文档库 最新最全的文档下载
当前位置:文档库 › 数学期望在实际生活中的应用

数学期望在实际生活中的应用

数学期望在实际生活中的应用
数学期望在实际生活中的应用

摘要

在现代快速发展的社会中,数学期望作为一门重要的数学学科,它是随机变量的重要数字特征之一,也是随机变量最基本的特征之一。通过几个例子,阐述数学期望在实际生活中的应用包括经济决策、彩票抽奖、求职决策、医疗、体育比赛等方面的一些实例,体现出数学期望在实际生活中颇有价值的应用。通过探讨数学期望在实际生活中的应用,以起到让大家了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。所谓的求数学期望其实就是去求随机变量的以概率为权数的加权平均值,而平均值这一概念又是我们在实际应用中最常用的一个指标,在预测中使用是很具有科学性的。

关键词:数学期望随机变量性质实际应用

Abstract

In the rapid development of modern society, the mathematical expectation as an important mathematical subject, it is one of the important digital features of random variables, is also one of the basic characteristics of random variables. Through several examples, in this paper, the mathematical expectation in the practical application of life including economic decision-making, lottery tickets, job, health, sports, etc. In some instances, manifests the mathematical expectation valuable application in real life. Through discuss the application of mathematical expectation in real life to play let everybody understand the knowledge and practice closely linked human rich background, personal experience "mathematics really useful". So-called mathematical expectation is to actually ask for random variables of the probability weighted average of the weight, and mean value in actual application of this concept is our one of the most commonly used indicators, used in the forecast, it is very scientific.

Key words: Mathematical Expectation; Stochastic Variable; quality; Practical Application

目录

摘要 (1)

Abstract (2)

第一章绪论 (4)

1.1数学期望的起源及定义 (4)

1.2数学期望的意义 (5)

第二章数学期望前瞻 (5)

2.1离散型 (5)

2.2连续型 (6)

2.3随机变量的数学期望值 (7)

2.4单独数据的数学期望的算法 (7)

2.5数学期望的基本性质 (8)

第三章数学期望在实际中的应用 (8)

3.1 经济决策中的应用 (9)

3.2 彩票、抽奖问题 (9)

3.2.1彩票问题 (9)

3.2.2抽奖问题 (11)

3.3 求职决策问题 (12)

3.4医疗问题 (13)

3.5体育比赛问题 (14)

结论 (16)

参考文献 (16)

致谢 (17)

第一章 绪论

1.1数学期望的起源及定义

早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。这个故事里出现了“期望”这个词,数学期望由此而来。

数学期望(mathematical expectation)简称期望,又称均值,是概率论中一项重要的数字特征,其定义我们可以通过一个数学例题来了解:掷一枚质地均匀的骰子N 次,观察每次出现点数.它是一个随机变量ξ,如果用1N 、2N 、3N 、4N 、

5N 、6N 表示出现1、2、3、4、5、6点的次数,那么每次投掷骰子出现点数的平均值为

X =123456

356

124123456356124N N N N N N N N N N N N N N N N N N ++++++++++

i

N N

表示事件投掷骰子出现i 点的频率,由于频率具有波动性,因此该平均值也具有波动性,并不能代表每次投掷骰子出现点数的平均值,当N 很大时,i N

N

应稳

定于1

6

,故该平均值也应该稳定于

1?16+2?16+3?16+4?16+5?16+6?16

=16(1+2+3+4+5+6)=72 那么,这使得平均值是真正的每次投掷骰子出现点数的平均值,他是随机变量ξ的可能取值i x 与所对应的概率i p 乘积的总和,这是一个常数,可以用来描述随机变量ξ的数学特征,称之为ξ的数学期望,记作E ξ。

定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为i p (i =1,

2,3, …),则当i i i p a ∑∞

=1

<∞时,则称ξ存在数学期望,并且数学期望为

E ξ=∑∞=1

i i i p a ,如果i i i p a ∑∞

=1

=∞,则数学期望不存在。

定义 2 设连续型随机变量ξ的概率密度函数为()x P , 若积分?+∞

-dx x xP )(是一个

有限值,则称积分?+∞

-dx x xP )(为ξ的数学期望,记作E ξ,即=

ξE ?+∞

-dx x xP )(。

1.2数学期望的意义

数学期望在实际中的应用涉及面又大又广泛,作为数学基础理论中统计学上的数字特征,广泛应用于数据分析、经济、社会、医学等领域。其意义是解决实践中抽象出来的数学模型进行分析的方法,从而达到认识客观世界规律的目的,为进一步的决策分析等提供准确的理论依据。

第二章 数学期望前瞻

2.1离散型

离散型随机变量的分类:随机取值的变量就是随机变量,随机变量分为离散型随机变量与连续型随机变量两种(变量分为定性和定量两类,其中定性变量又分为分类变量和有序变量;定量变量分为离散型和连续型),随机变量的函数仍为随机变量。

有些随机变量,它全部可能取到的不相同的值是有限个或无限多个,这种随机变量称为"离散型随机变量"。

离散型随机变量在某一范围内的取值的概率等于它取这个范围内各个值的概率的和。

定义2.1:如果随机变量X 只可能取有限个或至多可列个值,则称X 为离散型随机变量。

定义2.2:设X为离散型随机变量,它的一切可能取值为X1,X2,……,Xn,……,记P=P{X=xn},n=1,2……(2.1)

称(2.1)式为X的概率函数,又称为X的概率分布,简称分布。

离散型随机变量的概率分布有两条基本性质:

(1)非负性Pn≥0 n=1,2,…

(2)归一性∑pn=1

对于集合{xn,n=1,2,……}中的任何一个子集A,事件“X在A中取值”即“X∈A”的概率为

P{X∈A}=∑Pn

特别的,如果一个试验所包含的事件只有两个,其概率分布为

P{X=x1}=p(0

P{X=x2}=1-p=q

这种分布称为两点分布。如果x1=1,x2=0,有

P{X=1}=p

P{X=0}=q

这时称X服从参数为p的0-1分布,它是离散型随机变量分布中最简单的一种。由于是数学家伯努利最先研究发现的,为了纪念他,我们也把服从这种分布的试验叫伯努利试验。习惯上,把伯努利的一种结果称为“成功”,另一种称为“失败”。

2.2连续型

若随机变量X的分布函数F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续性随机变量,f(x)称为X的概率密度函数(分布密度函数)。能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。

离散型随机变量与连续型随机变量也是由随机变量取值范围(取值)确定,变量取值只能取离散型的自然数,就是离散型随机变量;

比如,一次掷20个硬币,k个硬币正面朝上,k是随机变量,k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数√20,因而k是离散型随机变量。

如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量;

比如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、√20等,因而称这随机变量是连续型随机变量。

连续型随机变量X的概率密度函数为f(x),若积分:

绝对收敛,则称此积分值为随机变量X的数学期望,记为:

2.3随机变量的数学期望值

在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。换句话说,期望值是随机试验在同样的机会下重复多次的结果计算出的等同“期望”的平均值。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等(我们可以用一道简单的数学题目来参照)。

假设:某大厦的一部电梯从底层出发后只能在第18、19、20层可以停靠。若该电梯在底层载有3位乘客,且每位乘客在第三层下电梯的概率均为3分之一,用期望值表示这3位乘客在第20曾下电梯的人数,求:

1.随机变量"E"(随机变量)的分布列

2.随机变量"E"(随机变量)的期望

设A为这三个乘客中在第20层下电梯人数,则A的可能取值为0,1,2,3,下面计算每一种可能取值的概率:P(A=0)=P(三个人都不在20层下)=(2/3)^3=8/27 , P(A=1)=P(其中两人不在20层下另一人在20层下) =C(3,2)?(2/3)^2 ?1/3=4/9 , P(A=2)=P(其中两人在20层下另一人不在20层下) =C(3,2)?(1/3)^2 ?2/3=2/9 , P(A=3)=P(三人都在20层下)=(1/3)^3=1/27 检验P(0)+P(1)+P(2)+P(3)=1 ,满足归一条件。分布列及数学期望便即可得出:

A 0 1 2 3

P 8/27 4/9 2/9 1/27

数学期望E=1. 数学期望的计算还有更简单的方法:每个人在三层中的任一层下电梯是等概率的,等可能事件,概率为1/3,所以在每层下的人数的期望E=总人数*每个人在每层下的概率=3?1/3=1。本题若改为有6人,则期望=6?1/3=2。

2.4单独数据的数学期望的算法

数学期望:E(X) = X1?p(X1)+ X2?p(X2)+ …… + Xn?p(Xn)

X1,X2,X3,……,Xn 为这几个数据,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn) 概率函数就理解为数据X1,X2,X3,……,Xn 出现的频率f(Xi).则: E(X) = X1?p(X1) + X2?p(X2) + …… + Xn ?p(Xn) = X1?f1(X1) + X2?f2(X2) + …… + Xn ?fn(Xn)

很容易证明E(X)对于这几个数据来说就是他们的算术平均值。 我们举个例子,比如说有这么几个数: 1,1,2,5,2,6,5,8,9,4,8,1 1出现的次数为3次,占所有数据出现次数的3/12,这个3/12就是1所对应的频率。同理,可以计算出f(2) = 2/12, f(5) = 2/12,f(6) = 1/12,f(8) = 2/12,f(9) = 1/12,f(4) = 1/12 根据数学期望的定义:

E(X) = 1?f(1) + 2?f(2) + 5?f(5) + 6?f(6) + 8?f(8) + 9?f(9) + 4?f(4) = 13/3 所以 E(X) = 13/3,

现在算这些数的算术平均值:

Xa = (1+1+2+5+2+6+5+8+9+4+8+1)/12 = 13/3 所以E(X) = 13/3。 2.5数学期望的基本性质

设C 、a 、b 为常数,ξ为随机变量,则有如下性质 性质1 常数C 的数学期望等于本身:C EC =.

证明:以离散随机变量为例来证明,对于连续随机变量可类似地证明。下同, 把常数C 视为概率1取本身值的离散随机变量,即得 C EC =. 性质2 ()C E C E +=+ξξ

证明:设随机变量ξ的概率分布为)(i x P =ξ=)(i x P ,(i =1,2,…)则

()C E x P C x P x x P C x C E i

i i

i i i i

i +=+=+=+∑∑∑ξξ)()()()(.

性质3 ξξCE C E =)(.

证明:∑∑===i

i i

i i i CE x P x C x P Cx C E ξξ)()()(.

性质4 ξξbE a b a E +=+)(.

证明:利用前三个性质得ξξξbE a Eb Ea b a E +=+=+)(。

第三章 数学期望在实际中的应用

3.1 经济决策中的应用

假设某一超市出售的某种商品,每周的需求量X 在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值(每周只进一次货)超市每销售一单位商品可获利500元,若供大于求,则削价处理,每处理一单位商品亏损100元;若供不应求,可从其他超市调拨,此时超市商品可获利300元。试计算进货量多少时,超市可获得最佳利润?并求出最大利润的期望值。 分析:由于该商品的需求量(销售量)X 是一个随机变量,它在区间[]10,30上均匀分布,而销售该商品的利润值Y 也是随机变量,它是X 的函数,称为随机变量的函数。题中所涉及的最佳利润只能是利润的数学期望(即平均利润的最大值)。因此,本问题的解算过程是先确定Y 与X 的函数关系,再求出Y 的期望EY 。最后利用极值法求出EY 的极大值点及最大值。 先假设每周的进货量为a ,则

Y =500300(),500100(),a x a x a

x a x x a +-≥??--

=200300,600100,a x x a

x a x a +≥??-

利润Y 的数学期望为:

EY =1(600100)1020a x a dx -?+30

1(300200)20x a dx a

+?

=-7.52a +350a +5250

da dEY

=-15a +350=0 a =350

15

≈23.33

EY 的最大值EY max =-7.5?270(

)3+350?70

3

+5250≈9333.3元 根据结果可知,周最佳进货量为23.33(单位),最大利润的期望值为9333.3元。

3.2 彩票、抽奖问题 3.2.1彩票问题

随着社会生活的丰富,人们购买彩票,谈论彩票中奖的热潮正在兴起。报纸上不时发表谈论彩票的文章,有时也谈到摸彩与数学的关系。但众所纷纭,也说不详,论也不确。众所周知,彩票抽奖属于“独立随机事件”,彩票预测违背

科学。但从总体上来说,中奖号码有服从于某些统计规律。

为了研究彩票中的概率统计问题,我们选取了体育彩票和七乐彩及一些简单的模拟实验来帮助我们研究,例如:我们进行了模红白球的实验,先进性简单的概率计算问题,我们又以体育彩票和七乐彩为辅助实验并根据。由此我们计算出体彩的中奖概率如下(以一注为单位)特等奖P0=1/10000000

一等奖P1=1/1000000

二等奖P2=20/1000000

三等奖P3=300/1000000

四等奖P4=4000/1000000

五等奖P5=50000/1000000

P=P0+P1+P2+P3+P4+P5=0.0543211

这就是说每1000注彩票约有54注中奖经过公式计算我们计算出了七乐彩的中奖概率:一等奖C30~1/2035

二等奖P1=1/290829

三等奖P2=1/13219

四等奖P3=1/4406

五等奖P4=1/420

六等奖P5=1/252

七等奖P6=1/38 一般来说,各类彩票各奖级的中奖几率总和在4%-5%左右。如果要中奖金数目大的最高奖,概率一般为几十万至几百万分之一,难度更大,是可遇不可求的。对于购买题材只能是本着对中国体育事业的支持的想法,而不能对回报有过高的期望。

彩票的中奖概率与数学里的统计学有着密切的关系,通过统计概率,我们可以更好的发现数学统计学与生活的密切关系。在彩票市场异常火爆的今天作为一个理性的彩迷,我们应该对彩票有正确的认识,买彩票是一种自愿的活动,是彩民的个人爱好,理智的彩民不该抱着赌博的心态,孤注一掷,投入极大的资金,应量力而出以平常健康重在参与的心态买彩票。

3.2.2抽奖问题

假设某百货超市现有一批快到期的日用产品急需处理,超市老板设计了免费抽奖活动来处理掉了这些商品。纸箱中装有大小相同的20个球,10个10分,10个5分,从中摸出10个球,摸出的10个球的分数之和即为中奖分数,获奖如下: 一等奖 100分,冰柜一个,价值2500元;

二等奖 50分, 电视机一个,价值1000元;

三等奖 95分, 洗发液8瓶,价值178元;

四等奖 55分, 洗发液4瓶,价值88元;

五等奖 60分, 洗发液2瓶,价值44元;

六等奖 65分, 牙膏一盒, 价值8元;

七等奖 70分, 洗衣粉一袋,价值5元;

八等奖 85分, 香皂一块, 价值3元;

九等奖 90分, 牙刷一把, 价值2元;

十等奖 75分与80分为优惠奖,只収成本价22元,将获得洗发液一瓶;

解析:表面上看整个活动对顾客都是有利的,一等奖到就等奖都是白得的,只有十等奖才收取一点成本价。但经过分析可以知道商家真的就亏损了吗?顾客就真能从中获得抽取大奖的机会吗?用以上方法分析一下并求得其期望值真相就可大白了。摸出10个球的分值只有11种情况,用X 表示摸奖者获得的奖励金额数,一等奖等分100分,其对应

事件10101010

1020

(2500)c c X c ==,

X 的取值为250010001768844853222-、、、、、、、、、,概率可以类似求出,其概率分布

为:

X 2500 1000 176 88 44 P 0.000 005

0.000 005

0.000 541

0.000 541

0.010 96

X 8 5 3 2 22- P

0.077 941

0.238 693

0.077 941

0.010 96

0.582 411

()1

E 10.098i i i X x p ∞

===-∑

表明商家在平均每一次的抽奖中将获得10.098元,而平均每个抽奖者将花10.098元来享受这种免费的抽奖。从而可以看出顾客真的就站到大便宜了吗?相反,商家采用这种方法不仅把快要到期的商品处理出去了,而且还为超市大量集聚了人气,不愧为一举多得。此百货超市老板运用数学期望估计出了他不会亏损而做了这个免费抽奖活动,最后一举多得,从中也看出了数学期望这一科学的方法在经济决策中的重要性。

3.3 求职决策问题

有三家公司为大学毕业生甲提供应聘机会,按面试的时间顺序,这三家公司分别记为x、y、z,每家公司都可提供极好、好和一般三种职位。每家公司根据面试情况决定给求职者何种职位或拒绝提供职位。按规定,双方在面试后要立即做出决定提供,接受或拒绝某种职位,且不能毁约。咨询专家在为甲的学业成绩和综合素质进行评估后,认为甲获得极好、好和一般的可能性依次为0.2、0.3和0.4.三家公司的工资承诺如表:

公司极好好一般

x 3500 3000 2200

y 3900 2950 2500

c 4000 3000 2500

如果甲把工资作为首选条件,那么甲在各公司面试时,对该公司提供的各种职位应作何种选择?

