原理图中就能对自己设计的电路性能指标进行观察、测试,从而避免前期问题后移,造成不必要的返工。

硬件电路设计基础知识

硬件电路设计基础知识 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

硬件电子电路基础

第一章半导体器件 §1-1 半导体基础知识一、什么是半导体

半导体就是导电能力介于导体和绝缘体之间的物质。(导电能力即电导率)(如:硅Si 锗Ge等+4价元素以及化合物) 二、半导体的导电特性 本征半导体――纯净、晶体结构完整的半导体称为本征半导体。 硅和锗的共价键结构。(略) 1、半导体的导电率会在外界因素作用下发生变化 掺杂──管子 温度──热敏元件 光照──光敏元件等 2、半导体中的两种载流子──自由电子和空穴 自由电子──受束缚的电子(-) 空穴──电子跳走以后留下的坑(+) 三、杂质半导体──N型、P型 (前讲)掺杂可以显着地改变半导体的导电特性,从而制造出杂质半导体。 N型半导体(自由电子多) 掺杂为+5价元素。如:磷;砷 P──+5价使自由电子大大增加 原理: Si──+4价 P与Si形成共价键后多余了一个电子。 载流子组成:

o本征激发的空穴和自由电子──数量少。 o掺杂后由P提供的自由电子──数量多。 o空穴──少子 o自由电子──多子 P型半导体(空穴多) 掺杂为+3价元素。如:硼;铝使空穴大大增加 原理: Si──+4价 B与Si形成共价键后多余了一个空穴。 B──+3价 载流子组成: o本征激发的空穴和自由电子──数量少。 o掺杂后由B提供的空穴──数量多。 o空穴──多子 o自由电子──少子 结论:N型半导体中的多数载流子为自由电子; P型半导体中的多数载流子为空穴。 §1-2 PN结 一、PN结的基本原理 1、什么是PN结 将一块P型半导体和一块N型半导体紧密第结合在一起时,交界面两侧的那部分区域。

硬件电路板设计规范

硬件电路板设计规范(总36 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

0目录 0目录............................................... 错误!未定义书签。

1概述............................................... 错误!未定义书签。 适用范围............................................ 错误!未定义书签。 参考标准或资料 ...................................... 错误!未定义书签。 目的................................................ 错误!未定义书签。2PCB设计任务的受理和计划............................ 错误!未定义书签。 PCB设计任务的受理................................... 错误!未定义书签。 理解设计要求并制定设计计划 .......................... 错误!未定义书签。3规范内容........................................... 错误!未定义书签。 基本术语定义........................................ 错误!未定义书签。 PCB板材要求: ....................................... 错误!未定义书签。 元件库制作要求 ...................................... 错误!未定义书签。 原理图元件库管理规范:......................... 错误!未定义书签。 PCB封装库管理规范............................. 错误!未定义书签。 原理图绘制规范 ...................................... 错误!未定义书签。 PCB设计前的准备..................................... 错误!未定义书签。 创建网络表..................................... 错误!未定义书签。 创建PCB板..................................... 错误!未定义书签。 布局规范............................................ 错误!未定义书签。 布局操作的基本原则............................. 错误!未定义书签。 热设计要求..................................... 错误!未定义书签。 基本布局具体要求............................... 错误!未定义书签。 布线要求............................................ 错误!未定义书签。 布线基本要求................................... 错误!未定义书签。 安规要求....................................... 错误!未定义书签。 丝印要求............................................ 错误!未定义书签。 可测试性要求........................................ 错误!未定义书签。 PCB成板要求......................................... 错误!未定义书签。

