文档库 最新最全的文档下载
当前位置:文档库 › 细胞色素CYP2C19基因多态性与药物相互作用_张平平

细胞色素CYP2C19基因多态性与药物相互作用_张平平

细胞色素CYP2C19基因多态性与药物相互作用_张平平
细胞色素CYP2C19基因多态性与药物相互作用_张平平

[10]Illouz S,Nakamura T,Webb M,et al1Comparison of University

of Wisconsin and ET-Kyoto preservation solutions for t he cryopreservation of primary human hepatocytes1Transplant Proc,2008,40(5):1706~17091

[11]Colaco C,Sen S,Thangavelu M,et al1Extraordinary stability of

enzymes dried in trehalose:simplified molecular biolo2 gy1Biotechnology(N Y),1992,10(9):1007~10111

[12]Mat suo T1Trehalose protect s corneal epit helial cells from deat h

by drying1Br J Opht halmol,2001,85(5):610~6121

[13]Mat suo T,Tsuchida Y,Morimoto N1Trehalose eye drops in t he

treat ment of dry eye syndrome1Opht halmology,2002,109(11): 2024~20291

[14]Mat suo T1Trehalose versus hyaluronan or cellulose in eyedrops

for t he treat ment of dry eye1Jpn J Opht halmol,2004,48(4):321~3271

[15]胡宗利,夏玉先,陈国平,等1海藻糖的生产制备及其应用前景

1中国生物工程杂志,2004,24(4):44~481

[16]Takanobu H1Novel functions and applications of trehalose1Pure

Appl Chem,2002,74(7):1263~12691

细胞色素CYP2C19基因多态性与药物相互作用

张平平,王明波,张鉴1,李军1

(山东万杰医学院,山东淄博255213;11山东大学附属省立医院临床药理中心,山东济南250012)

摘要:C YP2C19酶是一种重要的药物代谢酶,参与多种药物的体内代谢。本文综述了C YP2C19酶的基因多态性及临床应用方面的研究进展,讨论经C YP2C19代谢的药物在联合用药时药物之间的相互作用及可能出现的临床后果,为临床合理用药提供参考依据。

关键词:C YP2C19 代谢 抑制 诱导 药物相互作用

中图分类号:R968 文献标识码:A 文章编号:1672-7738(2009)06-0352-04

The gene polymorphism of CYP2C19and drug interaction

ZHAN G Ping2ping,WAN G Ming2bo,ZHAN G Jian1,L I J un1

(Wanjie Medical College of Shangdong,Zibo255213;11The center of Clinical Pharmacology,Shandong

Provincial Hospital Affiliated to Shandong University,Ji′nan250012)

ABSTRACT:C YP2C19enzyme is an important drug-metabolizing enzyme involved in the metabolism of a variety of drugs in vivo1This article introduced the progress of the gene polymorphism of CYP2C19enzyme and its application in clinical1The interaction and possible clinical consequences of the drugs metabolized by C YP2C19in combination were also illustrated which provided the reference for the clinical rational administration1

KE Y WOR DS:C YP2C19;metabolism;inhibition;induction;drug interactions

细胞色素P450是由一组结构和功能相关的血红蛋白超家族基因编码的同工酶,是药物在体内的主要代谢酶系。在C YP450超家族中,C YP2是最大的家族,有15个亚家族,而C YP2C是其中最大的亚家族,该亚家族中C YP2C9、2C19与药物代谢关系密切。

1 C YP2C19与药物代谢

现已证实C YP2C19酶主要参与药物在体内的羟化反应。C YP2C19酶活性存在显著的个体差异和种族差异,表现为遗传多态性,导致酶变异,酶活性下降,代谢药物的能力下降,从而使多种药物在体内的代谢产生个体差异,导致血药浓度的个体差异,血药浓度升高,故常引起与血药浓度相关的药物不良反应。同时服用经C YP2C19代谢的药物,可能发生相互作用,从而影响临床治疗效果。

2 C YP2C19的基因突变与表型研究进展

C YP2C19酶又称为S-美芬妥英羟化酶,定位于10号染色体上(10q2411-10q2413),有9个外显子。现已发现其至少存在18种等位基因,较常见的2个等位基因多态性位点为C YP2C19m1和C YP2C19m2。其外显子5发生的单个碱基突变(G→A)称为M1突变,突变的基因称为m1等位基因。其外显子4发生的单个碱基突变(G→A)称为M2突变,突变的基因称为m2等位基因。这些突变导致酶活性下降,代谢能力减低,易引起药物不良反应。另外在研究白种人的C YP2C19基因时,发现了一例较罕见的新突变,即外显子9发生了单碱基突变(C→T),不过该突变频率极低(0125%),其是否会改变个体的酶蛋白含量,有待于进一步研究。

C YP2C19酶具遗传多态性,代谢速度快者为强代谢者(extensive metabolism EM),代谢速度慢者为弱代谢者(poor

metabolism PM)。研究表明,m1和m2两种突变等位基因可解释超过99%的东方人和88%的白种人的PM表型。其中M1突变是PM产生的主要原因。M2突变主要存在于东方人中,白种人中罕见。C YP2C19代谢多态性不仅存在个体差异,而且存在种族差异。不同种簇之间,PM的发生率存在显著差异。白种人、沙特阿拉伯人PM的发生率为3%~5%,黑人介于白种人与东方人之间,而东方人PM的发生率高达13%~23%[1~3]。即使在东方人种中,PM的发生率也存在明显的差异,如在中国傣族人群和泰国人群中PM的发生率几乎接近白种人。Yan等[4]研究中国各民族C YP2C19基因多态性的差异时,发现其等位基因W型(野生型)和M型(突变型)在各民族中的发生率有较大差别。

C YP2C19酶活性还与其他一些因素有关,如营养、性别、疾病、药物等,揭示C YP2C19基因多态性与表型之间的相关性是比较复杂的,但遗传因素是主要的。

3 C YP2C19酶的基因多态性与药物相互作用

当C YP2C19酶是某种药物的主要代谢酶时,不同基因型病人的药动学参数将受到不同的影响,同时C YP2C19酶易受其他药物的诱导或抑制,联合用药时往往相互影响,从而影响临床疗效。目前对经C YP2C19酶代谢的药物研究较少,但已经发现C YP2C19参与几十种药物代谢,并对其临床应用产生明显影响,详见表1。

表1经CYP2C19酶代谢的药物

种类经CYP2C19代谢的药物

抗癫痫药S-美芬妥英、苯巴比妥、丙戊酸

质子泵抑制剂奥美拉唑、雷贝拉唑

抗抑郁药丙米嗪、氯丙米嗪、阿米替林、西酞普兰

镇静、催眠药地西泮、去甲地西泮

抗疟疾药氯胍、氯二胍

降血糖药甲苯磺丁脲

抗真菌药伏立康唑

抗肿瘤药环磷酰胺、异环磷酰胺

中药白芷

311C YP2C19酶的基因多态性对用药的影响 经C YP2C19酶代谢的药物,其血药浓度与C YP2C19基因多态性的关系比较密切,往往对临床效果及不良反应产生影响。一般来讲,PM型患者(主要为M型等位基因携带者)药物代谢慢,服用相同剂量的药物血药浓度高,易出现不良反应,应用时应适当减少剂量,以避免不良反应的出现;EM型患者(主要为W型等位基因携带者)药物代谢快,服用相同剂量的药物血药浓度低,不易出现不良反应,但有时会达不到预期治疗效果,故对EM型患者就适当增加剂量,以达到预期治疗效果。

