文档库 最新最全的文档下载
当前位置:文档库 › 公理,原理,定理,定律的区别

公理,原理,定理,定律的区别

公理,原理,定理,定律的区别
公理,原理,定理,定律的区别

公理,原理,定理,定律的区别

公理指社会上多数人公认的正确的道理,或指在一个演绎系统中,不需要加以证明而作为出发点的的真命题。

原理指文字原来的理由,最基础,最根本的理论,或指某一领域或学科中带有普遍性的、最基本的、可以作为其他规律的基础的规律。

定理是已经证明具有正确性、可以作为原则或规律的命题或公式。

定律是为实践和事实所证明,反映事物在一定条件下发展变化的客观规律的论断。

1定律是为实践和事实所证明,反映事物在一定条件下发展变化的客观规律的论断。例如牛顿运动定律、能量守恒定律、欧姆定律等。

定律是一种理论模型,它用以描述特定情况、特定尺度下的现实世界,在其它尺度下可能会失效或者不准确。没有任何一种理论可以描述宇宙当中的所有情况,也没有任何一种理论可能完全正确。

2已经证明具有正确性、可以作为原则或规律的命题或公式,如几何定理。定理是从真命题(公理或其他已被证明的定理)出发,经过受逻辑限制的演绎推导,证明为正确的结论,即另一个真命题。例如“平行四边形的对边相等”就是平面几何中的一个定理。

一般来说,在数学中,只有重要或有趣的陈述才叫定理。证明定理是数学的中心活动。相信为真但未被证明的数学叙述为猜想,当它被证明为真后便是定理。它是定理的来源,但并非唯一来源。一个从其他定理引伸出来的数学叙述,可以不经过证明成为猜想的过程,成为定理。

3公认的一种用以表达事物间内在联系的力一法,其目的是帮助理解及记忆。如右手定则等。定理已经证明具有正确性、可作为原则或规律的命题或公式。例如:“平行四边形对边相等”就是儿何学中的一个定理。

4经过人类长期反复的实践检验是真实的,不

需要由其他判断加以证明的命题和原理。如传统形

式逻辑三段论关于一类事物的全部是什么或不是什么,

那么这类事物中的部分也是什么或不是什么,也即如果

对一类事物的全部有所断定,那么对它的部分也就有所

断定,便是公理。又如日常生活中人们所使用的“有生必

有死”,也属于这种不证自明的判断。

5自然科学和社会科学中具有普遍意义的基本规律。是在大量观察、实践的基础上,经过归纳、概括而得出的。既能指导实践,又必须经受实践的检验。

如果你要是应试教育下的产物的话我劝你还是不用明白这些区别,只要熟悉这些叫法就好了

一些著名的原理、定理、法则

1蓝斯登原则:在你往上爬的时候,一定要保持梯子的整洁,否则你下来时可能会滑倒。 提出者:美国管理学家蓝斯登。 点评:进退有度,才不至进退维谷;宠辱皆忘,方能够宠辱不惊。2点评:如果把自己想得太好,就很容易将别人想得很糟。 3同时容纳两种相反的思想,而无碍于其处世行事。 提出者:法国社会心理学家托利得 点评:思可相反,得须相成。 4互相刺伤。 点评:保持亲密的重要方法,乃是保持适当的距离。 5将一只稍强的鲦鱼脑后控制行为的部分割除后,此鱼便失去自制力,行动也发生紊乱,但其他鲦鱼却仍像从前一样盲目追随。 提出者:德国动物学家霍斯特 点评:1、下属的悲剧总是领导一手造成的。2、下属觉得最没劲的事,是他们跟着一位最差劲的领导。 62、最重要的七个字是:你干了一件好事 3、最重要的六个字是:你的看法如何 4、最重要的五个字是:咱们一起干 5、最重要的四个字是:不妨试试 6、最重要的三个字是:谢谢您 7、最重要的两个字是:咱们 8、最重要的一个字是:您

提出者:美国管理学家雷鲍夫 点评:1、最重要的四个字是:不妨试试;2、最重要的一个字是:您 7而是你不在场时发生了什么。 提出者:美国管理学家洛伯 点评:如果只想让下属听你的,那么当你不在身边时他们就不知道应该听谁的了。 8提出者:美国心理学家斯坦纳 点评:只有很好听取别人的,才能更好说出自己的。 9少讲。 提出者:英国联合航空公司总裁兼总经理费斯诺 点评:说得过多了,说的就会成为做的障碍。 10牢骚效应:凡是公司中有对工作发牢骚的人,那家公司或老板一定比没有这种人或有这种人而把牢骚埋在肚子里公司要成功得多。提出者:美国密歇根大学社会研究院 点评:1、牢骚是改变不合理现状的催化剂。2、牢骚虽不总是准确的,但认真对待牢骚却总是准确的。 11避雷针效应:在高大建筑物顶端安装一个金属棒,用金属线与埋在地下的一块金属板连接起来,利用金属棒的尖端放电,使云层所带的电和地上的电逐渐中和,从而保护建筑物等避免雷击。 点评:善疏则通,能导必安 12氨基酸组合效应:组成人体蛋白的八种氨基酸,只要有一种含量