分析:由于面试从x公司开始,甲在选择x公司三种职位是必须考虑后面y、z 公司提供的工资待遇,同样在y公司面试后,也必须考虑z公司的待遇。因此我

们先从z公司开始讨论。由于z公司工资

X期望值为:

3

X)=4000?0.2+3000?0.3+2500?0.4=2700元

E(

3

再考虑y公司,由于y公司一般职位工资只有2500,低于z公司的平均工资,因此甲在面对y公司时,只接受极好和好两种职位,否则去z公司。如此决策时X的期望值为:

加工资

2

X)=3900?0.2+2950?0.3+2700?0.5=3015元

E(

2

最后考虑x公司,x公司只有极好职位工资超过3015,因此甲只接受A公司的极好职位。否则去y公司。

甲的整体决策应该如此:先去x公司应聘,若x公司提供极好职位就接受之。否则去y公司,若y公司提供极好或好的职位就接受之,否则去z公司应聘任意一

X的期望值为:

种职位。在这一决策下,甲工资

1

X)=3500?0.2+3015?0.8=3112元

E(

1

大学生的就业问题已引起社会的广泛关注。随着社会生产力水平的不断提高,各行各业的就业岗位已经远远不能满足即将从业者的需求。尤其是一些比较好的岗位,公司,所以兴起了公务员热,事业单位热等社会现象。对于一名即将毕业的大学生,面对强手如林的竞争场面,除了刻苦学习必备的基础知识,努力训练从业的基本技能以外,在求职过程中,应该如何进行决策,使自己的求职更顺利一些,已是一个摆在大学生面前不容忽视的问题。同时如何提高自己的创新能力,学习接受能力也是对毕业生的一大考验。

3.4医疗问题

在某地区进行某种疾病普查,为此要检验每个人的血液,如果当地有N个人,若逐个检验就需要检验N次,现在要问:有没有办法减少检验的工作量?我们先把受检验者分组,假设每组有k个人,把这k个人的血液混合在一起进行检验,如果检验的结果为阴性,这说明k个人的血液全为阴性,因而这k个人总共只要检验一次就够了,检验的工作量显然是减少了,但是如果检验的结果是阳性,为了明确k个人中究竟是哪几个人为阳性,就要对这k个人再逐个进行检验,这时k个人检验的总次数为k+1次,检验的工作量反而有所增加,显然,这时k 个人需要的检验次数可能只要1次,也可能要检验k+1次,是一个随机变量,为了和老方法比较工作量的大小,应该求出它的平均值(也是平均检验次数)。

在接受检验的人群中,各个人的检验结果是阳性还是阴性,一般都是独立的(如果这种病不是传染病或遗传吧遗传病),并且每个人是阳性结果的概率为p,就

是阴性结果的概率为q=1-p,这时k个人一组的混合血液呈阴性结果的概率为k q,呈阳性结果的概率则为1-k q,现在令η为k个人一组混合检验时每人所需的检验次数,由上述讨论可知η的分布列为:

η1

k 1+

1

k

P

k

q1-k q

由此即可求得每个人所需得平均检验次数为

Eη=1

k

.k q+(1+

1

k

)(1-k q)

=1-k q+1 k

而按原来得老方法每人应该检验1次,所以当

1-k q+1

k

<1,即q>

1

k k

时,用分组的办法(k个人一组)就能减少检验的次数,如果q是已知的,还可以从

E η=1-k q +1

k

中选取最合适的整数0k ,使得平均检验次数E η达到最小值,从而

使平均检验次数减少。

对一些不同的p 值,如下表给出了使E η达到最小的0k 值。 阳性反应率 0k 阳性反应率 0k 0.140 3 0.016 8 0.130 3 0.015 9 0.120 4 0.014 9 0.110 4 0.013 9 0.100 4 0.012 10 0.090 4 0.011 10 0.080 4 0.010 11 0.070 4 0.009 11 0.060 5 0.008 12 0.050 5 0.007 12 0.040 6 0.006 13 0.030 6 0.005 15 0.020 8 0.004 16 0.019 8 0.003 19 0.018 8 0.002 23 0.017

8

0.001

32

我国某医疗机构在一次普查中,由于采用了上述这种分组的方法,结果每100个人的平均检验次数为21,减少工作量达79%。当然,减少的工作量的大小与p 的数值由关,也与每组人数k 有关。

3.5体育比赛问题

乒乓球是我们的国球,上世界兵兵球也为中国带了一些外交。中国队在这项运动中具有绝对的优势。现就乒乓球比赛的安排提出一个问题:假设德国国队(德国队名将波尔在中国也有很多球迷)和中国队比赛。赛制有两种,一种是双方各出3人, 三场两胜制, 一种是双方各出5人,五场三胜制, 哪一种赛制对中国队更有利?下面,我们利用数学期望解答这个问题。由于中国队在这项比赛中的优势,我们不妨设中国队中每一位队员德国队员的胜率都为60%。根据前面的分析,下面我们只需要比较两个队对应的数学期望即可。

在五场三胜制中,中国队要取得胜利, 获胜的场数有3、4、5三种结果。我们计算三种结果对应的概率。应用二项式定理可知,恰好获胜三场(即其中两场失利)对应的概率:

3456.0)6.01()6.0(2

33

5=-c ;

恰好获胜四场对应的概率为:

2592.0)6.01()6.0(1

44

5c =-;

五场全部获胜的概率为:07776.0)6.01()6.0(0

55

5

c =- 。

设随机变量为x 为为该赛制下中国队在比赛中获胜的场数,则可建立x 分布律:

X 3 4 5 P 0.3456 0.2592 0.07776

计算随机变量X 的数学期望:

E (X ) = 3?0. 346 5 + 4?0. 259 2 + 5?0. 077 76= 2.465 1。在三场两胜制中,中国队取得胜利,,获胜的场数有2、3两种结果。对应的概率分别为:恰好获胜两场(其中有一场失利)对应的概率:

432.0)6.01()6.0(2

2

3

=-c ; 三场全部获胜的概率为:216.0)6.01()6.0(0

33

3

c =-

设随机变量Y 为该赛制下中国队在比赛中获胜的场数, 则可建立Y 的分布律:

Y 2 3

P

0.432

0.216

E ( Y) = 2?0. 432+ 3?0. 216= 1. 512

比较两个期望值得:E (X ) > E ( Y)。所以我们可以得出结论,五场三胜制对中国队更有利。

结论

数学期望是反映随机变量总体取值平均水平的一个重要的数字特征,而在现实社会中由于不确定因素太多,加上商业竞争太严重,因此人们在做经济决策时就会相当谨慎,常常会在多个决策中找出最好的一个方案。数学期望则成为了决策者们首选的一个帮助决策的科学方法。本文通过举例来说明了数学期望在实际生活中的重要应用,它作为一个数学工具被我们的管理者们广泛的运用着。通过以上的举例还总结出了数学期望在经济决策中运用的一般方法。要学会用数学的眼光去观察我们身边发生的事情,用数学眼光看世界。通过运用我们所学习的排列。组合及概率的知识,综合运用分类计数分部计数原理,插孔法、间接法等培养了我们分析问题,解决问题的能力及应用数学的意识。

参考文献

[1] 魏宗舒.概率论与数理统计教程[M].2版.北京:高等教育出版社,2008:95,160.