抗癫痫药物与C YP2C19酶基因多态性之间的关系目前研究较多,其中苯妥英钠和丙戊酸钠主要经C YP2C19酶代谢。黄越等[5]研究苯妥英钠与C YP2C19基因多态性的关系中发现:在32例癫痫患者中,PM组患者血药浓度明显高于EM组。这与Van der Weide等[6]观察的长期应用苯妥英患者的剂量与基因型之间的关系一致,他发现PM型患者达到治疗浓度所需的苯妥英剂量低于EM型患者。王育琴等[7]发现在51例癫痫患者中,W型等位基因携带者的丙戊酸血药浓度明显低于M型携带者;在血药浓度大于5mg?L-1的病例中,W型携带者占2例,而M型携带者有6例。其中在24例慢代谢患者中,M型携带者占19例(7911%)而W型携带者大部分为正常或快代谢。提示M型携带者的药物代谢率明显降低,其常症状控制良好或偶尔发作。因此,对于PM患者可给予较小剂量,这样做既可以减少药品的资源浪费,又可以减少药品不良反应。同时医生在为PM型患者调整剂量时,应遵守从小剂量开始,同时密切观察症状及监测血药浓度的原则。

质子泵抑制剂(PPIs)也主要经C YP2C19及C YP3A4代谢。C YP2C19的基因多态性可导致PPIs抑酸疗效出现明显的不稳定性及个体间差异。由于各品种与酶的亲和力不同,故参与它们代谢的C YP2C19的比例及其代谢途径也不尽相同。第一代PPIs的药代动力学特性有显著的个体差异,主要经C YP2C19代谢,C YP2C19遗传多态性对其临床效果有显著影响;新一代PPIs极少经P450同工酶代谢, C YP2C19遗传多态性对其临床效果无显著影响[8,9]。奥美拉唑是临床应用最为广泛的质子泵抑制剂之一,在体内经C YP2C19酶代谢为5-羟基奥美拉唑。许多研究已证实服用奥美拉唑后PM型患者的抑酸效果明显优于EM型患者,两者血药浓度相差达7倍之多。胡祥鹏等[10]的研究显示奥美拉唑在服药1d后,PM组C max与AUC明显高于EM组,差异具有统计学意义。Furuta T等[11]发现奥美拉唑合用阿莫西林治疗幽门螺杆菌感染性溃疡病患者,C YP2C19杂合子愈合率明显高于纯合子,这可能与PM个体对奥美拉唑的代谢、清除减慢,导致其清除半衰期显著长于EM个体有关[12]。在对泮托拉唑和兰索拉唑的研究中,同样出现上述相似的规律。如日本Togawa J等[13]研究显示,应用兰索拉唑联合阿莫西林、克拉霉素方案根除HP(幽门螺杆菌),首次治疗成功率为7614%,而首次治疗失败者全部为EM型。故对EM型患者宜适当增加给药剂量,以达到较好临床治疗效果。

西酞普兰是目前使用广泛的抗抑郁药,主要经C YP2C19、C YP3A4和C YP2D6酶代谢,体内研究显示西酞普兰的去甲基化主要与C YP2C19酶有关,代谢产物为N-去甲基西酞普兰。Herrlin等[14]发现C YP2C19慢代谢者血浆左旋西酞普兰水平明显升高。

此外,经研究发现中药白芷提取物、抗肿瘤药环磷酰胺、降血糖药甲苯磺丁脲等药物也经C YP2C19酶代谢,但对其临床用药的影响尚有待于进一步的研究。

312药物相互作用

31211肝药酶诱导:苯妥英钠对C YP2C19酶有较强诱导作用,对临床用药产生明显影响。黄越等[15]等研究发现苯妥英钠和丙戊酸钠联合用药后,丙戊酸钠血药浓度较单一用药时显著降低,以正常代谢者降低的尤为显著。因苯妥英钠是肝药酶诱导剂,可刺激C YP2C19酶的合成,促进丙戊酸钠的代谢,降低了丙戊酸钠的血药浓度。因弱代谢者酶活性较

弱,对酶诱导作用不敏感,而正常代谢者受酶诱导作用较强,故稳态后丙戊酸钠的血药浓度约为单用时的60%,以致于达不到有效血药浓度。故弱代谢者在单一服用丙戊酸钠时应适当减少剂量;在与苯妥英钠合用时,应缩短正常代谢者服丙戊酸钠的给药时间或增加丙戊酸钠剂量,以期达到有效的血药浓度,更好发挥药物疗效。

31212肝药酶抑制:现已证实氟伏沙明、奥美拉唑、利福平、伏立康唑等药物可抑制C YP2C19酶的活性,是C YP2C19酶抑制剂。经C YP2C19酶代谢的药物与其合用时,往往出现血药浓度升高,可能出现不良反应,甚至是毒性反应,临床联合应用时应适当减少剂量。如氟伏沙明与西沙必利、特非那定和阿司咪唑合用,可出现Q T间期延长和节律位点改变等,有诱发尖端扭转型室性心律失常的危险,临床上禁止合用。苯妥英钠和氟伏沙明合用,苯妥英的血药浓度显著升高,易出现共济失调等毒性反应。故联合用药时应适当减少苯妥英的剂量。研究发现奥美拉唑与伏立康唑合用时,伏立康唑的C max和AUC24(24h药时曲线下面积)分别增高15%和41%,但无需调整剂量,而奥美拉唑的C max和AUC24分别增加116%和280%,因此奥美拉唑的剂量应减半。伏立康唑与苯妥英钠合用时,由于苯妥英钠诱导C YP450酶,可使伏立康唑的C max和AUC24分别降低49%和69%;而伏立康唑可使苯妥英钠C max和AUC24分别增高67%和81%[16],因此合用应密切监测苯妥英钠的血药浓度并增加伏立康唑剂量约1倍。

4 C YP2C19酶与肿瘤易感性的关系

C YP2C19酶不仅参与众多药物的体内代谢,而且与肿瘤等疾病的发生有一定的相关性,这可能与C YP2C19酶参与致癌物的清除或激活有关。现已发现C YP2C19可能与肝癌、急性白血病、食管癌和胃癌、肺癌的膀胱癌的发生有关。原因是C YP2C19可能参与食管癌、胃癌、肺癌、急性白血病前致癌物的活化,膀胱癌致癌物的灭活。也就是说, C YP2C19酶活性的降低增加患食管癌、胃癌、肺癌、急性白血病的危险性,而患膀胱癌的危险性相应下降[17~20]。因此,加强对C YP2C19基因多态性的研究,有助于提高对个体肿瘤易感性的预测水平,预防和减少肿瘤的发生。

通过对C YP2C19酶研究的不断深入,了解更多药物受C YP2C19酶基因多态性的影响及药物之间的相互作用,明确C YP2C19酶与肿瘤等疾病发生的相关性,对指导临床合理用药,提高肿瘤等疾病的预测水平有重要意义。故进一步开展C YP2C19酶的相关研究有重要的临床价值和实践意义。

参考文献

[1]De Morais SMF,Wildinsom GR,Blaisdell J,et al1The major ge2

netic defect responsible for t he polymorphism of S-mephenytoin in humans1J Bio Chem,1994,269(22):15419~154221

[2]De Morais SM,Wildinsom GR,Blaisdell J,et al1Identification of a

new genetic defect responsible for t he polymorphism of S-me2 phenytoin in J apanese1Mol Pharmacol,1994,46(4):594~5981 [3]Xiao ZS,G oldstein J A,Xie H G,et al1Differences in t he incidence

of t he CYP2C19polymorphism affecting t he S-mephenytoin phenotype in Chinese Han and Bai populations and identification of a new rare CYP2C19mutant allele1J Pharmacol Experi Ther, 1997,281(1):604~6091

[4]Yan S,Zhou H H1Individual and et hnic differences in CYP2C19

activity in Chinese population1Acta Pharmacol Sin,2000,21(3): 1931

[5]黄越,杨静芳,齐晓涟,等1CYP2C19和C YP2C9基因型与苯妥

英钠血药浓度关系的研究1中华医学杂志,2004,80(20):1686~16891

[6]Van der Weide J,Steijns L S,vail Weelden MJ,et a11The effect of

genetic polymorphism of cytochrome P450CYP2C9on phenytoin dose requirement1Pharmacogentics,2001,11(4):287~2911 [7]王育琴,齐晓涟,黄越,等1丙戊酸药物浓度与CYP2C19基因多