立体几何公理及定理

立体几何公理及定理 一、空间点、线、面之间的关系 1、两条直线的位置关系有: 2、两个平面的位置关系有: 公理1、如果一条直线上的两点在一个平面内,那么这条直线在此平面内。 公理2、过不在一条直线上的三点,有且只有一个平面。 推论1、一组平行直线确定唯一一个平面。 推论2、一条直线及直线外一点确定唯一一个平面。 公理3、如果有两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 公理4(平行公理)、平行于同一直线的两直线平行。 二、平行关系 直线与平面平行的判定定理: 平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 直线与平面平行的性质定理: 一条直线与一个平面平行,则过这条直线的任意平面与此平面的交线与该直线平行。 平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 平面与平面平行的性质定理: 1、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 2、两平面平行,其中一个平面内的任一直线平行于另一个平面。 3、夹在两个平行平面间的平行线段相等。 4、平行于同一平面的两个平面平行。 三、垂直关系 直线与平面垂直的判定定理: 一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直。 直线与平面垂直的性质定理: 1、垂直于同一个平面的两条直线互相平行。 2、如果一条直线垂直一个平面,那么这条直线垂直于平面内的所有直线。 平面与平面垂直的判定定理: 如果一个平面过另一个平面的垂线,那么这两个平面垂直。 平面与平面垂直的性质定理: 如果两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。 三角公式汇总 一、任意角的三角函数 1. ①与α终边相同的角的集合(角α与角β的终边重合):{} Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: {} Z k k ∈?=,180| ββ

定义定理公理定律的区别

定义、定理、定律和定则 表面上看定义、定理和定律都是由一些文字性的叙述加上数学表达式所组成,形式上确实差别不大,而老师上课往往会注重了它们在应用方面的讲授,忽略了其内在的区别和联系, 造成很多学生从初中到高中甚至大学,尽管会用其去解决问题,但对三者之间的区别依然一 知半解;甚至有部分教师在课堂教学中对此也存在着模糊的认识,滥用定义;误把定律当定 理或者定理当定律的事情都常有发生。下面笔者结合自己的体会,谈谈在高中物理教学中应 如何讲清它们的一些特点和联系。 对于每一个概念,我们不妨先从词典里对它的解释入手来看问题,然后再辨析一下与它相近的概念,便于对比和理解。 1定义:定义是对于一种事物的本质特征或一个概念的内涵和外延的确切而简要的说明。如果用通俗的说法,对某个概念的“定义”告诉我们的是:“什么是”这个量,而我们常见的“物理意义”告诉我们的是:这个量“是什么”。举个最常见的例子,如速度,定义:速度表示单位时间内通过的位移,物理意义:速度表示物体运动的快慢。 在物理学中,定义是有实际用处的,定义一个量,表面上似乎有一些任意性,但如果是为了解决生产实际的问题,那就要求定义出来的量有意义,有实际用处。所以没有人随便找 几个物理量来乘乘除除,起个名字,创造个新的物理量出来。假设我们定义一个质点的动能和动量分别为E k = mv和P= ,如果撇开动能定理和动量定理来说它是否正确,就没有什么意义了,因为离开了用到它的场合,就等于失去了检验它的标准,而成为没有实际意义的游戏。而动能和动量为什么是我们熟知的E k =mV和P = mv呢?原因在于我们可以通过这样的定义,寻找到某种等量关系,即动能定理和动量定理,并可以运用它来帮助我们解决实际问题。 其次定义的另一个特点在于简化公式或定理,使定理的文字叙述和公式表达更易于理解 和便于记忆,也使定理的物理意义更加明确。例如:定义冲量等于力乘以力所作用时间的乘 积,即I = f ? t,又定义动量是物体的质量与物体速度的乘积,即P = mv,而动量定理正 是I = P2 - R,这样动量定理的表述就更加简洁明了。 定义某个物理量时,都有对应的表达式,或称其为定义式,在定义式中,被定义的量是不能独立地确定的,而要靠其他物理量来确定。如:真空中点电荷Q的电场强度,我们可以 定义为的形式。因为F和q可以独立地确定,但E却不能,它就是由来确定的。 并不是什么物理量都有定义的,例如最常见的力,“力是物体之间的相互作用”,显然不是对力的定义,充其量只是一种说明。还有我们熟悉的“能”的概念,具有做功本领的物体就具有能,这也不是对“能”的定义。 2 ?定理:定理是建立在公理和假设基础上,经过严格的推理和证明得到的,它能描述事物之间内在关系,定理具有内在的严密性,不能存在逻辑矛盾。比如:勾股定理,隐含公理是平直的欧几里得空间,假设是直角三角形。 要明白定理的来源,首先我们必须了解公理,公理是不证自明的真理,是建立科学的基 础,欧几里得《几何原本》就是建立在五条公理基础上严密的逻辑体系。公理和定理的区别 主要在于:公理的正确性不需要用逻辑推理来证明,而定理的正确性需要逻辑推理来证明。 在物理学中而定理是通过数学工具(如微积分)推理得来的,如动能定理;定律是由实验得出或