[2] 严士健. 概率论基础[ M] . 北京: 科学出版社, 1982

[3] 盛骤.概率论与数理统计[M].1版.北京:高等教育出版社,2002 :38-39.

[4] 段丽凌.浅析数学期望在经济生活中的运用.商场现代化2008.4第536期

[5] 林侗芸.利用数学期望求解经济决策问题.龙岩学院报.2006.12

[6] 郭明之. 平均比赛局数的估计[ J]. 云南师范大学学报: 自然科学版, 2004, 24( 6): 6- 8.

[7] 陈昭木,陈清华,王华雄,等.高等代数[M ].福州:福建教育出版社,1991.

致谢

xxxx

数学期望在生活中的应用

数学期望在生活中的应用 王小堂保亭中学 摘要:数学期望是随机变量的重要数字特征之一,也是随机变量最基本的特征之一。通过几个例子,阐述了概率论与数理统计中的教学期望在生活中的应用,文章内容包括决策、利润、彩票、医疗等方面的一些实例,阐述了数学期望在经济和实际问题中颇有价值的应用。 关键词:随机变量,数学期望,概率,统计 数学期望(mathematical expectation)简称期望,又称均值,是概率论中一项重要的数字特征,在经济管理工作中有着重要的应用。本文通过探讨数学期望在经济和实际问题中的一些简单应用,以期起到让学生了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。 随机变量的数学期望值: 在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。换句话说,期望值是随机试验在同样的机会下重复多次的结果计算出的等同“期望”的平均值。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。) 单独数据的数学期望值算法: 对于数学期望的定义是这样的。数学期望 E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) X1,X2,X3,……,Xn为这几个数据,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi).则:E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn) 很容易证明E(X)对于这几个数据来说就是他们的算术平均值。 1 决策方案问题 决策方案即将数学期望最大的方案作为最佳方案加以决策。它帮助人们在复杂的情况下从可能采取的方案中做出选择和决定。具体做法为:如果知道任一方案Ai(i=1,2,…m)在每个影响因素Sj(j=1,2,…,n)发生的情况下,实施某种方案所产生

数学期望的计算及应用

数学期望的计算及应用 数学与应用数学111 第四小组 引言: 我们知道,随机变量的概率分布是随机变量的一种最完整的数学描述,而数学期望又是显现概率分布特性的最重要的特征数字之一。因此,掌握数学期望的计算并应用他来分析和解决实际问题显得尤为重要。在学习了概率论以后,我们计算数学期望一般有三种方法:1.从定义入手,即∑∞ == 1 )(k k k p x X E ;2. 应用随机变量函数的期望公式 ∑∞ ==1 )())((k k k p x q x q E 3. 利用期望的有关性质。但是还是会碰到许多麻烦,这里我们将 介绍一些解决这些难题的简单方法。在现实生活中,许多地方都需要用到数学期望。如果我们可以在学会怎么解决数学期望的计算之后,将数学期望应用到现实生活中。就可以解决许多问题,例如农业上,经济上等多个方面难以解决的难题。 下面就让我们来看看,除了最常用的三种计算方法之外还有哪些可以计算较为棘手的数学期望的方法。 1. 变量分解法 ] 1[ 如果可以把不易求得的随机变量X 分解成若干个随机变量之和,应用)(...)()()...(2121n n X E X E X E E E X E ++=++再进行求解得值, 这种方法就叫做变量分解法。这种方法化解了直接用定义求数学期望时的难点问题,因为每一种结果比较好计算,分开来计算便可以比较简单的获得结果。 例题1 : 从甲地到乙地的旅游车上载有20位旅客,自甲地开出,沿途有10个车站,如到达一个车站没有旅客下车,就不停车,以X 表示停车次数,求E(X).(设每位旅客在各个车站下车是等可能的) 分析 : 汽车沿途10站的停车次数X 所以可能取值为0,1,….,10,如果先求出X 的分布列,再由定义计算E(X),则需要分别计算{X=0},{X=1},…,{X=10}等事件的概率,计算相当麻烦。注意到经过每一站时是否停车,只有两种可能,把这两种结果分别与0,1对应起来,映入随机变量i X 每一种结果的概率较易求得。把X 分解成若干个随机变量i X 之和,然后应用公式)(...)()()...(2121n n X E X E X E E E X E ++=++就能最终求出E(X)。

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

数学知识在生活中的应用

浅谈数学在生活中的应用 数学知识源于生活,又在生活的其础上总结出数学规律。下面从三个方谈谈数学知识在生活中的应用。 一、让学生学习数学,可从他们已有的经验和已有的知识出发,有目的的,合理地创设出一些贴近学生生活实际的问题情境,把生活中的实际问题抽象成有兴趣的数学问题,只要引起学生的兴趣,就会大大增加学生的求知欲,学生就会主动地去开启智慧之门。 例如,在学习归一应用题时,可让学生练习。“使用139全球通手机,月租费50元,每分钟通话费0.4元;而用136神州行手机,没有月租费每分钟通话费0.6元,每月计费150元以上,若他要换用全球通手机合算吗?”这个题目,内容很贴近学生的现实生活。通过让学生计算,既是让学生对所学知识的巩固,又很好地创造了生活的新方法,激发了学生学习的兴趣。又例如,在学习“圆的面积”的时候,可以设置疑问。“为什么自来水的管道是圆形的而不是长方形的”、“你们有没有见过正方形的自来水管”,这样一个带有生活常识的问题。一提出,学生马上对它充满兴趣,交头接耳,议论纷纷,这样使教材的内容融入趣味的生活情节中,让学生带着兴趣去学习新知识,使学生尝试成功的喜悦,诱发学生再次学习的兴趣。 二、把数学知识应用于生活,解决实际问题。使学生了解课堂上的数学教学中,除了要讲清概念外,使学生正确理解各个知识点和概念,更要注意知识的实用性,在练习的过程中,要把数学知识用到实际中来,要从多方面来考虑数学问题,来打开学开学生的眼界,增

加学生信息量,了解生活实际。 例如,每辆卡车可载36名士兵,现在有1128个士兵需要用卡车送到练营地,问需要多少辆卡车?乍一看,这是个很简单的除法应用题,测试的结果也表明,有70%的学生正确地完成了计算,即得出了1128÷36=31……12。然而,只有23%的学生给出了32这一正确的答案,这说明了什么问题呢?这说明了学生没有把这一问题看成是真正的问题,没有从实际生活的角度去想这个问题,而只是把题目看成是虚构的数学问题,为了练习而杜撰的故事。他们所做的事就是进行计算把得数写出来,这也是一些学生的通病,只注重机械练习,而很少考虑其他问题。我们的数学要加强真实感,要把所学的知识用于解决实际问题,学数学要为生活服务,从而来增加学生的数学意识。 三、从数学实践活动入手,拓展数学视野,开展数学实践活动,可以让学生体验到数学在生活中的应用,对于培养学生学习数学的兴趣、爱好、有着十分积极的意义。 例如,在教学中,让学生到操场上去走走、跑跑、测测、量量,让学生感受50米、100米、400米的距离,并让学生辨别步测与目测的差别;让学生到食堂去看看、称称,根据各种水果、蔬菜的重量,使学生去感受100克、1千克、10千克的实际重量等等,这些活动深受学生的喜爱,不仅可获得数学知识,还能培养学生的数学意识,对数学学习充满乐趣。 总知,学生学习的数学知识是从生产和生活中总结出来的,数学教学要尽量从学生熟悉的生活实例出发去引导学生进行学习,更要让

数学知识在生活中的运用

数学知识在生活中的运用 随着课程改革的深入,给教育工作者带来了更多的思考空间。在小学数学教学中,要求教师要认真做好生活实际化的教学,正如《义务教育数学课程标准(实验稿)》所提及的,“数学教学是数学活动的教学,教师应紧密联系学生周围的实际生活环境,从学生已有的生活经验出发,创设生动的数学情景……”这就要求学生在实际生活的情境中体验数学问题,主要让学生自觉地把所学到的数学知识应用到生活实际当中去,也就是说,让学生把数学知识生活化,才能更好地提高学生的数学素养。 笔者从事小学教育多年,一直从事数学课堂的教学活动,针对学生学习数学的实际情况。我认为数学生活化的教学,有利于学生理论联系实际,其作用如下: 一、情景的再现有利于激发学生学习数学的兴趣 俗话说:“兴趣是最好的老师。”的确,兴趣是学生学习的动力与源泉。而数学学习是抽象化的思维,单纯的理论知识可能少部分人会接受,这样就不利于学生学习兴趣的培养。课堂效率也就会提高得很慢。而通过生活化的教学,教师随时会把身边常见的事物引入到课堂中,学生应用自己的生活经验,可以体验到数学公式与定理的新奇与奥秘。会