硬件基础知识

第三章硬件基础知识学习 通过上一课的学习,我们貌似成功的点亮了一个LED小灯,但是还有一些知识大家还没有 彻底明白。单片机是根据硬件电路图的设计来写代码的,所以我们不仅仅要学习编程知识,还有硬件知识,也要进一步的学习,这节课我们就要来穿插介绍电路硬件知识。 3.1 电磁干扰EMI 第一个知识点,去耦电容的应用,那首先要介绍一下去耦电容的应用背景,这个背景就是电磁干扰,也就是传说中的EMI。 1、冬天的时候,尤其是空气比较干燥的内陆城市,很多朋友都有这样的经历,手触碰到电脑外壳、铁柜子等物品的时候会被电击,实际上这就是“静电放电”现象,也称之为ESD。 2、不知道有没有同学有这样的经历,早期我们使用电钻这种电机设备,并且同时在听收音机或者看电视的时候,收音机或者电视会出现杂音,这就是“快速瞬间群脉冲”的效果,也称之为EFT。 3、以前的老电脑,有的性能不是很好,带电热插拔优盘、移动硬盘等外围设备的时候,内部会产生一个百万分之一秒的电源切换,直接导致电脑出现蓝屏或者重启现象,就是热插拔的“浪涌”效果,称之为Surge... ... 电磁干扰的内容有很多,我们这里不能一一列举,但是有些内容非常重要,后边我们要一点点的了解。这些问题大家不要认为是小问题,比如一个简单的静电放电,我们用手能感觉到的静电,可能已经达到3KV以上,如果用眼睛能看得到的,至少是5KV了,只是因为 这个电压虽然很高,电量却很小,因此不会对人体造成伤害。但是我们应用的这些半导体元器件就不一样了,一旦瞬间电压过高,就有可能造成器件的损坏。而且,即使不损坏,在2、3里边介绍的两种现象,也严重干扰到我们正常使用电子设备了。 基于以上的这些问题,就诞生了电磁兼容(EMC)这个名词。这节课我们仅仅讲一下去耦

模拟电路设计 基础知识(笔试时候容易遇到的题目)

模拟电路设计基础知识(笔试时候容易遇到的 题目) 1、最基本的如三极管曲线特性(太低极了点) 2、基本放大电路,种类,优缺点,特别是广泛采用差分结构的原因 3、反馈之类,如:负反馈的优点(带宽变大) 4、频率响应,如:怎么才算是稳定的,如何改变频响曲线的几个方法 5、锁相环电路组成,振荡器(比如用D触发器如何搭) 6、A/D电路组成,工作原理如果公司做高频电子的,可能还要RF知识,调频,鉴频鉴相之类,不一一列举太底层的MOS管物理特性感觉一般不大会作为笔试面试题,因为全是微电子物理,公式推导太罗索,除非面试出题的是个老学究 ic设计的话需要熟悉的软件adence, Synopsys, Advant,UNIX当然也要大概会操作实际工作所需要的一些技术知识(面试容易问到) 如电路的低功耗,稳定,高速如何做到,调运放,布版图注意的地方等等,一般会针对简历上你所写做过的东西具体问,肯定会问得很细(所以别把什么都写上,精通之类的词也别用太多了),这个东西各个人就不一样了,不好说什么了。 2、数字电路设计当然必问Verilog/VHDL,如设计计数器逻辑方面数字电路的卡诺图化简,时序(同步异步差异),触发器有几种(区别,优点),全加器等等比如:设计一个自动售货

机系统,卖soda水的,只能投进三种硬币,要正确的找回钱数1、画出fsm(有限状态机)2、用verilog编程,语法要符合fpga设计的要求系统方面:如果简历上还说做过cpu之类,就会问到诸如cpu如何工作,流水线之类的问题3、单片机、DSP、FPG A、嵌入式方面(从没碰过,就大概知道几个名字胡扯几句,欢迎拍砖,也欢迎牛人帮忙补充)如单片机中断几个/类型,编中断程序注意什么问题 DSP的结构(冯、诺伊曼结构吗?)嵌入式处理器类型(如ARM),操作系统种类 (Vxworks,ucos,winCE,linux),操作系统方面偏CS方向了,在CS篇里面讲了4、信号系统基础拉氏变换与Z变换公式等类似东西,随便翻翻书把如、h(n)=-a*h(n-1)+b*δ(n) a、求h(n)的z变换 b、问该系统是否为稳定系统 c、写出F IR数字滤波器的差分方程以往各种笔试题举例利用4选1实现F(x,y,z)=xz+yz 用mos管搭出一个二输入与非门。 用传输门和倒向器搭一个边沿触发器用运算放大器组成一个10倍的放大器微波电路的匹配电阻。 名词解释,无聊的外文缩写罢了,比如PCI、EC C、DDR、interrupt、pipeline IRQ,BIOS,USB,VHDL,VLSI VCO(压控振荡器) RAM (动态随机存储器),FIR IIR DFT(离散傅立叶变换) 或者是中文的,比如 a量化误差 b、直方图 c、白平衡共同的注

