文档库 最新最全的文档下载
当前位置:文档库 › 高斯光束-ZEMAX-52

高斯光束-ZEMAX-52

高斯光束-ZEMAX-52
高斯光束-ZEMAX-52

1

Analysis menu: Physical Optics, Skew Gaussian Beam

I. Skew ( Skew Gaussian Beam ) : Skew 參數 Skew 離 Skew 參數 不 參 理

Fig.1 Analysis…Physical Optics Skew Gaussian Beam

2

II. ( Settings ) :

Fig.2 Skew Gaussian Beam Settings

:

大学毕业论文-高斯光束通过梯度折射率介质的传输特性

本科毕业设计论文 设计(论文) 题目高斯光束通过梯度折射率介质中的传输特性 指导教师 姓名___________ 辛晓天________ ____ 学生 姓名___________ 赵晓鹏________ ____ 学生 学号_________ 200910320129___ ___ _院系_______理学院________ _ 专业 ____ 应用物理_____ _ 班级____ 0901___ _

高斯光束通过梯度折射率介质中的传输 特性 学生姓名:赵晓鹏指导教师:辛晓天 浙江工业大学理学院 摘要 本文利用广义惠更斯-菲涅耳衍射积分(Collins公式)法,导出了高斯光束在均匀介质和梯度折射率介质中传输的解析表达式。对高斯光束在均匀介质和梯度折射率介质中传输特性进行了分析,重点分析了梯度折射率系数和传输距离对传输特性的影响。结果表明,高斯光束在梯度折射率介质中传输时,随着梯度折射率的变化,轴上光强分布呈周期性变化;在梯度折射率系数一定时,其轴上光强分布关于光强最大位置是对称的。 关键词:广义衍射积分法、高斯光束、均匀介质、梯度折射率介质、传输特性 - 1 -

Propagation properties of Gaussian beams in Gradient-Index medium Student: Zhao Xiao-Peng Advisor: Xin Xiao-Tian College of Science Zhejiang University of Technology Abstract Using the generalized Huygens Fresnel diffraction integral (Collins formula), this paper deduces the analytical expression of Gauss beam in a homogeneous medium and gradient refractive index medium.The Gauss beam propagation in homogeneous media and the gradient refractive index medium are analyzed, and analyze the influence of gradient refractive index coefficient and transmission distance of the transmission characteristics.The results show that Gauss beams in the gradient index medium transmission, along with the change of gradient refractive index, light intensity on axis changes periodically;In the gradient refractive index coefficient is fixed, the axial intensity distribution of light intensity maximum position is symmetrical. Keywords:Generalized diffraction integral; Gaussian beam; homogeneous medium;Gradient-index media; Propagation properties - 2 -

工程光学习题解答--第二章-理想光学系统

第二章 理想光学系统 1.针对位于空气中的正透镜组() 0'>f 及负透镜组() 0'f ()-∞=l a ()' 2f l b -= ()f f l c =-=

() /f l d -= ()0=l e ()/f l f = ')(f f l g -= = '22)(f f l h -==

+∞=l i )( 2.0'

0)(=l e 2/)(f l f = f l g =)( l h )(= +∞=l i )(

2. 已知照相物镜的焦距f ’=75mm,被摄景物位于(以F 点为坐标原点) =x ,2,4,6,8,10,m m m m m -----∝-处,试求照相底片应分别放在离物镜的像方焦面多远 的地方。 解: (1)x= -∝ ,xx ′=ff ′ 得到:x ′=0 (2)x ′=0.5625 (3)x ′=0.703 (4)x ′=0.937 (5)x ′=1.4 (6)x ′=2.81 3.设一系统位于空气中,垂轴放大率*-=10β,由物面到像面的距离(共轭距离)为7200mm , 物镜两焦点间距离为1140mm 。求该物镜焦距,并绘出基点位置图。 解: ∵ 系统位于空气中,f f -=' 10' '-=== l l y y β 由已知条件:1140)('=+-+x f f 7200)('=+-+x l l 解得:mm f 600'= mm x 60-= 4.已知一个透镜把物体放大*-3投影到屏幕上,当透镜向物体移近18mm 时,物体将被放大*-4,试求透镜的焦距,并用图解法校核之。 解:方法一: 31 ' 11-==l l β ? ()183321'1--=-=l l l ①