使课堂效率事半功倍,但要注意,对于小学生而言,能简单的尽量简单化,以免超出学生的思维范围,使得知识掌握得不理想。 二、生活化的教学对于学生创新能力的培养有很好的推动作用 以往的“填鸭式”教学,只是教师的主动教与学生的被动学。而“生活化”的数学教学则更注重学生的自主、合作、探究的学习模式,注重培养学生的创新意识,动手能力。例如,在教学“圆柱表面积”这一部分内容时,对于无盖现象,学生容易混淆,但是如果让学生动手实践,想象一下,生活中的水桶等物体就很容易解决此类问题,而且通过学习,学生既获得了知识又能独立思考,进而体验到了学习的乐趣,提高了创新能力。 既然“生活化”的教学,能把所学知识与生活实际有机地结合起来,拓宽了学生分析问题和解决问题的能力,并逐步达到了“学数学,用数学”的目的,那么,我们又该怎样进行“生活化”的教学呢? 1.让生活情境走入数学课堂 教学中,积极创设与学生生活贴近的生活情境,这样的导入,让学生感受到数学的神奇,仿佛数学时刻就在我们身边。就如同我们的影子一样,比如,教学“分数的意义”这一部分内容时,对“一家三口人一起吃西瓜,谁吃得多,

感受数学在日常生活中的作用

20世纪中叶以来,数学自身发生了巨大的变化。一方面,数学因其日益公理化、形式化而忽视与现实生活的密切联系。另一方面,因数学应用的发展,数学几乎渗透到每一个学科领域及人们生活的方方面面。割断数学与现实生活的联系的教学内容、教学方式,不仅会极大地降低学生数学学习的热情与动力,而且会造成学生对数学学科的错误理解,更无法让学生感受到数学在日常生活中的作用。因此,必须沟通生活中的数学与教科书上的数学之间的联系,使数学与生活融为一体。 数学可以帮助人们对日常生活中大量纷繁复杂的信息作出恰当的选择与判断,为人们在日常生活中交流信息提供一种简捷、有效地手段,数学的思想、方法、技术是人们解决实际问题的有力工具。《数学课程标准》在“总体目标”中明确提出:“通过义务教育阶段的数学学习,使学生能够体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。”并在“学段目标”中指出:使学生“了解可以用数和形来描述某些现象。认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。”在实际教学中,如何使学生感受到数学在日常生活中的这些作用呢?我们应主要做好以下三个方面的工作: 1、把学生的现实生活作为数学教学的课程资源加以开发和利用。联系学生的现实生活,激活学生的生活经验,让学生在广泛的现实背景下进行数学学习活动,感受、体验数学与日常生活的密切联系。 2、从现实生活中产生数学问题,借助学生的生活经验和已有知识,让学生自主建构对数学知识的理解,有效引导学生经历“数学化”的过程,感受、体验数学来源于生活,提炼于生活。 3、引导学生把所学的数学知识应用到现实生活中去,解决身边的数学问题,感受、体验数学应用于生活,服务于生活。 【教学片断】 片断一:《最小公倍数》教学片断 情境创设:陈飞的爸爸是一名火车司机,每工作3天后休息1天。妈妈是一名飞机乘务员,每工作2天后休息1天。有一位远方的朋友,想趁他们一起休息的日子去看望他们,如果陈飞的爸爸、妈妈在9月1日同时开始工作,那么在这个月里,这位朋友可以选哪些日子去呢?师:可以用什么办法找出陈飞的爸爸、妈妈一起休息的日子? 生:可以在九月份的日历上去找。 师:怎样找? 生:先在日历上找出陈飞爸爸的休息日,再找出他妈妈的休息日,最后再看看哪些天是他们一起的休息日。 师:请你们拿出九月份的日历,用△标出陈飞爸爸的休息日,用○标出陈飞妈妈的休息日,再看看哪些天是他们一起休息的日子。 (学生兴趣盎然地投入到“找共同休息日”的活动中,找到答案的同学,脸上流露着成功的喜悦) 教师根据学生的回答,逐步完成如下板书: 爸爸的休息日:4、8、12、16、20、24、28 妈妈的休息日:3、6、9、12、15、18、21、24、27、30 共同的休息日:12、24 其中最早的共同休息日:12 ……

数学归纳法及其应用举例1

数学归纳法及其应用举例 【本章学习目标】 人们在研究数量的变化时,常常会遇到有确定变化趋势的无限变化过程,这种无限变化过程就是极限的概念与思想,极限是人们研究许多问题的工具。以刘微的“割圆术”为例,圆内接正n 边形的边数无限增加时,正n 边形的周长P n 无限趋近于圆周长2πR 。这里的是个有限多项的数列,人们可以从这个有限多项的数列来探索无穷数列的变化趋势。不论n 取多么大的整数,n P 都是相应的圆周长的近似值,但是我们可以从这些近似值的精确度的无限提高中(限n 无限增大)找出圆周长的精确值2πR 。随着n 的增加,n P 在变化,这可以认为是量变(即只要n 是有限数,n P 都是圆内接正多边形的周长);但是我们可以从这些量变中来发现圆周长。一旦得出2πR ,就是质的变化(即不再是正多边形的周长)。这种从有限中认识无限,从近似中认识精确,从量变中认识质变的思想就是极限的思想。 本章重点内容是: (1)数学归纳法及其应用。 (2)研究性课题:杨辉三角。 (3)数列的极限。 (4)函数的极限。 (5)极限的四则运算。 (6)函数的连续性。 本章难点内容是: (1)数学归纳法的原理及其应用。 (2)极限的概念。 【基础知识导引】 1.了解数学推理中的常用方法——数学归纳法。 2.理解数学归纳法的科学性及用数学归纳法来证明与正整数有关命题的步骤。 3.掌握数学归纳法的一些简单应用。 【教材内容全解】 1.归纳法

前面我们在学习等差数列时,通过等差数列的前几项满足的关系式归纳出等差数列的通项公式。再如根据三角形、四边形、五边形、六边形等的内角和归纳出凸n 边形内角和公式。像这样由一系列有限的特殊事例得出一般结论的推理方法,叫做归纳法。 对于归纳法我们可以从以下两个方面来理解。 (1)归纳法可以帮助我们从具体事列中发现事物的一般规律。 (2)根据考察的对象是全部还是部分,归纳法又分完全归纳法与不完全归纳法。显然等差数列通项公式,凸n 边形内角和公式都是通过不完全归纳法得出的,这些结论是正确的。但并不是所有由不完全归纳法得出的结论都是正确的。这是因为不完全归纳只考察了部分情况,结论不具有普遍性。例如课本62P 数列通项公式22)55(+-=n n a n 就是一个典型。 2.数学归纳法 在生活与生产实践中,像等差数列通项公式这样与正整数有关的命题很多。由于正整数有无限多个,因而不可能对所有正整数一一加以验证。如果只对部分正整数加以验证就得出结论,所得结论又不一定正确,要是找到把所得结论递推下去的根据,就可以把结论推广到所有正整数。这就是数学归纳法的基本思想:即先验证使结论 有意义的最小正整数0n ,如果当0n n =时,命题成立,再假设当 ),(*0N k n k k n ∈≥=时,命题成立(这时命是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于0n 的正整数命题都成立。 由此可知,用数学归纳法证明一个与正整数有关的命题时,要分两个步骤,且两个步骤缺一不可。 第一步递推的基础,缺少第一步,递推就缺乏正确的基础,一方面,第一步再简单,也不能省略。另一方面,第一步只要考察使结论成立的最小正整数就足够了,一般没有必要再多考察几个正整数。 第二步是递推的根据。仅有这一步而没有第一步,就失去了递推的基础。例如,假设n=k 时,等式 成立,就是。那么, 。这就是说,如果n=k 时等式成立, 那么n=k+1时等式也成立。但仅根据这一步不能得出等式对于任何n ∈N*都成立。因为当n=1时,上式左边=2,右边31112=++=,左边≠右边。这说明了缺少第一步这个基础,第二步的递推也就没有意义了。只有把第一步的结论与第二步的结论结合在一起,才能得出普遍性结论。因此,完成一、二两点后,还要做一个小结。 在证明传递性时,应注意: (1)证n=k+1成立时,必须用n=k 成立的假设,否则就不是数学归纳法。应当指出,n=k 成立是假设的,这一步是证明传递性,正确性由第一步可以保证,有了递推这一步,联系第一步的结论(命题对0n n =成立),就可以知道命题对10+n 也成立,进而再由第二步可知1)1(0++=n n ,即20+=n n 也成立。这样递推下去,就可以知道命题对所有不小于0n 的正整数都成立。 (2)证n=k+1时,可先列出n=k+1成立的数学式子,作为证明的目标。可以作为条件加以运用的有n=k 成立的假设,已知的定义、公式、定理等,不能直接将n=k+1代入命题。 3.这一节课本中共安排了五个例题,例1~例3是用数学归纳法证明等式。其步骤是先证明当0n n =(这里10=n )时等式成立。再假设当n=k 时等式成立,利用这一条件及已知的定义、公式、定理证明当n=k+1时等式也成立。注意n=k+1时的等式是待证明的,不能不利用假设。例如:求证:。