态性关系的研究1中国医院药学杂志,2003,23(11):670~6731 [8]牛春燕,罗金燕,李瑞玲,等1CYP2C19基因多态性对埃索美拉

唑抑酸效应的影响1西安交通大学学报(医学版),2004,25(5): 487~4891

[9]Miki I,Aoyama N,Sakaia T,et al1Impact of clarit hromycin re2

sistance and CYP2C19genetic polymorphism on treat ment effica2 cy of Helicobacter pylori infection wit h lansoprazole-or rabe2 prazole-based triple t herapy in J apan1Eur J Gastroenterol Hep2 atol,2003,15(1):27~331

[10]胡祥鹏,许建明,胡永梅,等1CYP2C19基因多态性对奥美拉唑

在中国人体内的药物动力学和药效学的影响1中国药理学通报,2005,21(10):1210~12131

[11]Furuta T,Shirai N,Takashima M,et al1Effect s of genotypic

differences in CYP2C19status on cure rates for Helicobacter pylori infection by dual t herapy wit h rabeprazole plus amoxicil2 lin1Pharmacogenetics,2001,11(4):341~3481

[12]Sakai T,Aoyama N,K ita T,et al1CYP2C19genotype and phar2

macokinetics of t hree proton pump inhibitors in healt hy subject s 1Pharm Res,2001,18(6):721~7271

[13]Togawa J,Inamori M,Fujisawa N,et al1Efficacy of a triple t her2

apy wit h rabeprazole,amoxicillin,and faropenem as second-1ine treat ment after failure of initial Helicobacter pylori eradica2 tion t herapy1Hepatogastroenterology,2005,52(62):645~6481 [14]Herrlin K,Yasui-Furudori N,Tybring G,et a11Metabolism of

citalopram enantiomers in CYP2C19/C YP2D6phenotyped pan2 els of healt hy Swedens1Br J Clin Pharmacol,2003,56(4):415~4211

[15]黄越,齐晓涟,王育琴,等1CYP2CI9基因型对丙戊酸及其与苯

妥英联合用药时血药浓度影响1中国神经免疫学和神经病学杂志,2003,10(4):266~2751

[16]王汝龙1三唑类抗深部真菌药的临床药学进展1临床药物治疗

杂志,2007,5(1):1~71

[17]Roddam PL,Rollinson S,et al1Poor metabolizers at t he cyto2

chrome P4502D6and2C19loci are at increased risk of develo2 ping adult acute leukaemia1Pharmacogenetics,2000,10(7):605~6151

[18]赵筱萍,童跃峰,赵鲁抗,等1细胞色素P4502C19基因多态性

与食管癌易感性的关系1中华医学遗传学杂志,2000,17(3):

217~2181

[19]赵筱萍,李汉植,杜晓依,等1细胞色素P4502C19基因多态性

与胃癌易感性的关系1中国肿瘤临床,2000,27(7):488~4901 [20]Wei Xing Shi,Shu2Qing Chen1Frequencies of poor metabolizers of cytochrome P4502C19in esophagus cancer,stomach cancer, lung cancer and bladder cancer in Chinese population1World J Gastroenterol,2004,10(13):1961~19631

体内药物分析中色谱技术的应用

王光银,孙玲1,钱琛2

(胜利油田胜利医院,山东东营257055;11山东省医药工业研究所,山东济南250100;

21沈阳药科大学药学院,辽宁沈阳110016)

摘要:本文综述了国内外用于体内药物分析的一些新兴色谱技术,如超临界流体色谱法、毛细管电泳法、手性色谱法、胶束色谱法、分子生物色谱法、色谱固相微萃取联用法、色谱-质谱联用法、色谱-色谱联用法等的具体应用进展;展望了色谱技术在体内药物分析应用中的前景及其发展方向,即开发新的检测技术及借助计算机手段,以实现其连续化、自动化、联用化及智能化。

关键词:体内药物分析 生物样品 色谱技术 色诸法

中图分类号:O65717 文献标识码:A 文章编号:1672-7738(2009)06-0355-04

Applications of chromatographic technique in biopharm aceutical analysis

WAN G Guang2yin,SUN Ling1,Q IAN Chen2

(Shengli Hospital of Shengli Oil Field,Dongying257055;11Shandong Institute of Pharmaceutical

Industry,Ji′nan250100;21Shenyang Pharmaceutical University,Shenyang110016)

ABSTRACT:Advance in recent applications of new chromatographlc technique including SFC(supercritical fluid chromatog2 raphy),CE(capillary electrophoresis),CC(chiral chromatography),MC(micellar chromatography),MBC(molecular biochroma2 tography),and CSPM E(chromatography-solid2phase mlcroextraction),CMS(chromatography-mass spectrometry)in biop2 harmaceutical analysis and future prospect of these technique were reviewed in this paper1

KE Y WOR DS:Biopharmaceutical analysis;biological sample;chromatographic technique;chromatography

现代药学的迅速发展促使药物及其代谢物在机体内处置过程的研究不断深入,一方面对体内药物分析研究方法和手段提出了越来越高的要求,另一方面也推动了体内药物分析研究方法的蓬勃发展。在体内药物分析(blopharmaceuti2 cal analysis,BPA)中,色谱技术一直是研究体内药物及其代谢物最强有力的手段。目前,随着药物分析技术与其他学科新技术相结合,色谱技术在进样方式、分离模式、检测技术及适用对象等方面迅速发展。近年来,色谱技术特别是液相色谱技术不断发展和完善,在灵敏度和选择性等方面都有了很大提高,使得对复杂生物样品中药物及其代谢物的测定变得更加准确、快速和简便,本文就近年来新型液相色谱技术在体内药物分析中的应用作一简要综述。

1 超临界流体色谱

超临界流体色谱法(supercritical fluid chromatography, SFC)于1962年面世,1980年后才得到推广应用。SFC采用的是双泵系统,流动相是超临界流体,最常用的流体为CO2,CO2极性较弱,不适合极性组份的分离,为改善峰形、调节溶解和洗脱能力,常在CO2中添加甲醇等改性剂。超临界流体的黏度近于气体,减少了过程阻力,提高了柱效;密度类似液体,有较强的溶解能力。SFC可分为开管柱SFC(open-tubular SFC,otSFC)和填充柱SFC(packed-column SFC, pcSFC)。otSFC一般柱径为50~100μm,可采用GC型检测器,其主要缺点是柱的负荷能力低,一次只允许注射1~10 nL的样品。pcSFC对样品负荷能力较强,分析时间短,可使用HPL C型检测器,如紫外或荧光检测器等,这有利于体内痕量组分的检测。杨敏等[1]用SFC法,在CO2中添加18%的甲醇作改性剂,在275nm处检测人血浆中的咖啡因和对乙酰氨基酚含量,该方法在所用分析条件下,5min即可完成测定,且具有较好的重现性和线性关系。

2 高效毛细管电泳

高效毛细管电泳(high performancecapillary electropho2 resis,HPCE),亦称CE法,是20世纪80年代后期发展起来

药物代谢酶基因多态性简介

药物代谢酶基因多态性简介 代谢酶基因多态性是指由于编码代谢酶的DNA序列的单核苷酸多态性等可遗传变异,导致的不同种群之间代谢酶的底物特异性无变化,但是代谢酶的活性存在显著的差别的现象。由此可能造成个体间PK和药物反应的差异,进而造成不必要的治疗失败和毒副作用。单核苷酸多态性(SNPs)存在于Ⅰ相代谢酶、Ⅱ代谢酶和转运体等多个方面,其中临床影响较大的为CYP450酶的基因多态性,因此了解不同人群代谢酶活性的差异有助于理解种群间PK差异和实现个性化治疗。SNPs存在于许多亚型的代谢酶中,Sarah等人的研究结果显示如下图,其中高加索人种中CYP2D6多态性的频率最高,其次为CYP2A6和2B6。但是并非所有的CYPs均参与药物代谢,既存在较高频率的多态性,又与药物代谢相关的为CYP1A2, 2D6, 2C9和2C19,其中CYP2D6与多数药物的代谢相关,下文将以CYP2D6为代表阐述其进化特征、功能多样性和临床影响等相关内容。 CYP2D6是由497个氨基酸组成的多肽,其对生物碱类物质具有较高的亲和力,该酶不可被环境因素调控且不能被诱导。最早CYP2D6的多态性是由