硬件电路设计基础知识.docx

硬件电子电路基础关于本课程 § 4—2乙类功率放大电路 § 4—3丙类功率放大电路 § 4—4丙类谐振倍频电路 第五章正弦波振荡器 § 5—1反馈型正弦波振荡器的工作原理 § 5— 2 LC正弦波振荡电路 § 5— 3 LC振荡器的频率稳定度 § 5—4石英晶体振荡器 § 5— 5 RC正弦波振荡器

第一章半导体器件 §1半导体基础知识 §1PN 结 §-1二极管 §1晶体三极管 §1场效应管 §1半导体基础知识 、什么是半导体半导体就是导电能力介于导体和绝缘体之间的物质。(导电能力即电导率)(如:硅Si锗Ge等+ 4价元素以及化合物) 、半导体的导电特性本征半导体一一纯净、晶体结构完整的半导体称为本征半导体。 硅和锗的共价键结构。(略)

1、半导体的导电率会在外界因素作用下发生变化 ?掺杂一一管子 *温度--- 热敏元件 ?光照——光敏元件等 2、半导体中的两种载流子一一自由电子和空穴 ?自由电子——受束缚的电子(一) ?空穴——电子跳走以后留下的坑(+ ) 三、杂质半导体——N型、P型 (前讲)掺杂可以显著地改变半导体的导电特性,从而制造出杂质半导体。 *N型半导体(自由电子多) 掺杂为+ 5价元素。女口:磷;砷P—+ 5价使自由电子大大增加原理:Si—+ 4价P与Si形成共价键后多余了一个电子。 载流子组成: o本征激发的空穴和自由电子——数量少。 o掺杂后由P提供的自由电子——数量多。 o 空穴——少子 o 自由电子------ 多子 ?P型半导体(空穴多) 掺杂为+ 3价元素。女口:硼;铝使空穴大大增加 原理:Si—+ 4价B与Si形成共价键后多余了一个空穴。 B——+ 3价 载流子组成: o本征激发的空穴和自由电子数量少。 o掺杂后由B提供的空穴——数量多。 o 空穴——多子 o 自由电子——少子