数学在生活中的应用

数学在生活中的应用 摘要:在日常生活中,我们出处离不开数学。学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。只要我们勤于思考,善于发现总结,那么会有很多意想不到的收获。0.618多么简单的数字,我们学习了这一比例的来源和含义之后。懂得了原来这么简单的数字是很多建筑学家设计现代建筑物的重要依据,建筑师们深谙其中的意义。懂得了利用这一比例设计出具有观赏性又有实用性的建筑作品。生活中很多地方都用到这一比例。可以说这个比例是数学在美学中应用的很好典范。数学中的很多原理、结论在生活中都有非常广泛的应用。物理学中的波理论和光理论都是以三角函数作为研究的数学模型。建立这些数学模型是研究物理学很多领域的基础。三角形的稳定性在建筑结构的设计,建筑、桥梁的承重计算中是必不可少的基础理论知识,古代中国就懂得利用三角形的稳定性来设计梁的结构,三角形稳定性在中国传统建筑文化中占有很重要的地位。即使在现代建筑中也离不开它。现代生活中如何购房成为讨论越来越多的话题,数学中的指数模型可以很好地解释其中的道理。 关键词:黄金分割建筑美学0.618 三角函数三角形稳定性建筑结构购房中的数学 1. 黄金分割数0.618 1.1 黄金分割的起源 由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。 1.2 黄金分割数0.618的数学解释 如下图所示,分已知线段为两部分,使其中一部分是全线段与另一部分的比例中项,这就是在中学几何课本中提到的黄金分割问题。若C为线段AB的满足条件的分点,则可求得AC 约为0.618AB。这个分割在课本上被称作黄金分割,我们有时也可说是将线段分成中末比、中外比或外内比。若用G来表示它,G 被称为黄金比或黄金分割数。

数学期望在生活中的应用原文

一、数学期望的定义及性质 (一)数学期望分为离散型和连续型 1、离散型 离散型随机变量的一切可能的取值Xi与对应的概率Pi(=Xi)之积的和称为该离散型随机变量的数学期望(设级数绝对收敛),记为E(X)。数学期望是最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。如果随机变量只取得有限个值,称之为离散型随机变量的数学期望。它是简单算术平均的一种推广,类似加权平均。E(X) = X1*P(X1)+ X2*P(X2)+ …… + Xn*P(Xn)。X1,X2,X3,……,Xn 为这几个数据,P(X1),P(X2),P(X3),……,P(Xn)为这几个数据的概率函数。在随机出现的几个数据中,P(X1),P(X2),P(X3),……,P(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi),则:E(X) = X1*P(X1)+ X2*P(X2)+ …… + Xn*P(Xn) = X1*f1(X1) + X2*f2(X2)+ …… + Xn*fn(Xn)。 2、连续型 连续型则是:设连续性随机变量X的概率密度函数为f(X),若积分绝对收敛,则称积分的值为随机变量的数学期望,记为E(X)。若随机变量X的分布函数F(X)可表示成一个非负可积函数f(X)的积分,则称X为连续随机变量,f(X)称为X的概率密度函数(分布密度函数)。能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为连续型随机变量。 (二)数学期望的常用性质 1.设X是随机变量,C是常数,则E(CX)=CE(X); 2.设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y); 3.设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。 对于第一条性质,假设E(X)你的考试成绩,C为你们全班人数,则你们全班总分的期望等于全班人数乘以个人的期望,这很好理解。 对于第二条性质,E(X)为你的考试成绩,E(Y)是小明的考试成绩,你和他成绩总和的期望当然等于你和他的期望值和。 对于第三条性质,我们一再强调是独立的,也就是相互没有关联,有关联是肯定是不是不等的。

条件数学期望及其应用

条件数学期望及其应用 The ways of finding the inverse matrix and it ’s application Abstract :The passage lists the ways of calculating the first type of curvilinear integral,and discusses it ’s application in geometry and in physical. Keywords :Curvilinear integral;Continuous;Integrable; Lateral area. 0前言 在曲线积分中,被积函数可以是标量函数或向量函数.积分的值是路径各点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和.带有权重是曲线积分与一般区间上的积分的主要不同点.物理学中的许多公式在推广之后都是以曲线积分的形式出现.曲线积分是物理学中重要的工具. 1条件数学期望 1.1条件数学期望的定义 定义1 设X 是一个离散型随机变量,取值为},,{21 x x ,分布列为},,{21 p p .又事件A 有0)(>A P ,这时 ,2,1,) ()}({)|(|=?====i A P A x X P A x X P P i i A i 为在事件A 发生条件下X 的条件分布列.如果有 ∞<∑A i i i p x | 则称 A i i i p x A X E |]|[∑=. 为随机变量X 在条件A 下的条件数学期望(简称条件期望). 定义2 设X 是一个连续型随机变量,事件A 有0)(>A P ,且X 在条件A 之

高中数学《数学归纳法及其应用举例》教学设计附反思

课题:数学归纳法及其应用举例 【教学目标】 知识与技能: 1. 了解由有限多个特殊事例得出的一般结论不一定正确,使学生深入认识归纳法, 理解数学归纳法的原理与实质; 2. 掌握数学归纳法证题的两个步骤;初步会用“数学归纳法”证明简单的与自然数有关的命题(如恒等式等). 3. 培养学生观察、分析、论证的能力, 进一步发展学生的抽象思维能力和创新能力,让学生经历数学归纳法原理的构建过程, 体会类比的数学思想.过程与方法: 1.努力创设和谐融洽的课堂情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和课堂效率.让学生体验知识的构建过程, 体会源于生活的数学思想; 2. 通过对数学归纳法的学习、应用,逐步体验观察、归纳、猜想、论证的过程,培养学生由特殊到一般的思维方式和严格规范的论证意识,并初步掌握论证方法; 3. 让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生创新能力. 情感、态度、价值观: 1. 通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神; 2. 让学生通过对数学归纳法原理和本质的理解,感受数学内在美的震撼力,从而使学生喜欢数学,激发学生的学习热情,使学生初步形成做数学的意识和科学精神; 3. 学生通过置疑与探究,培养学生独立的人格与敢于创新的精神; 4. 持续增进师生互信,生生互助,共创教学相长的教与学的氛围和习惯. 【教学重点】 归纳法意义的认识和数学归纳法产生过程的分析,初步理解数学归纳法的原理并能简单应用. 【教学难点】 数学归纳法中递推思想的理解,初步明确用数学归纳法证明命题的两个步骤. 【教学方法】师生互动讨论、共同探究的方法 【教学手段】多媒体辅助课堂教学 【教学过程】 一、创设情境,启动思维 情境一、财主儿子学写字的笑话、“小明弟兄三个,大哥叫大毛……”的脑筋急转弯等; 教师总结:财主的儿子很傻很天真,但他懂一样思想方法,是什么?以上都是由特殊情况归纳出一般情况的方法---归纳法,这就是今天的课题. 人们通常

运用数学知识解决生活中的问题

运用数学知识解决生活中的问题学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。 有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分

钟就全部搞定。我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处,可以解决生活中的许多问题.