于个体间PK差异引起人们注意的,而后随着生物技术手段的提升才逐渐揭开其遗传基础。CYP2D6位于染色体22q13.1上,其邻近包含两个假基因CYP2D7和CYP2D8。至今发现了几十种CYP2D6的等位基因,大多数编码有缺陷的基因产物,最常见的突变型等位基因分布于不同种群中,如CYP2D6*2, CYP2D6*4, CYP2D6*5, CYP2D6*10和CYP2D6*17等,详细见下图,其可分为彻底失活、活性降低、正常、活性增加和活性本质上的改变五大类,在不同种群中分布特点有明显的差异。亚洲人群最常见的CYP2D6*10,其发生了P34S的有害突变导致了P450折叠功能的丧失而造成不稳定性,且降低了底物的亲和力。非洲人群中常见突变体为CYP2D6*17发生的错义突变导致其活性位点结构发生改变,由此造成底物特异性发生改变,且其活性低于野生型。 如下图演示了CYP2D的演变规律,啮齿动物与人的活性CYP2D基因的数量存在巨大的差异,小鼠有9个不同的活性基因,而人只有1个,且7%的高加索人群缺失该活性基因。由于CYP2D6对于生物碱类的生物毒素具有高亲和力,进化角度可以认为小鼠需要保留较多的活性基因来维持解毒能力,而人类的饮食结构更为严谨进而逐渐不需要更多的活性基因。 不同人群中的CYP2D6的代谢活性可分为超快代谢(ultrarapid metabolizers, UMs)、快代谢(extensive metabolizers, EMs)、中等代谢(intermediate metabolizers, IMs)和慢代谢(poormetabolizers, PMs)四种类型。一般而言,白人种PMs的频率较高约为10%左右,而亚洲人群中

麻醉药物基因组学进展

麻醉药物基因组学进展 本文对药物基因组学的基本概念和常用麻醉药的药物基因组学研究进 展实行综述。 药物基因组学是伴随人类基因组学研究的迅猛发展而开辟的药物遗传 学研究的新领域,主要阐明药物代谢、药物转运和药物靶分子的基因 多态性及药物作用包括疗效和毒副作用之间关系的学科。 基因多态性是药物基因组学的研究基础。药物效应基因所编码的酶、 受体、离子通道作为药物作用的靶,是药物基因组学研究的关键所在。基因多态性可通过药物代谢动力学和药物效应动力学改变来影响麻醉 药物的作用。 基因多态性对药代动力学的影响主要是通过相对应编码的药物代谢酶 及药物转运蛋白等的改变而影响药物的吸收、分布、转运、代谢和生 物转化等方面。与麻醉药物代谢相关的酶有很多,其中对细胞色素- P450家族与丁酰胆碱酯酶的研究较多。基因多态性对药效动力学的影 响主要是受体蛋白编码基因的多态性使个体对药物敏感性发生差异。 苯二氮卓类药与基因多态性:咪唑安定由CYP3A代谢,不同个体对咪 唑安定的清除率可有五倍的差异。地西泮是由CYP2C19和CYP2D6代谢,基因的差异在临床上可表现为用药后镇静时间的延长。 吸入麻醉药与基因多态性:RYR1基因变异与MH密切相关,现在已知 至少有23种不同的RYR1基因多态性与MH相关。氟烷性肝炎可能源于 机体对在CYP2E1作用下产生的氟烷代谢产物的一种免疫反应。 神经肌肉阻滞药与基因多态性:丁酰胆碱酯酶是水解琥珀酰胆碱和美 维库铵的酶,已发现该酶超过40种的基因多态性,其中最常见的是被 称为非典型的(A)变异体,与用药后长时间窒息相关。 镇痛药物与基因多态性:μ-阿片受体是阿片类药的主要作用部位, 常见的基因多态性是A118G和G2172T。可待因和曲马多通过CYP2D6代

基因多态性

基因多态性 多态性(polymorphism)是指在一个生物群体中,同时和经常存在两种或多种不连续的变异型或基因型(genotype)或等位基因(allele),亦称遗传多态性(genetic polymorphism)或基因多态性。从本质上来讲,多态性的产生在于基因水平上的变异,一般发生在基因序列中不编码蛋白的区域和没有重要调节功能的区域。对于一个体而言,基因多态性碱基顺序终生不变,并按孟德尔规律世代相传。 基因多态性分类生物群体基因多态性现象十分普遍,其中,人类基因的结构、表达和功能,研究比较深入。人类基因多态性既来源于基因组中重复序列拷贝数的不同,也来源于单拷贝序列的变异,以及双等位基因的转换或替换。按引起关注和研究的先后,通常分为3大类:DNA片段长度多态性、DNA重复序列多态性、单核苷酸多态性。 DNA片段长度多态性DNA片段长度多态性(FLP),即由于单个碱基的缺失、重复和插入所引起限制性内切酶位点的变化,而导致DNA片段长度的变化。又称限制性片段长度多态性,这是一类比较普遍的多态性。 DNA重复序列多态性DNA重复序列的多态性(RSP),特别是短串联重复序列,如小卫星DNA和微卫星DNA,主要表现于重复序列拷贝数的变异。小卫星(minisatellite)DNA由15~65bp的基本单位串联而成,总长通常不超过20kb,重复次数在人群中是高度变异的。这种可变数目串联重复序列(VNTR)决定了小卫星DNA长度的多态性。微卫星(microsatellite)DNA 的基本序列只有1~8bp,而且通常只重复10~60次。 单核苷酸多态性单核苷酸多态性(SNP),即散在的单个碱基的不同,包括单个碱基的缺失和插入,但更多的是单个碱基的置换,在CG序列上频繁出现。这是目前倍受关注的一类多态性。 SNP通常是一种双等位基因的(biallelic),或二态的变异。SNP大多数为转换,作为一种碱基的替换,在基因组中数量巨大,分布频密,而且其检测易于自动化和批量化,因而被认为是新一代的遗传标记。 遗传背景知识遗传和变异各种生物都能通过生殖产生子代,子代和亲代之间,不论在形态构造或生理功能的特点上都很相似,这种现象称为遗传(heredity)。但是,亲代和子代之间,子代的各个体之间不会完全相同,总会有所差异,这种现象叫变异(variation)。遗传和变异是生命的特征。遗传和变异的现象是多样而复杂的,正因为如此,才导致生物界的多种多样性。

药物基因组学

药物基因组学 PART 01 药物基因组学 一、药物基因组学 药物基因组学:是研究人类基因变异和药物反应的关系,利用基因组学信息解答不同个体对同一药物反应存在差异的原因。 基因组(genome):是指生物体单倍细胞中一套完整的遗传物质,包括所有的基因和基因间区域(即编码区和非编码区)。 人类基因组计划是由序列(结构)基因组学向功能基因组学的转移。开启了人类的“后基因组时代”。 后基因组时代研究的重要方向: 功能基因组学 比较基因组学 结构基因组学 蛋白质组学 药物基因组学 …… PART 02 基因多态性 二、基因多态性 基因多态性是指在一个生物群体中,呈不连续多峰曲线分布的一个或多个等位基因发生突变而产生的遗传变异。 CYP450酶超大家族 共涉及1000种药物的代谢(拓展) 12种亚型:CYP1、CYP2、CYP3…… 15个亚家族:A~Q 如:CYP2C9、CYP2C19、CYP2D6、CYP3A5等 药物转运蛋白-MDR1(多药耐药基因)(拓展) 调控许多药物吸收、分布和排泄过程 与胆红素、抗癌化疗药物、强心苷、免疫抑制剂、糖皮质激素、HIVⅠ型蛋白抑制剂有关 药物靶蛋白-ADRB2 编码人β2肾上腺受体 人类白血球抗原-HLA-B HLA-B变异,将引起某些药物的严重皮肤反应 内容: 1.药物代谢酶的多态性 同一基因位点上具有多个等位基因引起,其多态性决定表型多态性和药物代谢酶的活性,造成不同个体间药物代谢反应的差异。是产生药物毒副作用、降低或丧失药效的主要原因之一。 细胞色素P450酶(CYP)是药物代谢的主要酶系。在细胞色素P450的亚群中,CYP2D6、CYP2C9和CYP2C19对许多药物的效应非常重要。(拓展) 例: 奥美拉唑、兰索拉唑和泮托拉唑等质子泵抑制剂由P450酶代谢,主要由CYP2C19,部分由CYP3A4代谢。 因此,CYP2C19的基因多态性会影响质子泵抑制剂的药动学,从而影响后者治疗相关疾病的临床效果。 艾司奥美拉唑仅经CYP3A4代谢。 2.药物转运蛋白 在药物的吸收、排泄、分布、转运等方面起重要作用,其变异对药物吸收和消除具有重要意义。