第章 电路的基本概念与基本定律()

第1章电路的基本概念与基本定律 一、填空题: 1. 下图所示电路中,元件消耗功率200W P=,U=20V,则电流I为 10 A。 2. 如果把一个24伏的电源正极作为零参考电位点,负极的电位是_-24___V。 3.下图电路中,U = 2 V,I = 1 A 3 A,P 2V = 2 W 3 W , P 1A = 2 W,P 3Ω = 4 W 3 W,其中电流源(填电流源或电压源)在发出功 率,电压源(填电流源或电压源)在吸收功率。 U 4. 下图所示中,电流源两端的电压U= -6 V,电压源是在发出功率 5.下图所示电路中,电流I= 5 A ,电阻R= 10 Ω。 B C 6.下图所示电路U=___-35 ________V。 7.下图所示电路,I=__2 __A,电流源发出功率为_ 78 ___ W,电压源吸收功率20 W。 8. 20. 下图所示电路中,根据KVL、KCL可得U=2 V,I 1= 1 A,I 2 = 4 A ;电流源的 功率为 6 W;是吸收还是发出功率发出。2V电压源的功率为 8 W,是吸收还是发出功率吸收。 9.下图所示的电路中,I 2= 3 A,U AB = 13 V。 10.电路某元件上U = -11 V,I = -2 A,且U 、I取非关联参考方向,则其吸收的功率是22 W。 11. 下图所示的电路中,I1= 3 A,I2= 3 A,U AB= 4 V。 12.下图所示的电路中,I= 1 A;电压源和电流源中,属于负载的是 电压源。 13. 下图所示的电路中,I=-3A;电压源和电流源中,属于电源的是电流源。

14.下图所示的电路,a 图中U AB 与I 之间的关系表达式为 155AB U I =+ ;b 图中U AB 与I 之间 的关系表达式为 510 AB U I =- 。 a 图 b 图 15. 下图所示的电路中,1、2、3分别表示三个元件,则U = 4V ;1、2、3这三个元件中,属于电源的是 2 ,其输出功率为 24W 。 16.下图所示的电路中,电流I= 6 A ,电流源功率大小为 24 W ,是在 发出 (“吸收”,“发出”)功率。 17. 下图所示的电路中,I= 2 A ,5Ω电阻消耗的功率为 20W W ,4A 电流源的发出功率为 40 W 。 18.下图所示的电路中,I= 1A A 。 19. 下图所示的电路中,流过4Ω电阻的电流为 0.6 A ,A 、B 两点间的电压为 5.4 V , 3Ω电阻的功率是 3 W 。 20. 下图所示电路,A 点的电位V A 等于 27 V 。 21.下图所示的电路中,(a )图中Uab 与I 的关系表达式为3AB U I =- ,(b) 图中Uab 与I 的关系 表达式为 103AB U I =+ ,(c) 图中Uab 与I 的关系表达式为 62 AB U I =+,(d )图中Uab 与I 的关系表达式为 62 AB U I =+ 。 (a ) (b) (c) (d ) 22. 下图中电路的各电源发出的功率为Us P = 0W , Is P = 8W 。 23. 额定值为220V 、40W 的灯泡,接在110V 的电源上,其功率为 10 W 。 二、选择题: 1. M Ω是电阻的单位,1M Ω=( B )Ω。 A.103 B.106 C. 109 D. 1012 2.下列单位不是电能单位的是( B )。 A.W S ? B.kW C.kW h ? D.J 3. 任一电路,在任意时刻,某一回路中的电压代数和为0,称之为( B )。 A.KCL B.KVL C.VCR D.KLV 4. 某电路中,B 点电位-6V ,A 点电位-2V ,则AB 间的电压U AB 为( C )。 A.-8V B.-4V C.4V D.8V 5. 下图电路中A 点的电位为( D )V 。

立体几何公理、定理推论汇总74915

立体几何公理、定理推论汇总 一、公理及其推论 公理 1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。 符号语言:,,,A l B l A B l ααα∈∈∈∈?? 作用: ① 用来验证直线在平面内; ② 用来说明平面是无限延展的。 公理 2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。(那么它们有且只有一条通过这个公共点的公共直线) 符号语言:P l P l αβαβ∈?=∈I I 且 作用:① 用来证明两个平面是相交关系; ② 用来证明多点共线,多线共点。 公理3 经过不在同一条直线上的三点,有且只有一个平面。 符号语言:,,,,A B C A B C ?不共线确定一个平面 推论1 经过一条直线和这条直线外的一点,有且只有一个平面。 符号语言:A a A a a αα??∈?有且只有一个平面,使, 推论2 经过两条相交直线,有且只有一个平面。 符号语言:a b P a b ααα?=???有且只有一个平面,使, 推论3 经过两条平行直线,有且只有一个平面。 符号语言://a b a b ααα???有且只有一个平面,使, 公理3及其推论的作用:用来证明多点共面,多线共面。 公理4 平行于同一条直线的两条直线平行(平行公理)。 符号语言://////a b a c c b ???? 图形语言: 作用:用来证明线线平行。 二、平行关系 公理4 平行于同一条直线的两条直线平行(平行公理)。(1) 符号语言://////a b a c c b ???? 图形语言: 线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么 这条直线和这个平面平行。(2) 符号语言:////a b a a b ααα?? ? ????? 图形语言: 线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和 这个平面相交,那么这条直线和交线平行。(3) 符号语言:////a b a a b βαβα ? ? ????=? I 图形语言: 面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面, 那么这两个平面平行.(4)