数学期望的计算方法及其应用

数学期望的计算方法及其应用

数学期望的计算方法及其应用 摘要:在概率论中,数学期望是随机变量一个重要的数字特征,它比较集中的反映了随机变量的某个侧面的平均性,而且随机变量的其他数字特征都是由数学期望来定义的,因此对随机变量的数学期望的计算方法的研究与探讨具有很深的实际意义。本论文着重总结了随机变量的数学期望在离散型随机变量分布与连续型随机变量分布下的一些常用的计算方法,如利用数学期望的定义和性质,利用不同分布的数学期望公式等等,并通过一些具体的例子说明不停的计算方法在不同情况下的应用,以达到计算最简化的目的。本文还通过介绍了一些随机变量数学期望的计算技巧,并探讨了各种简化计算随机变量数学期望的方法,利用一些特殊求和与积分公式,利用数学期望定义的不同形式,利用随机变量分布的对称性、重期望公式以及特征函数等,并通过例题使我们更加了解和掌握这些计算技巧,已达到学习该内容的目的。 关键词:离散型随机变量连续型随机变量数学期望计算方法 ABSTRACT:

第一节离散型随机变量数学期望的计算方法及应用1.1利用数学期望的定义,即定义法[1] 定义:设离散型随机变量X分布列为 则随机变量X的数学期望E(X)=)( 1i n i i x p x ∑=

注意:这里要求级数)( 1i n i i x p x ∑ = 绝对收敛,若级数 []2 例1 某推销人与工厂约定,永川把一箱货物按期无损地运到目的地可得佣金10元,若不按期则扣2元,若货物有损则扣5元,若既不按期又有损坏则扣16元。推销人按他的经验认为,一箱货物按期无损的的运到目的地有60﹪把握,不按期到达占20﹪,货物有损占10﹪,不按期又有损的占10﹪。试问推销人在用船运送货物时,每箱期望得到多少? 解设X表示该推销人用船运送货物时每箱可得钱数,则按题意,X的分布为 按数学期望定义,该推销人每箱期望可得= ) (X E10×0.6+8×0.2+5×0.1-6×0.1=7.5元1.2公式法 对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松

数学期望的计算方法及其应用概要

数学期望的计算方法及其应用 摘要:在概率论中,数学期望是随机变量一个重要的数字特征,它比较集中的反映了随机变量的某个侧面的平均性,而且随机变量的其他数字特征都是由数学期望来定义的,因此对随机变量的数学期望的计算方法的研究与探讨具有很深的实际意义。本论文着重总结了随机变量的数学期望在离散型随机变量分布与连续型随机变量分布下的一些常用的计算方法,如利用数学期望的定义和性质,利用不同分布的数学期望公式等等,并通过一些具体的例子说明不停的计算方法在不同情况下的应用,以达到计算最简化的目的。本文还通过介绍了一些随机变量数学期望的计算技巧,并探讨了各种简化计算随机变量数学期望的方法,利用一些特殊求和与积分公式,利用数学期望定义的不同形式,利用随机变量分布的对称性、重期望公式以及特征函数等,并通过例题使我们更加了解和掌握这些计算技巧,已达到学习该内容的目的。 关键词:离散型随机变量 连续型随机变量 数学期望 计算方法 ABSTRACT : 第一节 离散型随机变量数学期望的计算方法及应用 1.1 利用数学期望的定义,即定义法[1] 则随机变量X的数学期望E(X)= )(1 i n i i x p x ∑=

学期望不存在 [] 2 例1 某推销人与工厂约定,永川把一箱货物按期无损地运到目的地可得佣金10元,若不按期则扣2元,若货物有损则扣5元,若既不按期又有损坏则扣16元。推销人按他的经验认为,一箱货物按期无损的的运到目的地有60﹪把握,不按期到达占20﹪,货物有损占10﹪,不按期又有损的占10﹪。试问推销人在用船运送货物时,每箱期望得到多少? 按数学期望定义,该推销人每箱期望可得 =)(X E 10×0.6+8×0.2+5×0.1-6×0.1=7.5元 1.2 公式法 对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松分布,超几何分布等),则我们就可以直接利用典型分布的数学期望公式来求此随机变量的期望。 (1) 二点分布:X ~??? ? ??-p p 101 ,则()p X E = (2) 二项分布:),(~p n B X ,10 p ,则np X E =)( (3) 几何分布:)(~p G X ,则有p X E 1 )(= (4) 泊松分布:) (~λP X ,有λ=)(X E (5) 超几何分布: ),,(~M N n h X ,有N M n X E =)( 例2 一个实验竞赛考试方式为:参赛者从6道题中一次性随机抽取3道题,按要求独立完成题目.竞赛规定:至少正确完成其中2题者方可通过,已知6道备选题中参赛者甲有4题能正确分别求出甲、乙两参赛者正确完成题数的数学期望. 解 设参赛者甲正确完成的题数为X ,则X 服从超几何分布,其中 6,4,3N M n ===, 设参赛者乙正确完成的题数为Y ,则 )32,3(~B Y ,23 2 3)(=?==np Y E 1.3 性质法

数学期望在经济生活中的应用

数学期望在经济生活中的应用 【摘要】数学期望是随机变量的重要数字特征之一。本文通过探讨数学期望在决策、利润、委托代理关系、彩票等方面的一些实例,阐述了数学期望在经济和实际问题中的应用。 【关键词】随机变量数学期望经济应用 数学期望(mathematical expectation)简称期望.又称均值,是概率论中一项重要的数字特征.在经济管理工作中有着重要的应用。本文通过探讨数学期望在经济和实际问题中的一些简单应用,以期起到让学生了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。 一.决策方案问题 决策方案即将数学期望最大的方案作为最佳方案加以决策。它帮助人们在复杂的情况下从可能采取的方案中做出选择和决定。具体做法为:如果知道任一方案A(i=1,2,?,m)在每个影响因素S(j=1.2,?,n)发生的情况下,实施某种方案所产生的盈利值及各影响因素发生的概率,则可以比较各个方案的期望盈利,从而选择其中期望盈利最高的为最佳方案。 1.风险方案 假设某公司预计市场的需求将会增长。目前公司的员工都满负荷地工作着.为满足市场需求,公司考虑是否让员工超时工作或以添置设备的办法提高产量。假设公司预测市场需求量增加的概率为P,同时还有1-p的可能市 是合算的。然而现实是不知道哪种情况会出现,因此要比较几种方案获利的 期望大小。用期望值判断,有:E(A 1)=30(1-p)+34p,E(A 2 )=29(1-p)+42p, E(A 3)=25(1-p)+44p。事实上.若p=0.8,则E(A 1 )-33.2(万), E(A 2)=39.4(万),E(A 3 )=40.2(万),于是公司可以决定更新设备,扩大生产。 若p=O.5,则E(A 1)=32(万),E(A 2 )=35.5(万),E(A 3 )=34.5(万),此时公司 可决定采取员工超时工作的应急措施。由此可见,只要市场需求增长可能性在50%以上.公司就应采取一定的措施,以期利润的增长。 2.投资方案 假设某人用10万元进行为期一年的投资.有两种投资方案:一是购买股票:二是存入银行获取利息。买股票的收益取决于经济绝势,若经济形势