Zemax入门例子一套

如何在Zemax下模拟单模光纤的光束耦合 本文描述了一种商用的光纤耦合器,系统使用SUSS MicroOptics FC-Q-250微透镜阵列来耦合两根康宁(Corning)SMF-28e光纤。如下图所示: 供应商提供的上述元件的参数如下:单模光纤,康宁SMF-28e 数值孔径0.14 纤芯直径8.3μm 模场直径@1.31μm 9.2±0.4μm 微透镜阵列,SUSS MicroOptics SMO39920 基片材料熔融石英 基片厚度0.9mm 内部透过率>0.99 透镜直径240μm 透镜节距250μm 曲率半径330μm 圆锥常数(Conic constant)0 数值孔径0.17 附件中的文件single mode coupler.zmx 是整个系统的Zemax文件。请注意一下几点: 物面到透镜的距离和透镜到像面的距离设定为0.1mm,是因为这比较接近实际情况。后面经过优化过程时候,这个尺寸还会发生变化; 透镜到像面的距离使用了Pick-up solve,以确保和前面的物面到透镜的距离之间相等。既然两组透镜和光纤之间是完全一致的(在制造公差之内),因而整个系统也就应该是空间反演对称和轴对称的(either way round); 两个透镜之间的距离设定为2mm,因为这个是实验中使用的数据。同样地,这个距离后面也将会被严格的优化;系统孔径光阑设定为根据光阑尺寸浮动(float by stop size),而光阑设定在第一个透镜的后表面。这就意味着系统的孔径光阑由透镜的实际孔径决定。因而光纤的模式在这个系统中传输的过程中,就有可能受限于透镜的实际孔径。在这个例子中,光纤的模式要比透镜的实际孔径小很多。 当心“数值孔径”的多种不同定义。它有可能指的是边缘光束倾角的正弦值,有可能是光强降低到1/e2时的光束倾角的正弦值(我们将会看到Zemax会在不同的场合使用这两种定义),也有可能定义为光强降到1%峰值强度时光

Zemax 2003 中高斯光束计算步骤

Zemax 2003 中步骤: Anaylsis-calculations-gaussian beam中计算高斯光束传输(快捷键 ctrl +B) Gaussian beam data-setting中初始高斯光束 参数设置: M2:光束的模式,为大于1的整数,1为单基模,大于1为多模。 Surf 1 to Waist:1面距离束腰的距离,因此一般做法是在物面和光学组前插一个1面,将束腰“放在”1面上。 Divergence:远场发散角。 Radius:光波的半径,束腰处无穷大。 Rayleigh:瑞利长度,这三个随便一本激光原理的书里都有。 目前我的一个认识:高斯光束计算在zemax 2003中可以也只能计算束腰尺寸,位置,远场发散角等,欢迎大家相互交流。Email: boooq@https://www.wendangku.net/doc/ba7887909.html, by hust—booq 2008-1-26 PS:没有时间翻译,在这里把Zemax里所有有关资料汇总一下,给出一个简单案例。 -=-=-=-=-=--=-=-=-=-=--=-=-=-=-=--=-=-=-=-=--=-=-=-=-=--=-=-=-=-=- 高斯光束Zemax介绍 Computes Gaussian beam parameters. Wavelength: The wavelength number to use for the calculation. M2 Factor: The M2 quality factor used to simulate mixed mode beams. See the Discussion. Waist Size: The radial size of the embedded (perfect TEM00 mode) beam waist in object space in lens units. Surf 1 to Waist: The distance from surface 1 (NOT the object surface) to the beam waist location. This parameter will be negative if the waist lies to the left of surface 1. Update, Orient, Surface: See below. Discussion: This feature computes ideal and aberrated Gaussian beam data, such as beam size, beam divergence, and waist locations, as a given input beam propagates through the lens system. This discussion is not meant to be a complete tutorial on laser beam propagation theory. For more information on Gaussian beam propagation, see one of the following references: "Lasers", A. E. Siegman, University Science Books (1986), "Gaussian beam ray-equivalent modeling and optical design", R. Herloski, S. Marshall, and R. Antos, Applied Optics Vol. 22, No. 8 pp. 1168 (1983), "Beam characterization and measurement of propagation attributes", M. W. Sasnett and T. F. Johnson, Jr., Proc. SPIE Vol. 1414, pp 21 (1991), and "New developments in laser resonators", A. E. Siegman, Proc. SPIE Vol. 1224, pp 2 (1990). A Gaussian laser beam is described by a beam waist size, a wavelength, and a location in object space. The Gaussian beam is an idealization that can be approached but never attained in practice. However, real laser beams can be well described by an embedded Gaussian beam with ideal characteristics, and a quality factor, called M2, which defines the relative beam size and divergence with respect to the