包括定义公理定理公式方法等它们之间存在

1.什么是学生的原有知识结构?您认为学生的原有知识结构在初中数学教学中的地位、作用是什么?般人们认为:在数学中,包括定义、公理、定理、公式、方法等,它们之间存在的联系以及人们从一定角度出发,用某种观点去描述这种联系和作用,总结规律,归纳为一个系统,这就是知识结构。学生原有知识结构存在学生的大脑中目前这个系统。 2. 在“数与代数” 、“空间与图形” 、“统计与概率” 领域中,您发现中小学知识的衔接点分别是什么?您在每部分内容的教学时,遇到的主要困难是什么?您用什么具体教学方法解决的? 3. 在“数与代数”、“空间与图形”、“统计与概率”领域中,选取一个具体内容,谈一谈您在初中数学教学中是如何注重学生的原有知识结构的? 4.请您谈谈学习了“学生的原有知识结构与初中数学教学”这个专题的感想与收获。 初中数学教师要坚持终身学习,扩展专业知识 认真研究中小学教材,正确把握新旧内容的衔接点,充分了解学生已有知识结构,确定教与学的重难点,尽可能多地利用小学已学过的旧知识,形成旧知识对新知识的正迁移,从而提高课堂教学效率。认真学习中小学生心理学,在教学中把握他们的认知基础,在教学中遵循由具体到抽象、由感性到理性的认知规律,逐步发展学生的抽象思维能力和逻辑思维能力。认真学习中小学教育学理论,把知识讲得深入浅出,准确把握教学的重难点。认真学习各种教学手段,尤其是多媒体,创设真实情境,充分揭示新旧知识的内在联系。坚持听课评课,学习新的教学理念。 初中数学教学中要重视学科基础知识点的衔接 所谓衔接点,不是一般的新旧知识的联系点,而是从小学到初中产生质的飞跃的关节点。从知识结构上看,初中数学是建立在小学已学知识基础之上,是小学知识的开拓和扩展,但是初中数学已失去了小学数学中那种数的直观性、可塑性,已初步进入抽象化、概念化、逻辑条理化的层次,初中教师在教学中要注意了解学生以前学过的知识,并借助已有的零碎知识引导学生构建新的知识体系,指导学生主动思维、发现、认识、了解新知识,从而激发学生兴趣,教给学生探求问题、解决问题的方法。传授知识并不是把学生所学知识全盘告诉学生,而是要设法让学生在知识产生的背景中去思考探求,去尝试理解。作为初中数学教师应当把小学与初中数学内容,作一个系统进行分析和研究,搞好新旧知识的架桥铺路工作,掌握新旧知识的衔接点,才能做到有的放矢,提高教学质量。 3 .初中数学教学中要注意教学方法的衔接 教学方法的衔接,不是倒退与迁就,而是前进与过渡。主要是顺应学生由小学的学习习惯步向中学的教法过渡。根据小学生自我意识强烈,兴奋点多,模仿力强等特点,注意把握一堂课的前五分钟的最佳时间,组织学生自学,讨论,答疑,并在每节课安排至少十分钟的时间板演或独立练习,以充分调动学生的学习积极性。这里要注意爱护学生在小学时就有的勇于发表意见的积极性,引导学生发扬敢打敢拼的精神。又要避免学生不加思考的集体齐答现象,也不要集中提问,尽量让每个学生都有发言的机会。问题要贴切学生的知识水平、认知结构,并适当的发展他。

高中物理定理和定律及公式表

高中物理定理和定律及公式表 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度:t s v = (定义式) 2.有用推论:as v v t 2202=- 3.中间时刻速度:2 02t t v v v v += = 4.末速度:at v v t +=0 5.中间位置速度:2 2202t s v v v += 6.位移:2021at t v t v s + == 7.加速度:t v v a t 0-={以Vo 为正方向,a 与Vo 同向(加速)a>0;反向则a<0} 8.实验用推论:2aT s =?{Δs 为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s ;加速度(a):m/s2;末速度(Vt):m/s ;时间(t)秒(s);位移(s):米(m );路程:米;速度单位换算:1m/s=3.6km/h 。 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3) t v v a t 0-=只是量度式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t 图、v--t 图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1.初速度V 0=0 2.末速度V t =gt 3.下落高度:22 1gt h =(从Vo 位置向下计算) 4.推论:gh v t 22= 注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a =g =9.8m/s 2≈10m/s 2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 (3)竖直上抛运动