电路设计的基本原理和方法

电路设计的基本原理和方法 本人经过整理得出如下的电路设计方法,希望对广大电子爱好者及热衷于硬件研发的朋友有所帮助。 电子电路的设计方法 设计一个电子电路系统时,首先必须明确系统的设计任务,根据任务进行方案选择,然后对方案中的各个部分进行单元的设计,参数计算和器件选择,最后将各个部分连接在一起,画出一个符合设计要求的完整的系统电路图。 一.明确系统的设计任务要求 对系统的设计任务进行具体分析,充分了解系统的性能,指标,内容及要求,以明确系统应完成的任务。 二.方案选择 这一步的工作要求是把系统要完成的任务分配给若干个单元电路,并画出一个能表示各单元功能的整机原理框图。 方案选择的重要任务是根据掌握的知识和资料,针对系统提出的任务,要求和条件,完成系统的功能设计。在这个过程中要敢于探索,勇于创新,力争做到设计方案合理,可靠,经济,功能齐全,技术先进。并且对方案要不断进行可行性和有缺点的分析,最后设计出一个完整框图。框图必须正确反映应完成的任务和各组成部分的功能,清楚表示系统的基本组成和相互关系。 三.单元电路的设计,参数计算和期间选择 根据系统的指标和功能框图,明确各部分任务,进行各单元电路的设计,参数计算和器件选择。 1.单元电路设计 单元电路是整机的一部分,只有把各单元电路设计好才能提高整机设计水平。 每个单元电路设计前都需明确各单元电路的任务,详细拟定出单元电路的性能指标,与前后级之间的关系,分析电路的组成形式。具体设计时,可以模仿传输的先进的电路,也可以进行创新或改进,但都必须保证性能要求。而且,不仅单元电路本身要设计合理,各单元电路间也要互相配合,注意各部分的输入信号,输出信号和控制信号的关系。 2.参数计算 为保证单元电路达到功能指标要求,就需要用电子技术知识对参数进行计算。例如,放大电路中各电阻值,放大倍数的计算;振荡器中电阻,电容,振荡频率等参数的计算。只有很好的理解电路的工作原理,正确利用计算公式,计算的参数才能满足设计要求。 参数计算时,同一个电路可能有几组数据,注意选择一组能完成电路设计要求的功能,在实践中能真正可行的参数。 计算电路参数时应注意下列问题: (1)元器件的工作电流,电压,频率和功耗等参数应能满足电路指标的要求; (2)元器件的极限参数必须留有足够充裕量,一般应大于额定值的1.5倍; (3)电阻和电容的参数应选计算值附近的标称值。 3.器件选择 (1)元件的选择 阻容电阻和电容种类很多,正确选择电阻和电容是很重要的。不同的电路对电阻和电容性能要求也不同,有解电路对电容的漏电要求很严,还有些电路对电阻,电容的性能和容量要求很高。例如滤波电路中常用大容量(100uF~3000uF)铝电解电容,为滤掉高频通常

硬件电路设计规范样本

硬件电路板设计规范 制定此《规范》的目的和出发点是为了培养硬件开发人员严谨、务实的 工作作风和严肃、认真的工作态度, 增强硬件开发人员的责任感和使命感, 提高工作效率和开发成功率, 保证产品质量。 1、深入理解设计需求, 从需求中整理出电路功能模块和性能指标要求; 2、根据功能和性能需求制定总体设计方案, 对CPU等主芯片进行选型, CPU选型有以下几点要求: 1) 容易采购, 性价比高; 2) 容易开发: 体现在硬件调试工具种类多, 参考设计多, 软件资源丰富, 成功案例多; 3) 可扩展性好; 3、针对已经选定的CPU芯片, 选择一个与我们需求比较接近的成功参 考设计。 一般CPU生产商或她们的合作方都会对每款CPU芯片做若干开发板进行验证, 厂家最后公开给用户的参考设计图虽说不是产品级的东西, 也应该是经 过严格验证的, 否则也会影响到她们的芯片推广应用, 纵然参考设计的外围 电路有可推敲的地方, CPU本身的管脚连接使用方法也绝对是值得我们信赖的, 当然如果万一出现多个参考设计某些管脚连接方式不同, 能够细读CPU芯片 手册和勘误表, 或者找厂商确认; 另外在设计之前, 最好我们能外借或者购

买一块选定的参考板进行软件验证, 如果没问题那么硬件参考设计也是能够信赖的; 但要注意一点, 现在很多CPU都有若干种启动模式, 我们要选一种最适合的启动模式, 或者做成兼容设计; 4、根据需求对外设功能模块进行元器件选型, 元器件选型应该遵守以下原则: 1) 普遍性原则: 所选的元器件要被广泛使用验证过的尽量少使用冷、偏芯片, 减少风险; 2) 高性价比原则: 在功能、性能、使用率都相近的情况下, 尽量选择价格比较好的元器件, 减少成本; 3) 采购方便原则: 尽量选择容易买到, 供货周期短的元器件; 4) 持续发展原则: 尽量选择在可预见的时间内不会停产的元器件; 5) 可替代原则: 尽量选择pin to pin兼容种类比较多的元器件; 6) 向上兼容原则: 尽量选择以前老产品用过的元器件; 7) 资源节约原则: 尽量用上元器件的全部功能和管脚; 5、对选定的CPU参考设计原理图外围电路进行修改, 修改时对于每个功能模块都要找至少3个相同外围芯片的成功参考设计, 如果找到的参考设计连接方法都是完全一样的, 那么基本能够放心参照设计, 但即使只有一个参考设计与其它的不一样, 也不能简单地少数服从多数, 而是要细读芯片数据手册, 深入理解那些管脚含义, 多方讨论, 联系芯片厂技术支持, 最终确定科学、正确的连接方式, 如果仍有疑义, 能够做兼容设计; 当然, 如果所