物理光学 第三章

第三章 高斯光束基本理论 激光由于其良好的方向性、单色性、相干性和高亮度在军事中在已经有了很多应用,激光器发出的光束是满足高斯分布的,因而本章将对高斯光束的基本特性和一些参数进行简单地理论描述。 高斯光束及基本参数 激光器产生的光束是高斯光束。高斯光束依据激光腔结构和工作条件不 同,可以分为基模高斯光束、厄米分布高阶模高斯分布、拉盖尔分布高阶模高斯 分布和椭圆高斯光束等。激光雷达常常使用激光谐振腔的最低阶模00TEM 模。 高斯光束的分布函数: )exp(),(22 0a r I a r I -= (3-1) 从激光谐振腔发出的模式辐射场的横截面的振幅分布遵守高斯分布,即光能量遵守高斯分布,但是高斯光束不是严格的电磁场方程解,而是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以很好地描述基模激光光束的性质。稳态传输电磁场满足赫姆霍兹方程: ()0,,),,(2=+?z y x E k z y x E (3-2) 式中),,(z y x E 与电场强度的复数表示),,,(t z y x E 间有关系: )ex p(),,(),,,(t i z y x E t z y x E ω= (3-3) 高斯光束不是式子(2-3)的精确解,而是在缓变振幅近似下的一个特解。得到 2 20 U(,)exp()11r U r z iz iz Z Z ω= --- (3-4) 是赫姆霍兹方程在缓变振幅近似下的一个特解 ,它可以变形为基模高斯光束的 场强度复振幅的表达式: 2222002(x,y,z)exp exp (z)(z)(z)2(z)x y x y U U i k z R ω?ωω????????++?? =-+-???? ??? ?????????? (3-5) 其中的(z)ω为振幅衰减到中心幅值1/e 时的位置到光束中心的距离,称为光束在

高斯光束研究

高斯光束通过非线性介质的自聚焦现象 摘要:随着信息技术和纳米技术的迅速发展,要求光信息存储器件中的最小信息位尺寸、大规模集成电路和微电子技术中的光刻线宽和光学显微镜的分辨率等均能达到纳米量级(<100nm),而由于光衍射本身的限制,无法达到实际需求。非线性薄膜材料的研究,通过选择非线性强的光学薄膜材料,调节激光能量和控制薄膜厚度及结构,在非线性薄膜结构的出射面能使光斑尺寸进一步下降,实现纳米光斑。该光斑通过近场耦合作用在信息存储薄膜或光刻薄膜上,从而实现纳米信息存储、纳米光刻或纳米成像。 本文主要研究高斯激光束通过非线性均匀绝缘介质后光强的改变。由电磁场基本原理,推导出高斯光束是缓变振幅条件下波动方程的近似解,研究其在介质突变面处的反射透射。重点研究高斯激光束在非线性介质中的传播问题,这一过程中有自聚焦现象。研究过程主要采用数值计算方法用差分方程代替偏微分方程研究问题的数值解。比较光强的变化。 关键词:高斯光束,非线性,自聚焦,差分方程