最新初一数学中的公理定理

(一)学过的公理: 1、直线公理:两点确定一条直线。 2、线段公理:两点之间,线段最短。 3、垂线公理:过一点有且只有一条直线与已知直线垂直。 4、平行公理:过直线外一点,有且只有一条直线与已知直线平行。 5、平行线判定公理:同位角相等,两直线平行。 6、平行线性质公理:两直线平行,同位角相等。 7、全等三角形性质公理:全等三角形对应边相等,对应角相等 (二)学过的定理及推论 1、三角形内角和定理:三角形内角和等于180° ?推论1:直角三角形两锐角互余 ?推论2:三角形的一个外角等于与它不相邻的两个内角的和。 ?推论3:三角形的外角大于任何一个与它不相邻的内角。 2、公理:两点之间,线段最短。 ?定理:三角形两边之和大于第三边 ?推论:三角形两边之差小于第三边。 3、补角的性质:同角或等角的补角相等 4、余角的性质:同角或等角的补角相等 5、对顶角的性质:对顶角相等 6、垂线的性质:直线外一点与直线上各点的连线中,垂线段最短。 7、平行线公理推论:如果两条直线都和第三条直线平行,那么这两条直线互相 平行。 8、平行线判定公理:两条直线被第三条直线所截,如果同位角相等,那么这两 条直线平行,简记为:同位角相等,两直线平行。 ?定理1:内错角相等,两直线平行。 ?定理2:同旁内角互补,两直线平行 9、平行线性质公理:两直线平行,同位角相等。 ?定理1:两直线平行,内错角相等。 ?定理2:两直线平行,同旁内角互补。 推论:垂直于同一直线的两直线的互相平行。

澳洋医院办公楼及综合楼 网络方案 目录 第一章.概述 ................................................................................................... 错误!未定义书签。 1.1建筑群网络建设背景.................................................................... 错误!未定义书签。 1.2建网需求分析................................................................................ 错误!未定义书签。 1.2.1 一般建网需求.......................................................................... 错误!未定义书签。 1.2.2 网络安全需求分析和对策...................................................... 错误!未定义书签。第二章.总体网络设计和网络特点................................................................ 错误!未定义书签。 2.1 网络设计的原则................................................................................ 错误!未定义书签。 2.2 网络拓扑 ........................................................................................... 错误!未定义书签。 2.3 方案说明 ........................................................................................... 错误!未定义书签。 2.4方案特色技术简介............................................................................. 错误!未定义书签。 2.4.1 路由规划.................................................................................. 错误!未定义书签。 2.4.2 IP地址规划.............................................................................. 错误!未定义书签。 2.5无线方案 ....................................................................................... 错误!未定义书签。 2.5.1无线网络优势........................................................................... 错误!未定义书签。 2.5.2无线局域网总体架构选择....................................................... 错误!未定义书签。 2.5.3供电问题................................................................................... 错误!未定义书签。 2.5.4频率规划................................................................................... 错误!未定义书签。 2.5.5频率复用................................................................................... 错误!未定义书签。 2.5.6信号覆盖范围控制................................................................... 错误!未定义书签。 2.5.7 AP防盗设计............................................................................. 错误!未定义书签。 ?

最新电工技术第一章 电路的基本概念和基本定律习题解答

第一章 电路的基本概念和基本定律 本章是学习电工技术的理论基础,介绍了电路的基本概念和基本定律:主要包括电压、电流 的参考方向、电路元件、电路模型、基尔霍夫定律和欧姆定律、功率和电位的计算等。 主要内容: 1.电路的基本概念 (1)电路:电流流通的路径,是为了某种需要由电工设备或电路元件按一定方式组合而成 的系统。 (2)电路的组成:电源、中间环节、负载。 (3)电路的作用:①电能的传输与转换;②信号的传递与处理。 2.电路元件与电路模型 (1)电路元件:分为独立电源和受控电源两类。 ①无源元件:电阻、电感、电容元件。 ②有源元件:分为独立电源和受控电源两类。 (2)电路模型:由理想电路元件所组成反映实际电路主要特性的电路。它是对实际电路电 磁性质的科学抽象和概括。采用电路模型来分析电路,不仅使计算过程大为简化,而且能更清晰 地反映该电路的物理本质。 (3)电源模型的等效变换 ①电压源与电阻串联的电路在一定条件下可以转化为电流源与电阻并联的电路,两种电 源之间的等效变换条件为:0R I U S S =或0 R U I S S = ②当两种电源互相变换之后,除电源本身之外的其它外电路,其电压和电流均保持与变 换前完全相同,功率也保持不变。 3.电路的基本物理量、电流和电压的参考方向以及参考电位 (1)电路的基本物理量包括:电流、电压、电位以及电功率等。 (2)电流和电压的参考方向:为了进行电路分析和计算,引入参考方向的概念。电流和电 压的参考方向是人为任意规定的电流、电压的正方向。当按参考方向来分析电路时,得出的电流、 电压值可能为正,也可能为负。正值表示所设电流、电压的参考方向与实际方向一致,负值则表 示两者相反。当一个元件或一段电路上的电流、电压参考方向一致时,称它们为关联参考方向。

高中物理公式定理定律

高中物理公式定理定律 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t 图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 (3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

相似原理与相似三定理

第一章相似理论

问题: 如何进行实验?测量那些参数? 现代的空气动力学实验,通常都是在各式各样的风洞中进行模型实验,以取得原型流场(如飞机在大气中飞行)的空气动力数据。要做到这一点须解决两个重要的问题: 1.在模型实验前和实验中,如何使绕流模型的流场模拟 原型流场? 2.在模型实验后,如何将模型实验的数据正确地转换为 原型流场的数据? 解决这两个问题的理论基础是相似理论。在本章中,阐述相似理论的基本内容,并介绍导出相似准则的量纲分析法,不能完全模拟应该模拟的相似准则又该怎么办?