麻醉药物,个体化用药综述,协和医院,罗爱伦

中华麻醉在线 http://www.csaol.cn 2007年9月 麻醉药物基因组学研究进展 王颖林郭向阳罗爱伦 北京协和医院麻醉科 本文对药物基因组学的基本概念和常用麻醉药的药物基因组学研究进展进行综述。 药物基因组学是伴随人类基因组学研究的迅猛发展而开辟的药物遗传学研究的新领域,主要阐明药物代谢、药物转运和药物靶分子的基因多 态性及药物作用包括疗效和毒副作用之间关系的学科。 基因多态性是药物基因组学的研究基础。药物效应基因所编码的酶、受体、离子通道作为药物作用的靶,是药物基因组学研究的关键所在。基 因多态性可通过药物代谢动力学和药物效应动力学改变来影响麻醉药物的 作用。 基因多态性对药代动力学的影响主要是通过相应编码的药物代谢酶及药物转运蛋白等的改变而影响药物的吸收、分布、转运、代谢和生物转化等方面。与麻醉药物代谢有关的酶有很多,其中对细胞色素-P450家族与丁酰胆碱酯酶的研究较多。基因多态性对药效动力学的影响主要是受体蛋白编码基因的多态性使个体对药物敏感性发生差异。 苯二氮卓类药与基因多态性:咪唑安定由CYP3A代谢,不同个体对咪唑安定的清除率可有五倍的差异。地西泮是由CYP2C19和CYP2D6代谢,基因的差异在临床上可表现为用药后镇静时间的延长。 吸入麻醉药与基因多态性:RYR1基因变异与MH密切相关,现在已知至少有23种不同的RYR1基因多态性与MH有关。氟烷性肝炎可能源于机体对在

CYP2E1作用下产生的氟烷代谢产物的一种免疫反应。 神经肌肉阻滞药与基因多态性:丁酰胆碱酯酶是水解琥珀酰胆碱和美维库铵的酶,已发现该酶超过40种的基因多态性,其中最常见的是被称为非典型的(A)变异体,与用药后长时间窒息有关。 镇痛药物与基因多态性:μ-阿片受体是阿片类药的主要作用部位,常见的基因多态性是A118G和G2172T。可待因和曲马多通过CYP2D6代谢。此外,美沙酮的代谢还受CYP3A4的作用。儿茶酚O-甲基转移酶(COMT)基因与痛觉的产生有关。 局部麻醉药与基因多态性:罗哌卡因主要由CYP1A2和CYP3A4代谢。CYP1A2的基因多态性主要是C734T和G2964A,可能影响药物代谢速度。 一直以来麻醉科医生较其它专业的医疗人员更能意识到不同个体对药物的反应存在差异。麻醉药的药物基因组学研究将不仅更加合理的解释药效与不良反应的个体差异,更重要的是在用药前就可以根据病人的遗传特征选择最有效而副作用最小的药物种类和剂型,达到真正的个体化用药。 能够准确预测病人对麻醉及镇痛药物的反应,一直是广大麻醉科医生追求的目标之一。若能了解药物基因组学的基本原理,掌握用药的个体化原则,就有可能根据病人的不同基因组学特性合理用药,达到提高药效,降低毒性,防止不良反应的目的。本文对药物基因组学的基本概念和常用麻醉药的药物基因组学研究进展进行综述。 一、概述

临床药学习题

临床药学习题

————————————————————————————————作者:————————————————————————————————日期: ?

第二章 名词解释: 1、治疗药物检测 2、有效血药浓度范围 简答题:?1、治疗药物监测的定义是什么? 2、开展治疗药物监测的意义是什么??3、尽管血液中的药物浓度与靶位浓度并不相等,但为什么仍将检测血药浓度的大小作为调整剂量的依据??4、剂量与血药浓度之间相关性的影响因素有哪些??5、何为有效血药浓度范围?何为目标浓度?有效血药浓度范围与药物效应有何关系??6、体内药物分析的目标物有哪些?为什么说测定游离药物浓度更有指导意义? 7、目前治疗药物监测常用的体内药物分析方法有哪些??8、药物分析方法学确证包括哪些方面?各有何要求??9、体内药物分析的质量控制的目的意义是什么?质量控制分哪两大部分? 10、回顾性室内质量控制主要方法是什么?质量控制图绘制的目的和方法是什么? 11、何为室间质量控制?开展室间质量控制的目的和主要程序是什么??12、治疗药物监测的主要临床指征是什么?哪些情况不需要进行治疗药物监测? 13、治疗药物监测的主要流程是什么? 14、治疗药物监测的采样时间如何决定? 15、样本采集注意事项是什么? 16、如何做好治疗药物监测结果解释工作和向临床提供咨询服务? 17、血药浓度检测结果可能会出现哪些情况?如何处置? 18、调整给药方案主要从那几方面入手? 19、治疗药物监测的临床应用主要在哪些方面??20、常规的治疗药物监测的药物主要有哪 22、群体药动学在TDM中的应用有哪些方面? 些?? 21、给药方案的调整主要有哪些方法?? 24、群体药动学的应用特点和意义? 23、群体药动学的定义是什么?? 26、何为混合效应?何为混25、群体药动学分析方法中存在有几个主要参数群?各是什么?? 合效应模型法? 28、NONMEN法和Bayesian反馈法的意义及其实施步骤是什27、何为Bayesian反馈法?? 么??29、NONMEN软件有何特点? 第三章 名词解释:?1、临床试验?2、知情同意?3、检察员?4、病例报告表?5、多中心临床试验 6、临床试验标准操作规程 简答题:?1、我国的《药品注册管理办法》将临床试验分为几期?简述各期临床试验的概念的特点??2、简述哪些方面需要制定SOP? 第四章 名词解释:?1、遗传药理学?2、单核苷酸多态性?简答题: 1、等位基因的变异有哪几种类型? 2、计算题:某研究分析了人体血标本100份(男、女各50份),发现该基因的突变纯合子个体10个,突变杂合子个体30个,野生型个体60个,试计算该基因中各基因型的频率和等位基因频率(假设该基因单核苷酸多态性的野生型为GG,突变杂合子为GA,突变纯合子为AA)。 3、药物转运蛋白主要有哪些?