硬件电路设计具体详解

2系统方案设计 2.1 数字示波器的工作原理 图2.1 数字示波器显示原理 数字示波器的工作原理可以用图2.1 来描述,当输入被测信号从无源探头进入到数字示波器,首先通过的是示波器的信号调理模块,由于后续的A/D模数转换器对其测量电压有一个规定的量程范围,所以,示波器的信号调理模块就是负责对输入信号的预先处理,通过放大器放大或者通过衰减网络衰减到一定合适的幅度,然后才进入A/D转换器。在这一阶段,微控制器可设置放大和衰减的倍数来让用户选择调整信号的幅度和位置范围。 在A/D采样模块阶段,信号实时在离散点采样,采样位置的信号电压转换为数字值,而这些数字值成为采样点。该处理过程称为信号数字化。A/D采样的采样时钟决定了ADC采样的频度。该速率被称为采样速率,表示为样值每秒(S/s)。A/D模数转换器最终将输入信号转换为二进制数据,传送给捕获存储区。 因为处理器的速度跟不上高速A/D模数转换器的转换速度,所以在两者之间需要添加一个高速缓存,明显,这里捕获存储区就是充当高速缓存的角色。来自ADC的采样点存储在捕获存储区,叫做波形点。几个采样点可以组成一个波形点,波形点共同组成一条波形记录,创建一条波形记录的波形点的数量称为记录长度。捕获存储区内部还应包括一个触发系统,触发系统决定记录的起始和终止点。 被测的模拟信号在显示之前要通过微处理器的处理,微处理器处理信号,包括获取信号的电压峰峰值、有效值、周期、频率、上升时间、相位、延迟、占空比、均方值等信息,然后调整显示运行。最后,信号通过显示器的显存显示在屏幕上。 2.2 数字示波器的重要技术指标 (1)频带宽度 当示波器输入不同频率的等幅正弦信号时,屏幕上显示的信号幅度下降3dB 所对应的输入信号上、下限频率之差,称为示波器的频带宽度,单位为MHz或GHz。

硬件工程师必用20个电子线路图

这20个电子线路图,硬件工程师一定用得上! 电子技术、无线电维修及电子制造工艺技术绝不是一门容易学好、短时间内就能够掌握的学科。这门学科所涉及的方方面面很多,各方面又相互联系,作为初学者,首先要在整体上了解、初步掌握它。 无论是无线电爱好者还是维修技术人员,你能够说出电路板上那些小元件叫做什么,又有什么作用吗?如果想成为元件(芯片)级高手的话,掌握一些相关的电子知识是必不可少的。 普及与电子基础知识,拓宽思路交流,知识的积累是基础的基础,基础和基本功扎实了才能奠定攀登高峰阶梯!这就是基本功。 电子技术的历史背景: 早在两千多年前,人们就发现了电现象和磁现象。我国早在战国时期(公元前475一211年)就发明了司南。而人类对电和磁的真正认识和广泛应用、迄今还只有一百多年历史。在第一次产业革命浪潮的推动下,许多科学家对电和磁现象进行了深入细致的研究,从而取得了重大进展。人们发现带电的物体同性相斥、异性相吸,与磁学现象有类似之处。 1785年,法国物理学家库仑在总结前人对电磁现象认识的基础上,提出了后人所称的“库仑定律”,使电学与磁学现象得到了统一。 1800年,意大利物理学家伏特研制出化学电池,用人工办法获得了连续电池,为后人对电和磁关系的研究创造了首要条件。 1822年,英国的法拉第在前人所做大量工作的基础上,提出了电磁感应定律,证明了“磁”能够产生“电”,这就为发电机和电动机的原理奠定了基础。 1837年美国画家莫尔斯在前人的基础上设计出比较实用的、用电码传送信息的电报机,之后,又在华盛顿与巴尔的摩城之间建立了世界上第一条电报线路。 1876 年,美国的贝尔发明了电话,实现了人类最早的模拟通信。英国的麦克斯韦在总结前人工作基础上,提出了一套完整的“电磁理论”,表现为四个微分方程。这那就后人所称的“麦克斯韦方程组”.麦克斯韦得出结论:运动着的电荷能产生电磁辐射,形成逐渐向外传播的、看不见的电磁波。他虽然并未提出“无线电”这个名词,但他的电磁理论却已经告诉人们,“电”是能够“无线”传播的。 对模拟电路的掌握分为三个层次:

单片机硬件电路设计

单片机应用设计

概述 单片机是一种大规模的具有计算机基本功能的单片 单片机是一种大规模的具有计算机基本功能的单片集成电路。可以与少量外围电路构成一个小而完善的计算机系统。芯片内置和外围的电路能在软件的控制下准确、迅速、高效地完成程序设计者事先规定的任务。 单片机具有体积小、功耗低、控制功能强、扩 单片机具有体积小、功耗低、控制功能强、扩展灵活、使用方便等优点,广泛应用于仪器仪表、家用电器、医用设备、航空航天、通信产品、智能玩具、汽车电子、专用设备的智能化管理及过程控制等领域。 制等领域。

单片机类型 集中指令集(CISC)和精简指令集(RISC)–采用CISC结构的单片机数据线和指令线分时复 用,即所谓冯.诺伊曼结构。它的指令丰富,功 能较强,但取指令和取数据不能同时进行,速度 受限,价格亦高。 –采用RISC结构的单片机,数据线和指令线分离 ,即所谓哈佛结构。这使得取指令和取数据可同 时进行,且由于一般指令线宽于数据线,使其指 令较同类CISC单片机指令包含更多的处理信息 ,执行效率更高,速度亦更快。同时,这种单片 机指令多为单字节,程序存储器的空间利用率大 大提高,有利于实现超小型化。

常用的几个系列单片机 MCS-51及其兼容系列: –英特尔公司的MCS-51系列单片机是目前应 用最广泛的8位单片机之一,并且ATMEL、 PHILIPS、ADI、MAXIM、LG、 SIEMENS等公司都有其兼容型号的芯片。 这个系列的单片机具有运算与寻址能力强, 存储空间大,片内集成外设丰富,功耗低等 优点,其中大部分兼容芯片都含有片内 FLASH程序存储器,价格便宜。适合应用于 仪器仪表、测控系统、嵌入系统等开发。

硬件电路设计流程系列

硬件电路设计流程系列--方案设计 一、硬件电路设计流程系列--硬件电路设计规范 二、硬件电路设计流程系列--方案设计(1) :主芯片选型三、 硬件电路设计流程系列--方案设计(2) :芯片选购 四、硬件电路设计流程系列--方案设计(3) :功耗分析与电源设计五、 硬件电路设计流程系列--方案设计(4):设计一个合适的系统电源 一 硬件电路设计规范 1、详细理解设计需求,从需求中整理出电路功能模块和性能指标要求; 2、根据功能和性能需求制定总体设计方案,对CPU进行选型, CPU选型有以下几点要求: a)性价比高; b)容易开发:体现在硬件调试工具种类多,参考设计多,软件资源丰富,成功案例多; c)可扩展性好; 3、针对已经选定的 CPU芯片,选择一个与我们需求比较接近的成功参考设计,一般 CPU生产商或他们的合作方都会对每款 CPU 芯片做若干开发板进行验证,比如440EP 就有yosemite 开发板和 bamboo 开发板,我们参考得是yosemite 开发板,厂家最后公开给用户的参考设计图虽说不是产品级的东西,也应该是经过严格验证的,否则也会影响到他们的芯片推广应用,纵然参考设计的外围电路有可推敲的地方,CPU 本身的管脚连接使用方法也绝对是值得我们信赖的,当然如果万一出现多个参考设计某些管脚连接方式不同,可以细读 CPU 芯片手册和勘误表,或者找厂商确认;另外在设计之前,最好我们能外借或者购买一块选定的参考板进行软件验证,如果没问题那么硬件参考设计也是可以信赖的;但要注意一点,现在很多 CPU 都有若干种启动模式,我们要选一种最适合的启动模式,或者做成兼容设计。