空气动力学实验的理论基础——相似理论 1-1相似和相似定理 (一)相似的基本概念 1.几何相似以三角形为例,彼此相似的三角形。 L1 L2L3 L1ˊ L2ˊ L3ˊ L C L L L L L L = ' = ' = ' 3 3 2 2 1 1

——通过不同的相似常数来变换相似图像的大小,称为相似变换。 2.物理现象的相似 物理现象(过程)的相似是以几何相似为前提的,并且是几何相似概念的扩展。 A)两个属于同一类的物理现象,如果在空间、时间对应点上所有表征现象的对应的物理量都保持各自的固定的比例关系(如果是矢量还包括方向相同),则两个物理现象相似。B)两个流场的空间、时间对应点上所有表征流场的对应的物理量都保持各自的固定的比例关系(如果是矢量还包括方向相同),则两个流场相似。

(1) 几何相似 (2) 运动相似 (3) 动力相似 (4)热相似 (5)质量相似 L C L L = ' V C V V = ' F C F F = ' T C T T = ' ρρ ρ C = '

平面几何定理公理总结

平面几何定理公理总结 一、线与角 1.两点之间,线段最短。线段的长叫两点间的距离。 2.直线外一点到直线,垂线段最短,垂线段的长叫该点到直线的距离。 3.一组平行线中,一条直线上一点到另一条直线的距离,叫两条平行线间的距离。 4.经过两点有且只有一条直线,即两点确定一条直线。 5.不在同一直线上的三点确定一个角。 6.两直线相交,对顶角相等。 7.同角(或等角)的余角相等;同角(或等角)的补角相等。 8.经过直线外一点,有且只有一条直线与已知直线平行。 9.经过直线外或直线上一点,有且只有一条直线与已知直线垂直。 10.如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补。 11.如果一个角的两边分别垂直于另一个角的两边,那么这两个角相等或互补。 12.平行线 (1)平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。 (2)平行线的判定方法: (3)①两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。 (4)②两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。 (5)③如果两条直线都和第三条直线平行,那么这两条直线平行。 (6)④如果两条直线都和第三条直线垂直,那么这两条直线平行。 (7)平行线的性质: (8)①两条平行线被第三条直线所截,同位角相等。 (9)②两条平行线被第三条直线所截,内错角相等。 (10)③两条平行线被第三条直线所截,同旁内角互补。 (11)④如果一条直线和两条平行线中的一条平行,那么这条直线也和另一条平行。 (12)⑤如果一条直线和两条平行线中的一条垂直,那么这条直线也和另一条垂直。 (13)⑥平行线间的距离处处相等;夹在两条平行线间的平行线段相等。 13.平行线等分线段定理: (1)定理:如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截得的线段也相 等。 (2)推论1:经过三角形一边的中点,且与另一边平行的直线必等分第三边。 (3)推论2:经过梯形一腰的中点,且与底边平行的直线必等分另一腰。 14.平行线分线段成比例定理: (1)定理:三条平行线截两条直线,所得的对应线段成比例。 (2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)成比例。 15.线段的垂直平分线: (1)性质:线段垂直平分线上的点和这条线段两个端点的距离相等。 (2)判定:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 16.角平分线: (1)性质:在角的平分线上的点到这个角的两边的距离相等。