高等数学在生活中的应用

高等数学在生活中的应 用 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

对高等数学的认识及它在生活中的应用当今世界,国际竞争日趋激烈,而竞争的焦点又是人才的。竞争21世纪哪个国家具有人才优势,哪个国家将占据竞争的制高点。而现在的社会需要的人才已经不是从前那种简单的一个文凭就可以了,而是需要全面的人才,全方位的人才,一种高素质高能力的人才! 与此同时,高等数学恰恰在这方面发挥着巨大的作用!数学培养的就是你的思维能力,是分析问题、解决问题的思维方式。许多实际问题都需要建立数学模型来解决,而你建立模型地基础就是你怎样把实际问题转化为数学问题。再把复杂的问题简单化!这样就更容易的去解决问题、处理问题! 在现代大学课程设置中,大部分学生要学习高等数学这门课程,只是很多学生不知道学这门课程有什么用途,缺乏学习的动力和兴趣,最后逐渐认为数学是一门非常枯燥的学科。这样不能够激发学生学习数学的兴趣。使学生们慢慢的不重视数学的重要性! 高等数学在当今社会有着广泛的应用。如:计算机方面、电子应用方面、航天技术方面、医学方面等等众多领域都起着巨大的作用! 在计算机领域,计算机中许多地方要用到数学模型,特别是算法复杂度,人工智能、业务领域的数学建模等等,都需要有一定的数学功底。 随着现代科学技术的发展和电子计算机的应用与普及,数学方法在医药学中的应用日益广泛和深入。医药学科逐步由传统的定性描述阶段向定

性、定量分析相结合的新阶段发展。数学方法为医药科学研究的深入发展提供了强有力的工具。高等数学是医学院校开设的重要基础课程,用高等数学基础知识解决医学中的一些实际问题的例子,旨在启发学生怎样正确理解和巩固加深所学的知识,并且强化应用数学解决实际问题的意识。使我国的医术在前有的基础上再创辉煌! “神舟”六号载人飞船成功升空,是我国航天事业科学求实精神的结晶,是坚定不移走自主创新之路的结果。载人航天是当今世界最复杂、最庞大、最具风险的工程,是技术密集度高、尖端科技聚集的高科技系统工程。而这些庞大的工程都离不开数学,复杂的数字计算、精确的时间等等这些都在数学范围内! 其次,数学建模是一种培养学生综合素质的有效手段,在教学实践中给学生树立建模的思想对学生的综合素质发展有很大的帮助,也有助于提高我们的学习积极性。把数学建模的思想方法融入数学分析课程教学是培养学生创新能力和实践能力的一条有效途径,是当前大学数学课程改革的一个重要方向. 我们大学生的思维处于由形式逻辑思维向辨证逻辑思维过渡的阶段,数学建模不仅要求学生在实验、观察和分析的基础上,对实际问题的主要方面做出合理的简化与假设,并且要求他们应用数学的语言和方法将实际问题形成一个明确的数学问题。因此,在高等数学中渗透建模思想,运用运动的、变化的、全面的、发展的观点去观察、分析和解决问题,不仅发展了我们大学生的一般思维能力,还发展了我们的辨证逻辑思维能

数学期望性质与应用举例

5.数学期望的基本性质 利用数学期望的定义可以证明,数学期望具有如下基本性质: 设ξ, η为随机变量,且E(ξ),E(η)都存在,a,b,c为常数,则 性质1.E(c)=c; 性质2.E(aξ)=aE(ξ); 性质3.E(a+ξ)=E(ξ)+a; 性质4.E(aξ+b)=aE(ξ)+b; 性质5. E(ξ+η)=E(ξ)+E(η). 例3.5.7设随机变量X的概率分布为: P(X =k)=0.2 k =1,2,3,4,5. 求E(X),E(3X+2). 解. ∵P(X=k)=0.2 k=1,2,3,4,5 ∴由离散型随机变量的数学期望的定义可知 E(X)=1×0.2+2×0.2+3×0.2+4×0.2+5×0.2=3, E(3X+2)=3E(X)+2=11. 例3.5.8. 设随机变量X的密度函数为: 求E(X),E(2X-1). 解.由连续型随机变量的数学期望的定义可知 =-1/6+1/6=0. ∴E(2X-1)=2E(X)-1=-1. 我们已经学习了离散型随机变量和连续型随机变量的数学期望,在随机变量的数字特征中,除数学期望外,另一重要的数字特征就是方差.

4.1.2 数学期望的性质 (1)设是常数,则有。 证把常数看作一个随机变量,它只能取得唯一的值,取得这个值的概率显然等于1。所以,。 (2)设是随机变量,是常数,则有 。 证若是连续型随机变量,且其密度函数为。 。 当是离散型随机变量的情形时,将上述证明中的积分号改为求和号即得。 (3)设都是随机变量,则有 。 此性质的证明可以直接利用定理4.1.2,我们留作课后练习。这一性质可以推广到有限个随机变量之和的情况,即 。 (4)设是相互独立的随机变量,则 。 证仅就与都是连续型随机变量的情形来证明。设的概率密度分别为 和,的联合概率密度为,则因为与相互独立,所以有 。 由此得

高中数学《数学归纳法及应用举例》说课稿

《数学归纳法及应用举例》第一课说课方案 一、说教材 (一)教材分析 本课是数学归纳法的第一节课。前面学生已经通过数列一章内容和其它相关内容的学习,初步掌握了 由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法。不完全归纳法它是研究数学问题,猜想或发现数学规律的重要手段。但是,由有限多个特殊事例得出的结论不一定正确,这种推理方法不能作为 一种论证方法。因此,在不完全归纳法的基础上,必须进一步学习严谨的科学的论证方法─数学归纳法。 数学归纳法安排在数列之后极限之前,是促进学生从有限思维发展到无限思维的一个重要环节。并且,本 节内容是培养学生严密的推理能力、训练学生的抽象思维能力、体验数学内在美的好素材。 (二)教学目标 学生通过数列等相关知识的学习。已基本掌握了不完全归纳法,已经有一定的观察、归纳、猜想能力。通过近几年教学方法的改革和素质教育的实施,学生已基本习惯于对已给问题的主动探究,但主动提出问 题和置疑的习惯还未形成。能主动提出问题和敢于置疑是学生具有独立人格和创新能力的重要标志。如何 让学生主动置疑和提出问题?本课也想在这方面作一些尝试。 根据教学内容特点和教学大纲、根据学生以上实际、根据学生终身发展需要而制订以下教学目标。 1.知识目标 (1)了解由有限多个特殊事例得出的一般结论不一定正确。 (2)初步理解数学归纳法原理。 (3)理解和记住用数学归纳法证明数学命题的两个步骤。 (4)初步会用数学归纳法证明一些简单的与正整数有关的恒等式。 2.能力目标 (1)通过对数学归纳法的学习、应用,培养学生观察、归纳、猜想、分析能力和严密的逻辑推理能力。 (2)让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生的创新能力。 3.情感目标 (1)通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神。 (2)让学生通过对数学归纳法原理的理解,感受数学内在美的振憾力,从而使学生喜欢数学。 (3)学生通过置疑与探究,培养学生独立的人格与敢于创新精神。 (三)教学重难点 根据教学大纲要求、本节课内容特点和学生现有知识水平,确定如下教学重难点: 1.重点 (1)初步理解数学归纳法的原理。 (2)明确用数学归纳法证明命题的两个步骤。 (3)初步会用数学归纳法证明简单的与正整数数学恒等式。 2.难点 (1)对数学归纳法原理的理解,即理解数学归纳法证题的严密性与有效性。 (2)假设的利用,即如何利用假设证明当n=k+1时结论正确。 二、说教法 本课采用交往式的教学方法。交往教学法的特点是:在教师的组织启发下,师生之间、学生之间共同 探讨,平等交流;既强调独立思考,又提倡团结合作;既重视教师的组织引导,又强调学生的主体性、主动 性、平等性、开放性、合作性。这种教学方法的优点是学生心态开放,主体性和主动性凸现,独立的个性 得到张扬,因而创造性得到解放。 三、说学法 本课以问题为中心,以解决问题为主线展开,学生主要采用“探究式学习法”进行学习。本课学生的 学习主要采用下面的模式进行: 观察情景提出问题分析问题猜想与置疑(结论或解决问题的途径) 论证应用。 探究学习法的好处是学生主动参与知识的发生、发展过程。学生在探究问题过程中学习,在探究问题 的过程中激发学生的好奇心和创新精神;在探究过程中学习科学研究的方法;在探究过程中形成坚韧不拔

相关文档
相关文档 最新文档