嵌入式硬件电路设计基础知识梳理

嵌入式硬件电路设计基础知识梳理 嵌入式设计是个庞大的工程,今天就说说硬件电路设计方面的几个注意事项,首先,咱们了解下嵌入式的硬件构架。 我们知道,CPU是这个系统的灵魂,所有的外围配置都与其相关联,这也突出了嵌入式设计的一个特点硬件可剪裁。在做嵌入式硬件设计中,以下几点需要关注。 第一、电源确定 电源对于嵌入式系统中的作用可以看做是空气对人体的作用,甚至更重要:人呼吸的空气中有氧气、二氧化碳和氮气等但是含量稳定,这就相当于电源系统中各种杂波,我们希望得到纯净和稳定符合要求的电源,但由于各种因素制约,只是我们的梦想。这个要关注两个方面: a、电压 嵌入式系统需要各种量级的电源比如常见的5v、3.3v、1.8v等,为尽量减小电源的纹波,在嵌入式系统中使用LDO器件。如果采用DCDC不仅个头大,其纹波也是一个很头疼的问题。 b、电流 嵌入式系统的正常运行不但需要稳定足够的电源,还要有足够的电流,因此在选择电源器件的时候需要考虑其负载,我设计时一般留有30%的余量。 如果是多层板,电源部分在layout的时候需电源分割,这时需要注意分割路径,尽量将一定量的电源放置在一起。如果是双面板,则走线宽度需要注意,在板子允许的情况下尽量加宽。合适的退耦电容尽量靠近电源管脚。第二、晶振确定 晶振相当于嵌入式系统的心脏,其稳定与否直接关系其运行状态和通讯性能。常见的振有无源晶振,有源晶振,首先要确定其振荡频率,其次要确定晶振类型。 a、无源晶振 其匹配电容和匹配电阻的选择,这部分一般依据参考手册。在单片机设计中,经常使用插件晶振配合瓷片电容。在ARM中,为了减少空间和便于布线,经常使用四角无源晶振配

对于硬件电路的设计过程的详细剖析

对于硬件电路的设计过程的详细剖析 献给那些刚开始或即将开始设计硬件电路的人。时光飞逝,离俺最初画第一块电路已有3年。刚刚开始接触电路板的时候,与你一样,俺充满了疑惑同时又带着些兴奋。在网上许多关于硬件电路的经验、知识让人目不暇接。像信号完整性,EMI,PS设计准会把你搞晕。别急,一切要慢慢来。 1)总体思路。设计硬件电路,大的框架和架构要搞清楚,但要做到这一点还真不容易。有些大框架也许自己的老板、老师已经想好,自己只是把思路具体实现;但也有些要自己设计框架的,那就要搞清楚要实现什么功能,然后找找有否能实现同样或相似功能的参考电路板(要懂得尽量利用他人的成果,越是有经验的工程师越会懂得借鉴他人的成果)。 2)理解电路。如果你找到了的参考设计,那么恭喜你,你可以节约很多时间了(包括前期设计和后期调试)。马上就copy?NO,还是先看懂理解了再说,一方面能提高我们的电路理解能力,而且能避免设计中的错误。 3)没有找到参考设计? 没关系。先确定大IC芯片,找datasheet,看其关键参数是否符合自己的要求,哪些才是自己需要的关键参数,以及能否看懂这些关键参数,都是硬件工程师的能力的体现,这也需要长期地慢慢地积累。这期间,要善于提问,因为自己不懂的东西,别人往往一句话就能点醒你,尤其是硬件设计。 4)硬件电路设计主要是三个部分,原理图,pcb ,物料清单(BOM)表。原理图设计就是将前面的思路转化为电路原理图。它很像我们教科书上的电路图。pcb涉及到实际的电路板,它根据原理图转化而来的网表(网表是沟通原理图和pcb之间的桥梁),而将具体的元器件的封装放置(布局)在电路板上,然后根据飞线(也叫预拉线)连接其电信号(布线)。完成了pcb 布局布线后,要用到哪些元器件应该有所归纳,所以我们将用到BOM表。 5)用什么工具?Prote,也就是altimuml容易上手,在国内也比较流行,应付一般的工作已经足够,适合初入门的设计者使用。 6)to be continued...... 其实无论用简单的protel或者复杂的cadence工具,硬件设计大环节是一样的(protel上的