电路的基本定律

第一章电路的基本定律 1、集总电路:在任何时刻从具有两个端钮的理想元件的某一个端钮流入的电流 将恒等于从另一个端钮流出的电流,并且元件两个端钮间的电压也是完全确定的,凡满足上述情况的电路元件称为集总参数元件,简称集总元件,由集总元件构成的电路称为集总电路。 特点:理想化,不考虑分布参数,如分布电容、电感等。 2、电流电压的参考方向:先选定某一方向作为电流或电压的方向,这个方向叫 参考方向。 3、有源、无源二端元件: 有源:压源、电流源、受控源。无源:电阻、电容、电感 4、基尔霍夫定律:集总电路的基本定律 电流定律KCL:在集总电路中,任何时刻对任一节点,所有支路的电流的代数和恒等于零。 电压定律KVL:在集总电路中,任何时刻,沿任一回路内所有支路或元件电压代数和恒等于零。 欧姆定律:VCR 第二章电阻电路 1、电阻的Y接与△接的等效互换 星形(Y形)电阻=三角形相邻电阻的乘积/三角形电阻之和 三角形(△形)电导=星形相邻电导的乘积/星形电导之和 2、电源的等效变换: 电压源、电阻的串联组合与电流源、电导的并联组合互换 =Us/R G=1/R i s 3、支路电流法:以支路电流为电路的变量,应用KCL和KVL,列出与支路电流 数相等的独立方程,从而解的支路电流。 四步骤: 3.1选定各支路电流的参考方向 3.2按照KCL,对(n-1)独立节点,列出节点方程 3.3选取独立回路,独立回路数应为L=b-(n-1)个并指定回路的绕行方向, 应用KVL列出方程。 3.4求解上述b个独立方程,求出b个支路电流 4、回路法:是以一组独立的回路电流作为变量列写电路方程,求解电路的方法。 四步骤: 4.1选定L个独立回路电流,回路电流的参考方向一般取顺时针方向,平面 电路中的网孔都是独立回路。 4.2列出L个回路电流方程。注意自阻总是正的,互阻的正负则由相关的两 个回路的电流通过公共电阻时两者的参考放否一直而定。 4.3联立求解回路电流方程。 4.4指定各支路电流的参考方向,支路电流则为有关回路电流的代数和。 5、节点电流法:以节点电压为电路的独立变量,应用KCL,列出与节点电压数 相等的独立方程,从而解得节点电压和支路电流。 5.1指定参考节点,其余节点与参考节点间的电压就是节点电压,节点电压均以 参考节点为“—”极性。 5.2列出节点电压方程。应注意自导总是正的,互导总是负的

高中物理定理定律公式

高中物理定理、定律、公式表 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论V t2-V o2=2as 3.中间时刻速度V t/2=V平=(V t+V o)/2 4.末速度V t=V o+at 5.中间位置速度V s/2=[(V o2+V t2)/2]1/2 6.位移s=V平t=V o t+at2/2=V t/2t 7.加速度a=(V t-V o)/t {以V o为正方向,a与V o同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(V o):m/s;加速度(a):m/s2;末速度(V t):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 注:①平均速度是矢量, ②物体速度大,加速度不一定大, ③a=(V t-V o)/t只是量度式,不是决定式, ④其它相关内容:质点、位移和路程、参考系、时间与时刻、s-t图、v--t图、速度与速率、瞬时速度。 2)自由落体运动 1.初速度V o=0 a=g; 2.末速度V t=gt 3.下落高度h=gt2/2(从V o位置向下计算) 4.推论V t2=2gh 注:①自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; ②a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,高山处比平地小,方向竖直向下)。 3)竖直上抛运动 1.位移s=V o t-gt2/2 2.末速度V t=V o-gt (g=9.8m/s2≈10m/s2) 3.有用推论V t2-V o2=-2gs 4.上升最大高度H m=V o2/2g(抛出点算起) 5.往返时间t=2V o/g (从抛出落回原位置的时间) 注:①全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; ②分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; ③上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动 1.水平方向速度:V x=V o 2.竖直方向速度:V y=gt 3.水平方向位移:x=V o t 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度V t=(V x2+V y2)1/2=[V o2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=V y/V x=gt/V0=2tgα; 7.合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2V o=tgβ/2 8.水平方向加速度:a x=0;竖直方向加速度:a y=g 注①平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成; ②运动时间由下落高度h(y)决定与水平抛出速度无关; ③θ与β的关系为tgβ=2tgα; ④在平抛运动中时间t是解题关键; ⑤做曲线运动物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。2)匀速圆周运动 1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=m (2π/T)2r

电路的基本概念和基本定律

电路的基本概念和基本定律 一、电路基本概述 1.电流流经的路径叫电路,它是为了某种需要由某些电工设备或元件按一定方式组合起来的,它的作用是A:实现电能的传输和转换;B:传递和处理信号(如扩音机、收音机、电视机)。一般电路由电源、负载和连接导线(中间环节)组成。 (1)电源是一种将其它形式的能量转换成电能或电信号的装置,如:发电机、电池和各种信号源。 (2)负载是将电能或电信号转换成其它形式的能量或信号的用电装置。如电灯、电动机、电炉等都是负载,是取用电能的设备,它们分别将电能转换为光能、机械能、热能。 (3)变压器和输电线是中间环节,是连接电源和负载的部分,它起传输和分配电能的作用。 2. 电路分为外电路和内电路。从电源一端经过负载再回到电源另一端的电路,称为外电路;电源内部的通路称为内电路。 3.电路有三种状态:通路、开路和短路。 (1)通路是连接负载的正常状态; (2)开路是R→∝或电路中某处的连接导线断线,电路中的电流I=0,电源的开路电压等于电源电动势,电源不输出电能。例如生产现场的电流互感器二次侧开路,开路电压很高,将对工作人员和设备造成很大威胁; (3)短路是相线与相线之间或相线与大地之间的非正常连接,短路时,外电路的电阻可视为零,电流有捷径可通,不再流过负载。因为在电流的回路中仅有很小的电源内阻,所以这时的电流很大,此电流称为短路电流。 短路也可发生在负载端或线路的任何处。 产生短路的原因往往是由于绝缘损坏或接线不慎,因此经常检查电气设备和线路的绝缘情况是一项很重要的安全措施。为了防止短路事故所引起的后果,通常在电路中接入熔断器或自动断路器,以便发生短路时,能迅速将故障电路自动切除。 4、电路中产生电流的条件:(1)电路中有电源供电;(2)电路必须是闭合回路; 5、电路的功能:(1)传递和分配电能。如电力系统,它是由发电机,升压变压器,输电线、降压变压器、供配电线路和各种高、低压电器组成。(2)传递和处理信号。如电视机,它接收到