CYP2C19基因多态性检测

CYP2C19基因多态性检测 项目简介:CYP2C19是CYP450酶第二亚家族中的重要成员,是人体重要的药物代谢 酶,在肝脏中有很多表达。CYP2C19基因座位于染色体区10q24.2上,由9个外显子构成。CYP2C19具有很多SNP位点,最常见的是CYP2C19*2和CYP2C19*3。CYP2C19*2会导致转录蛋白的剪切突变失活,而CYP2C19*3能构成一个终止子,破坏转录蛋白的活性。据统计,CYP2C19*2和CYP2C19*3两个突变位点能解释几乎100%的东亚人和85%的高加索人种的相关弱代谢遗传缺陷,而其他两种等位基因CYP2C19*4和CYP2C19*5主要在高加索人种中分布。大量证据证实,不同人种在CYP2C19的底物的代谢能力有很大差异;2–5%高加索人是弱代谢者,而13–23%的亚洲人是弱代谢者。这是由于在亚洲人口中CYP2C19*2和CYP2C19*3等位基因的高频率造成的。通过CYP2C19基因检测,判断患者对相关药物的代谢能力,可以指导临床用方案的制定,实现个体化用药治疗。 临床上常用的经由CYP2C19酶代谢的药物: 1、治疗胃酸相关性疾病:如质子泵抑制剂:奥美拉唑(omeprazole)、兰索拉唑(lansoprazole)、泮托拉唑(pantoprazole)、 雷贝拉唑(rabeprazole)、埃索美拉唑 (Esomeprazole)。 2、治疗心血管疾病:Clopidogrel、氯吡格雷、抗凝血药物。 3、抗真菌药物:Voriconazole、伏立康唑、广谱抗真菌药物。 4、神经类药物:①S-美芬妥英mephenytoin为乙内酰脲类抗癫痫药,在体内的羟化代谢主要由单基因CYP2C19编码表达的CYP2C19酶蛋白介导,由羟化酶CYP2C19氧化生成4’-羟基美芬妥英;②地西泮diazepam,一种长效的镇静、安眠药;③丙米嗪imipramine ,抗抑郁药,N-去甲基化和2-羟化;④苯巴比妥phenobarbital,传统的抗癫痫药;⑤抗心律失常药,抗抑郁药,抗精神病药,β受体阻断剂,抗高血压药和止痛剂。 5、抗肿瘤药:环磷酰胺。 6、抗结核药:利福平。 7、孕激素:黄体酮。 8、抗疟疾药:氯胍。 9、HIV蛋白酶抑制剂。 10、抗移植排斥药物:他克莫司、兰索拉唑。 CYP2C19基因多态性检测标本采集及出报告时间:病人抽静脉血2ml(用 EDTA-K2抗凝)送检验科分子生物诊断室,4个工作日出报告。 电话:8801063 手机:余宗涛65327 高波 64444 CYP2C19基因多态性检测临床意义: 1、基因剂量效应。 2、CYP2C19基因多态性,导致了个体间酶活性的多样性。等位基因的突变使酶活性降低,对药物代谢的能力随着等位基因的不同组合而呈现出一定的规律性,表现出正常基因纯合子>正常基因与突变基因杂合子> 突变基因纯合子或杂合子的变化趋势。 3、对于不同代谢能力的个体,运用不同的药物剂量等策略是非常必要的,可达到更好的治疗效果。 4、根据CYP2C19基因型给予个性化的药物和剂量可以降低副作用发生率-安全性;提高治

基因多态性分析

. 人基因多态性分析 一、实验目的 1. 了解基因多态性在阐明人体对疾病、毒物的易感性与耐受性、疾病临床表现的多样性以及对药物治疗的反应性中的重要作用。 2. 了解分析基因多态性的基本原理和研究方法。 二、实验原理 基因多态性(gene polymorphism)是指在一个生物群体中,同时存在两种及以上的变异型或基因型或等位基因,也称为遗传多态性(genetic polymorphism)。人类基因多态性对于阐明人体对疾病的易感性、毒物的耐受性、药物代谢差异及遗传性疾病的分子机制有重大意义;与致病基因连锁的多态性位点可作为遗传病的诊断标记,并为分离克隆致病基因提供依据;病因未知的疾病与候选基因多态性的相关性分析,可用于辅助筛选致病易感基因。 聚合酶链反应-限制性片段长度多态性(polymerase chain reaction—Restriction Fragment Length Polymorphism,PCR-RFLP)分析是一种常用的DNA分子标记。原理是通过PCR扩增获得目的基因。若目的基因存在等位变异(多态性),且变异正好发生在某种限制性内切酶识别位点上,使酶切位点增加或者消失,则酶切结果就会产生大小不同的片段,即片段长度多态性,再利用琼脂糖凝胶电泳分离,可呈现出多态性电泳图谱。若将患者与正常的多态性图谱比较,可确定是否变异。应用PCR-RFLP,可检测某一致病基因已知的点突变,进行直接基因诊断,也可以此为遗传标记进行连锁分析进行间接基因诊断。 三、器材与试剂 1. 器材 ⑴离心机。 ⑵DNA扩增仪。 ⑶电泳仪。 ⑷水平电泳槽。 ⑸紫外检测仪。 ⑹移液器。 2. 试剂 . . ⑴口腔拭子DNA抽提试剂盒。 ⑵琼脂糖。 ⑶1×TAE电泳缓冲液:980ml蒸馏水中加入50×TAE母液20ml。 ⑷50×TAE母液:Tris 121g,0.5M EDTA(pH8.0)50ml,冰醋酸28.55ml,定容至500ml。

基因多态性与各种肿瘤的关系

2003 年 Kripp l等[ 1 ]报道VEGF 936 C等位基因携带者患乳 腺癌的危险性降低, 1 Kripp l P, LangsenlehnerU, RennerW, et al. A common 936 C /T gene polymorphism of vascular endothelial growth factor is associated with decreased breast cancer risk. Int J Cancer, 2003, 106: 4682 471. 我们进行了一系列的生长因子基因多态性与结 直肠癌关系的研究,已经发现VEGF 61 G/G基因型 和G等位基因与结直肠癌的发生有关[ 9 ] 。VEGF 936 T/C 基因多态性与结直肠癌关系的研究表明 VEGF 936 C /C基因型或936 C等位基因与结直肠 癌的生成无关,但有助于减少术后结肠吻合口瘘的 发生。含有VEGF 936 T基因的结直肠癌患者术后 并发吻合口瘘的机会增加,或许VEGF 936 T基因 可作为检测结直肠癌或预测结直肠癌术后并发吻合 口瘘的一个危险因素,但这需要进一步的研究。同 时观察这一基因多态性在其他伤口愈合并发症中的 作用也将很有意义。 血管内皮生长因子936 T/C基因多态性 与结直肠癌及术后吻合口瘘的关系 吴国洋王效民Michael Keese Till Hasenberg JêrgW. Sturm 血管内皮生长因子基因多态性与肺癌危险度的关系 Lee SJ , Lee SY, Jeon HS, et al/ / Cancer Ep idemiol Biomarkers Prev, 2005, 14: 571 - 575 背景和目的:血管生成是包括肺癌在内的恶性肿瘤发 生、发展和转移中的一个重要过程。血管内皮生长因子基 因( vascular endothelial growth factor, VEGF)变异可以导致 其编码蛋白的产量和活性的改变,通过作用于肿瘤的血管 生成过程,从而引发个体对肺癌易感性的差异。为了检验 这一假设,作者研究了韩国人VEGF基因的3个单核苷酸多 态性( - 460T >C、+ 405C > G和936C > T)及其单倍型和肺 癌危险度之间的关系。方法:研究对象包括432名肺癌患者 和432名年龄和性别匹配的对照。运用贝叶斯定理构建单 体型。采用logistic回归校正相关协变量计算OR值。结果: 在+ 405位点,与CC和CG基因型比较, GG基因型个体小 细胞肺癌危险度显著降低,调整OR 值为0136, 95%可信限 为0117~0178; 936位点变异基因型(CT和CT + TT)个体较 野生基因型(CC)个体小细胞肺癌的危险度降低,调整OR 值分别为0147和0144, 95%可信限分别为0126~0185和 0124~0180。CGT单体型与小细胞肺癌的危险度降低相关, 调整OR值为0139, 95%可信限为0118~0187;而TCC与小 细胞肺癌的危险度增加相关,调整OR 值为1163, 95%可信 限为1114~2133。上述多态性对小细胞肺癌以外的肺癌类 型的危险度没有影响。单体型TCT和TGT与整体肺癌危险 度相关,调整OR值分别为0138和3194, 95%可信限分别为 0125~0160和2100~7176, TCT和TGT单体型的这种作用 在3种主要的肺癌组织类型中均有发现。结论: VEGF基因 多态性与个体肺癌遗传易感性有关。 (冷曙光) Objectives: Vascular endothelial growth factor (VEGF) is a potent stimulus