硬件电路原理图设计规范

硬件电路原理图设计规范 1、详细理解设计需求,从需求中整理出电路功能模块和性能指标要求; 2、根据功能和性能需求制定总体设计方案,对CPU进行选型,CPU选型有以下几点要求: a)性价比高; b)容易开发:体现在硬件调试工具种类多,参考设计多,软件资源丰富,成功案例多; c)可扩展性好; 3、针对已经选定的CPU芯片,选择一个与我们需求比较接近的成功参考设计,一般CPU生产商或他们的合作方都会对每款CPU芯片做若干开发板进行验证,比如440EP就有yosemite开发板和bamboo开发板,我们参考得是yosemite开发板,厂家最后公开给用户的参考设计图虽说不是产品级的东西,也应该是经过严格验证的,否则也会影响到他们的芯片推广应用,纵然参考设计的外围电路有可推敲的地方,CPU本身的管脚连接使用方法也绝对是值得我们信赖的,当然如果万一出现多个参考设计某些管脚连接方式不同,可以细读CPU 芯片手册和勘误表,或者找厂商确认;另外在设计之前,最好我们能外借或者购买一块选定的参考板进行软件验证,如果没问题那么硬件参考设计也是可以信赖的;但要注意一点,现在很多CPU都有若干种启动模式,我们要选一种最适合的启动模式,或者做成兼容设计; 4、根据需求对外设功能模块进行元器件选型,元器件选型应该遵守以下原则: a)普遍性原则:所选的元器件要被广泛使用验证过的尽量少使用冷偏芯片,减少风险; b)高性价比原则:在功能、性能、使用率都相近的情况下,尽量选择价格比较好的元器件,减少成本; c)采购方便原则:尽量选择容易买到,供货周期短的元器件; d)持续发展原则:尽量选择在可预见的时间内不会停产的元器件; e)可替代原则:尽量选择pin to pin兼容种类比较多的元器件; f)向上兼容原则:尽量选择以前老产品用过的元器件; g)资源节约原则:尽量用上元器件的全部功能和管脚; 5、对选定的CPU参考设计原理图外围电路进行修改,修改时对于每个功能模块都要找至少3个相同外围芯片的成功参考设计,如果找到的参考设计连接方法都是完全一样的,那么基本可以放心参照设计,但即使只有一个参考设计与其他的不一样,也不能简单地少数服从多数,而是要细读芯片数据手册,深入理解那些管脚含义,多方讨论,联系芯片厂技术支持,最终确定科学、正确的连接方式,如果仍有疑义,可以做兼容设计;这是整个原理图设计过程中最关键的部分,我们必须做到以下几点: a)对于每个功能模块要尽量找到更多的成功参考设计,越难的应该越多,成功参考设计是“前人”的经验和财富,我们理当借鉴吸收,站在“前人”的肩膀上,也就提高了自己的起点;

相关文档