定律,定理,定则,公理,原理的区别

定律,定理,定则,公理,原理的区别 1定律是为实践和事实所证明,反映事物在一定条件下发展变化的客观规律的论断。例如牛顿运动定律、能量守恒定律、欧姆定律等。 定律是一种理论模型,它用以描述特定情况、特定尺度下的现实世界,在其它尺度下可能会失效或者不准确。没有任何一种理论可以描述宇宙当中的所有情况,也没有任何一种理论可能完全正确。 2已经证明具有正确性、可以作为原则或规律的命题或公式,如几何定理。定理是从真命题(公理或其他已被证明的定理)出发,经过受逻辑限制的演绎推导,证明为正确的结论,即另一个真命题。例如“平行四边形的对边相等”就是平面几何中的一个定理。 一般来说,在数学中,只有重要或有趣的陈述才叫定理。证明定理是数学的中心活动。相信为真但未被证明的数学叙述为猜想,当它被证明为真后便是定理。它是定理的来源,但并非唯一来源。一个从其他定理引伸出来的数学叙述,可以不经过证明成为猜想的过程,成为定理。 3公认的一种用以表达事物间内在联系的力一法,其目的是帮助理解及记忆。如右手定则等。定理已经证明具有正确性、可作为原则或规律的命题或公式。例如:“平行四边形对边相等”就是儿何学中的一个定理。

4经过人类长期反复的实践检验是真实的,不 需要由其他判断加以证明的命题和原理。如传统形 式逻辑三段论关于一类事物的全部是什么或不是什么, 那么这类事物中的部分也是什么或不是什么,也即如果 对一类事物的全部有所断定,那么对它的部分也就有所 断定,便是公理。又如日常生活中人们所使用的“有生必 有死”,也属于这种不证自明的判断。 5自然科学和社会科学中具有普遍意义的基本规律。是在大量观察、实践的基础上,经过归纳、概括而得出的。既能指导实践,又必须经受实践的检验。 如果你要是应试教育下的产物的话我劝你还是不用明白这些区别,只要熟悉这些叫法就好了。

浅析物理原理、定理、定律、定则

浅析物理原理、定理、定律、定则 一、教学实践中反映出的问题 学生所提出的问题:⑴“帕斯卡原理”为何不叫“帕斯卡定理”?⑵“牛顿定律”为何不叫“牛顿定理”?⑶课本上有“动量定理”和“动量守恒定律”,为何一个叫做“定理”,一个叫做“定律”?是否可以都叫做“定理”或“定律”?⑷“动能原理”为何又叫做“动能定理”?⑸“安培定则”、“左右手定则”能否算做定理或定律?对于学生提出的这一系列问题,我们教师不要认为学生是在钻牛角尖、是在向老师发难,我们要给予满意的答复,否则不是对课本就是对教者产生怀疑,甚至挫伤学生的学习积极性。 二、物理原理、定理、定律和定则的共性与区别 我们知道物理学的理论体系是由基本概念和基本原理、定律所组成的。其原理、定律等反映的是各个有关概念之间相互依存制约关系,是规律性的必然关系,这是原理、定律的共同点。他们的区别,我们从原理、定律等是由概念组成且反映概念间的依存制约关系这个意义上来看,它们的关系与逻辑学中的判断与概念的关系相接近,因此,按判断的分类似乎能够说清原理、定律等的区别。 (一)、原理与定理 逻辑学里的判断按模态划分,有条件关系判断和必然关系判断。前者大致对应于物理学中的原理,而后者则对应于定理。也就是说如果所描述的有关物理概念之间的必然关系是在某种特定条件下的物理事实,则可称之谓物理原理。如“帕斯卡原理”:“在密闭容器内,液体向各个方向传递的压强相等”。这里的“密闭容器”就是条件。又如“动能原理”:“无论作用在物体上的合力大小和方向是否变化,物体运动的路径是直线还是曲线,合外力对物体所做的功都等于该物体动能的增量”。这里“无论……”也是条件。原理与定理极其近似但又稍有区别,原理只要求用自然语言表达(当然并不排除数学表达),定理则着重于反映原理的数学必然性。因此,在表达时一定要用数学式来阐明。所以,有的书本上就将“动能原理”写成“动能定理”,表达式为:△E动=W外。 (二)、定理与定律 如前面所述,原理大致对应于条件关系判断,表述有关物理概念间的必然关系时,需要着重阐明反映必然关系时物理过程必须符合的特定条件;而物理定律

相关文档
相关文档 最新文档