麻醉药物基因组学研究论文

麻醉药物基因组学研究论文 本文对药物基因组学的基本概念和常用麻醉药的药物基因组学研究进展进行综述。 药物基因组学是伴随人类基因组学研究的迅猛发展而开辟的药物遗传学研究的新领域,主要阐明药物代谢、药物转运和药物靶分子的基因多态性及药物作用包括疗效和毒副作用之间关系的学科。 基因多态性是药物基因组学的研究基础。药物效应基因所编码的酶、受体、离子通道作为药物作用的靶,是药物基因组学研究的关键所在。基因多态性可通过药物代谢动力学和药物效应动力学改变来影响麻醉药物的作用。 基因多态性对药代动力学的影响主要是通过相应编码的药物代谢酶及药物转运蛋白等的改变而影响药物的吸收、分布、转运、代谢和生物转化等方面。与麻醉药物代谢有关的酶有很多,其中对细胞色素-P450家族与丁酰胆碱酯酶的研究较多。基因多态性对药效动力学的影响主要是受体蛋白编码基因的多态性使个体对药物敏感性发生差异。 苯二氮卓类药与基因多态性:咪唑安定由CYP3A代谢,不同个体对咪唑安定的清除率可有五倍的差异。地西泮是由CYP2C19和CYP2D6代谢,基因的差异在临床上可表现为用药后镇静时间的延长。 吸入麻醉药与基因多态性:RYR1基因变异与MH密切相关,现在已知至少有23种不同的RYR1基因多态性与MH有关。氟烷性肝炎可能源于机体对在CYP2E1作用下产生的氟烷代谢产物的一种免疫反应。 神经肌肉阻滞药与基因多态性:丁酰胆碱酯酶是水解琥珀酰胆碱和美维库铵的酶,已发现该酶超过40种的基因多态性,其中最常见的是被称为非典型的(A)变异体,与用药后长时间窒息有关。 镇痛药物与基因多态性:μ-阿片受体是阿片类药的主要作用部位,常见的基因多态性是A118G和G2172T。可待因和曲马多通过CYP2D6代谢。此外,美沙酮的代谢还受CYP3A4的作用。儿茶酚O-甲基转移酶(COMT)基因与痛觉的产生有关。 局部麻醉药与基因多态性:罗哌卡因主要由CYP1A2和CYP3A4代谢。CYP1A2

基因多态性与髋关节发育不良的相关性研究进展_侯华成

caloric restriction on the gene expression of Foxo13,and4 (FKHR,FKHRL1,and AFX)in the rat skeletal muscles[J].Mi- crosc Res Tech,2002,59(4):331-334. [7]Liu CM,Yang Z,Liu CW,et al.Effect of RNA oligonucleotide tar-geting Foxo-1on muscle growth in normal and cancer cachexia mice[J].Cancer Gene Ther,2007,14(12):945-952. [8]Kim HJ,Kobayashi M,Sasaki T,et al.Overexpression of FoxO1in the hypothalamus and pancreas causes obesity and glucose intoler- ance[J].Endocrinology,2012,153(2):659-671. [9]Waddell DS,Baehr LM,van den Brandt J,et al.The glucocorticoid receptor and FOXO1synergistically activate the skeletal muscle at- rophy-associated MuRF1gene[J].Am J Physiol Endocrinol Metab,2008,295(4):E785-E797. [10]Sandri M,Lin J,Handschin C,et al.PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3action and atrophy-spe- cific gene transcription[J].Proc Natl Acad Sci U S A,2006,103 (44):16260-16265. [11]Yang H,Wei W,Menconi M,et al.Dexamethasone-induced protein degradation in cultured myotubes is p300/HAT dependent[J].Am J Physiol Regul Integr Comp Physiol,2007,292(1):R337-R344.[12]Smith IJ,Alamdari N,O'Neal P,et al.Sepsis increases the expres-sion and activity of the transcription factor forkhead box O1 (FOXO1)in skeletal muscle by a glucocorticoid-dependent mecha- nism[J].Int J Biochem Cell Biol,2010,42(5):701-711. [13]Sandri M,Sandri C,Gilbert A,et al.Foxo Transcription factors in-duce the atrophy-related ubiquitin ligase atragin and cause skeletal muscle atrophy[J].Cell,2004,117(3):399-412. [14]Mammucari C,Milan G,Romanello V,et al.FoxO3controls auto-phagy in skeletal muscle in vivo[J].Cell Metab,2007,6(6):458- 471. [15]Frost RA,Nystrom GJ,Jefferson LS,et al.Hormone,cytokine,and nutritional regulation of sepsis-induced increase in atrogin-1and MuRF1in skeletal muscle[J].Am J Physiol Endocrinol Metab, 2007,292(2):E501-E512.[16]Crossland H,Constantin-Teodosin D,Gardiner SM,et al.A poten-tial role for Akt/FOXO signalling in both protein loss and the im- pairment of muscle carbohydrate oxidation during sepsis in rodent skeletal muscle[J].J Physiol,2008,586(Pt22):5589-5600.[17]Alamdari N,Constantin-Teodosin D,Murton AJ,et al.Temporal changes in the involvement of pyruvate dehydrogenase complex in muscle lactate accumulation during lipopolysaccharide infusion in rats[J].J Physiol,2008,586(6):1767-1775. [18]Yachi K,Inoue K,Tanaka H,et al.Localization of glucocorticoid-induced leucine zipper(GILZ)expressing neurons in the central nervous system and its relationship to the stress response[J].Brain Res,2007,1159:141-147. [19]Krzysiek R.Role of glucocorticoid-induced leucine zipper(GILZ)expression by dendritic cells in tolerance induction[J].Transplant Proc,2010,42(8):3331-3332. [20]He L,Yang N,Isales CM,et al.Glucocorticoid-induced leucine zipper(GILZ)antagonizes TNF-αinhibition of mesenchymal stem cell osteogenic differentiation[J].PLoS One,2012,7(3):e31717.[21]Bruscoli S,Donato V,Velardi E,et al.Glucocorticoid-induced leu-cine zipper(GILZ)and long GILZ inhibit myogenic differentiation and mediate anti-myogenic effects of glucocorticoids[J].J Biol Chem,2010,285(14):10385-10396. [22]Sun X,Fischer DR,Pritts TA,et al.Expression and binding activity of the glucocorticoid recepter are upregulated in septic muscle[J]. Physiol Regul Integr Comp Physiol,2002,282(2):R509-R518.[23]Sun X,Nlammen Jnl,Tian X.Sepsis induces the transcription of the glucocorticoid recepter in skeletal muscle cell[J].Clin Sci (Lond),2003,105(3):383-391 [24]Peruchi BB,Petronilho F,Rojas HA,et al.Skeletal muscle electron transport chain dysfunction after sepsis in rats[J].J Surg Res, 2011,167(2):e333-338. [25]Mirza KA,Wyke SM,Tisdale MJ.Attenuation of muscle atrophy by an N-terminal peptide of the receptor for proteolysis-inducing factor (PIF)[J].Br J Cancer,2011,105(1):83-88. 收稿日期:2012-05-14修回日期:2012-08-22编辑:刘劲 基因多态性与髋关节发育不良的相关性研究进展 侯华成1,2△,史冬泉2(综述),蒋青2※(审校) (1.南京大学医学院,南京210093;2.南京大学医学院附属鼓楼医院关节中心,南京210008) 中图分类号:R684.2文献标识码:A文章编号:1006-2084(2013)02-0252-04 doi:10.3969/j.issn.1006-2084.2013.02.020 摘要:髋关节发育不良(DDH)是婴幼儿时期一种常见的骨科疾病,发病率为1? 2?。其是由股骨头和(或)髋臼的大小、形态、取向和(或)组织构成异常导致,通常指关节囊松弛和(或)髋臼太浅。DDH可导致膝关节不稳定、关节疼痛、步态异常及早发型骨性关节炎,因此早期预防、早期诊断和早期治疗显得尤为重要。预防该病必须了解病因,而遗传因素是DDH的重要病因之一。 关键词:髋关节发育不良;基因多态性;病例对照研究 Research Progress in the Association between Gene Polymorphism and Developmental Dysplasia of the Hip HOU Hua-cheng1,2,SHI Dong-quan2,JIANG Qing2.(1.Medical School of Nanjing University,Nanjing210093,China;2.The Center of Diagnosis and Treatment for Joint Disease,Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University,Nanjing210008,China) Abstract:Developmental dysplasia of the hip(DDH)is a common skeletal disease during the period of infant and child,and its morbidity is nearly1?-2?.Hip dysplasia refers to an anomaly in the size,shape,o-rientation,or organization of the femoral head,acetabulum,or both.This disease usually comprises shallow ac-etabulum and/or lax joint capsule.Hip instability,joint pain,gait abnormalities and premature arthritis are common clinical signs.It is important to prevent,diagnose and treat DDH as early as possible.More about the etiopathogenesis should be learned for the prevention,and genetic factor is one of the most important etiologi-cal factors of the disease. Key words:Developmental dysplasia of the hip;Gene polymorphism;Case-control study 髋关节发育不良(devel-opmental dysplasia of the hip,DDH)表现为股骨头与髋臼的相对位置异常,主要原因为关节囊松弛和(或)髋臼太浅[1]。危险因素很多,包括臀先露、女性、巨大儿、多胎妊娠、首次妊娠、羊水过少、襁褓的使用[2]和遗传因素[3]。遗传学研究发现,DDH呈家族聚集倾向,双生子研究表明单卵双生同时发病率为41%,而双卵双生仅 · 252 ·医学综述2013年1月第19卷第2期Medical Recapitulate,Jan.2013,Vol.19,No.2

临床药学习题

名词解释: 1、治疗药物检测 2、有效血药浓度范围 简答题: 1、治疗药物监测的定义是什么? 2、开展治疗药物监测的意义是什么? 3、尽管血液中的药物浓度与靶位浓度并不相等,但为什么仍将检测血药浓度的大小作为调整剂量的依据? 4、剂量与血药浓度之间相关性的影响因素有哪些? 5、何为有效血药浓度范围?何为目标浓度?有效血药浓度范围与药物效应有何关系? 6、体内药物分析的目标物有哪些?为什么说测定游离药物浓度更有指导意义? 7、目前治疗药物监测常用的体内药物分析方法有哪些? 8、药物分析方法学确证包括哪些方面?各有何要求? 9、体内药物分析的质量控制的目的意义是什么?质量控制分哪两大部分? 10、回顾性室内质量控制主要方法是什么?质量控制图绘制的目的和方法是什么? 11、何为室间质量控制?开展室间质量控制的目的和主要程序是什么? 12、治疗药物监测的主要临床指征是什么?哪些情况不需要进行治疗药物监测? 13、治疗药物监测的主要流程是什么? 14、治疗药物监测的采样时间如何决定? 15、样本采集注意事项是什么? 16、如何做好治疗药物监测结果解释工作和向临床提供咨询服务? 17、血药浓度检测结果可能会出现哪些情况?如何处置? 18、调整给药方案主要从那几方面入手? 19、治疗药物监测的临床应用主要在哪些方面? 20、常规的治疗药物监测的药物主要有哪些? 21、给药方案的调整主要有哪些方法? 22、群体药动学在TDM中的应用有哪些方面? 23、群体药动学的定义是什么? 24、群体药动学的应用特点和意义? 25、群体药动学分析方法中存在有几个主要参数群?各是什么? 26、何为混合效应?何为混合效应模型法? 27、何为Bayesian反馈法? 28、NONMEN法和Bayesian反馈法的意义及其实施步骤是什么? 29、NONMEN软件有何特点? 第三章 名词解释: 1、临床试验 2、知情同意 3、检察员 4、病例报告表 5、多中心临床试验 6、临床试验标准操作规程

基因多态性分析

人基因多态性分析 一、实验目的 1. 了解基因多态性在阐明人体对疾病、毒物的易感性与耐受性、疾病临床表现的多样性以及对药物治疗的反应性中的重要作用。 2. 了解分析基因多态性的基本原理和研究方法。 二、实验原理 基因多态性(gene polymorphism)是指在一个生物群体中,同时存在两种及以上的变异型或基因型或等位基因,也称为遗传多态性(genetic polymorphism)。人类基因多态性对于阐明人体对疾病的易感性、毒物的耐受性、药物代谢差异及遗传性疾病的分子机制有重大意义;与致病基因连锁的多态性位点可作为遗传病的诊断标记,并为分离克隆致病基因提供依据;病因未知的疾病与候选基因多态性的相关性分析,可用于辅助筛选致病易感基因。 聚合酶链反应-限制性片段长度多态性(polymerase chain reaction—Restriction Fragment Length Polymorphism,PCR-RFLP)分析是一种常用的DNA分子标记。原理是通过PCR扩增获得目的基因。若目的基因存在等位变异(多态性),且变异正好发生在某种限制性内切酶识别位点上,使酶切位点增加或者消失,则酶切结果就会产生大小不同的片段,即片段长度多态性,再利用琼脂糖凝胶电泳分离,可呈现出多态性电泳图谱。若将患者与正常的多态性图谱比较,可确定是否变异。应用PCR-RFLP,可检测某一致病基因已知的点突变,进行直接基因诊断,也可以此为遗传标记进行连锁分析进行间接基因诊断。 三、器材与试剂 1. 器材 ⑴离心机。 ⑵DNA扩增仪。 ⑶电泳仪。 ⑷水平电泳槽。 ⑸紫外检测仪。 ⑹移液器。 2. 试剂

2020年浙江省执业药师继续教育试题答案24分

2020年浙江省执业药师继续教育试题答案 《识别和防范药品与食品相互作用中的各种风险》 1、进入体内的酒精接受由肾辅酶Ⅰ、肝醇脱氢酶、乙醇脱氢酶的作用在肝脏氧化,所代谢产物的是(单项选择)B A.甲醛 B.乙醛 C.丙烯醛 D.甲酸 2、服用华法林抗凝治疗期间,可拮抗或削弱其抗凝血作用的药品是D(单项选择) A.维生素A B.维生素B C.维生素C D.维生素K 3、葡萄柚汁为肝药酶CYP3A4中效抑制剂,可受其可影响使代谢抑制和出现肌肉毒性的药品是(单项选择)A A.辛伐他汀 B.氯吡格雷 C.苯巴比妥 D.尼尔雌醇 4、服用抗甲亢药期间应严格避免摄入的食物是(单项选择)C A.富含钾的食物 B.富含铁的食物 C.富含碘的食物 D.富含硒的食物 5、可抑制人体内的单胺氧化酶,导致酪胺食物代谢受阻,引起血压迅速升高的药品是(单项选择)B A.洛伐他汀 B.异烟肼 C.头孢哌酮 D.尼美舒利 6、应用后可能影响新生儿心脏、呼吸、血管功能,全身呈灰色,出现“灰婴综合征”的抗生素是(单项选择)C A.四环素 B.阿奇霉素 C.氯霉素 D.万古霉素 7、食醋可以降低体液的环境,抑制尿酸排泄,使疗效降低的药品是A (单项选择) A.抗痛风药 B.抗高血压药 C.抗心绞痛药 D.抗震颤麻痹药 8、抗血小板药氯吡格雷为前药,在体内须经脂酶(85%)和肝酶(15%)双重代谢,两步代谢均需经过的代谢酶是(单项选择)D A.CYP2C6 B.CYP2C9 C.CYP2C12 D.CYP2C19 9、3岁以下婴儿进食蚕豆,最快在2小时内发生溶血,或致新生儿黄疸的原因是儿童体内缺乏的酶是(单项选择)C A.乙醛脱氢酶 B.单胺氧化酶 C.葡萄糖6-磷酸脱氢酶 D.凝血酶 10、大量饮用葡萄釉汁可抑制洛伐他汀、阿托伐他汀和瑞舒伐他汀等在小肠的首关代谢和肝代谢,其共同竞争性抑制的肝药酶是(单项选择)B A.CYP1A2 B.CYP3A4 C.CYP2C9 D.CYP2D6

相关文档
相关文档 最新文档