一、引言 随着信息技术和纳米技术的迅速发展,要求光信息存储器件中的最小信息位尺寸、大规模集成电路和微电子技术中的光刻线宽和光学显微镜的分辨率等均能达到纳米量级(<100nm ),而由于光衍射本身的限制,无法达到实际需求。而通过非线性薄膜材料的研究,通过选择非线性强的光学薄膜材料,调节激光能量和控制薄膜厚度及结构,在非线性薄膜结构的出射面能使光斑尺寸进一步下降,实现纳米光斑。该光斑通过近场耦合作用在信息存储薄膜或光刻薄膜上,从而实现纳米信息存储、纳米光刻或纳米成像。 实验中我们常常采用高斯光束作为光源进行问题研究。高斯光束是波动方程在缓变振幅下的一个特解,非线性介质的折射率随光强的变化而变化,因而高斯光束通过非线性介质发生自聚焦和衍射现象,从而改变能量分布。本文主要研究光强的变化,通过具体数值建立数学模型,采用差分方程代替偏微分方程以求得问题的数值解,研究光束通过非线性介质后能量的变化。 二、预备知识 (一)波动方程 波动理论认为,光是一定频率范围内的电磁波,其运动规律可用Maxwell 方程组来描述: 0B E t D D H J t B ρ????=-??????=?? ????=+?????=?? (1-1) 其中, 上式中E 为电场强度,D 为电位移,H 为磁场强度,B 为磁感应强度,一般情况下他们都是矢量且为时间空间坐标的函数,还满足物质方程:

ZEMAX优化操作数汇总(全)

ZE M A X优化操作数 ZEMAX Merit Function,是在网上下下来的一个word文档,觉得蛮好的,一般用到的好像就是EFFL。呵呵,这个收集下,以后有用。 一阶光学性能 1. EFFL 透镜单元的有效焦距 2. AXCL 透镜单元的轴向色差 3. LACL 透镜单元的垂轴色差 4. PIMH 规定波长的近轴像高 5. PMAG 近轴放大率 6. AMAG 角放大率 7. ENPP 透镜单元入瞳位置 8. EXPP透镜单元出瞳位置 9. PETZ 透镜单元的PETZVAL半径 10. PETC反向透镜单元的PETZVAL半径 11. LINV 透镜单元的拉格朗日不变量 12. WFNO 像空间F/# 13. POWR 指定表面的权重 14. EPDI 透镜单元的入瞳直径

15. ISFN 像空间F/# (近轴) 16. OBSN 物空间数值孔径 17. EFLX “X”向有效焦距 18. EFLY “Y”向有效焦距 19. SFNO 弧矢有效F/# MTF数据 1. MTFT 切向调制函数 2. MTFS 径向调制函数 3. MTFA 平均调制函数 4. MSWT 切向方波调制函数 5. MSWS 径向方波调制函数 6. MSWA 平均方波调制函数 7. GMTA 几何MTF切向径向响应 8. GMTS几何MTF径向响应 9. GMTT几何MTF切向响应 衍射能级 1.DENC 衍射包围圆能量2.DENF 衍射能量

3.GENC 几何包围圆能量 4.XENC 像差 1. SPHA 在规定面出的波球差分布(0则计算全局) 2. COMA 透过面慧差(3阶近轴) 3. ASTI 透过面像散(3阶近轴) 4. FCUR透过面场曲(3阶近轴) 5. DIST透过面波畸变(3阶近轴) 6. DIMX 畸变最大值 7. AXCL 轴像色差(近轴) 8. LACL 垂轴色差 9. TRAR 径像像对于主光线的横向像差 10. TRAX “X”向横向色差 11. TRAY “Y”向横向色差 12. TRAI 规定面上的径像横向像差 13. TRAC径像像对于质心的横向像差

高斯光束的特性实验

实验二 高斯光束的测量 一 实验目的 1.熟悉基模光束特性。 2.掌握高斯光速强度分布的测量方法。 3.测量高斯光速的远场发散角。 二 实验原理 众所周知,电磁场运动的普遍规律可用Maxwell 方程组来描述。对于稳态传输光频电磁场可以归结为对光现象起主要作用的电矢量所满足的波动方程。在标量场近似条件下,可以简化为赫姆霍兹方程,高斯光束是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以足够好地描述激光光束的性质。使用高斯光束的复参数表示和ABCD 定律能够统一而简洁的处理高斯光束在腔内、外的传输变换问题。 在缓变振幅近似下求解赫姆霍兹方程,可以得到高斯光束的一般表达式: ()2 2 2 () [ ] 2() 00 ,() r z kr i R z A A r z e e z ωψωω---= ? (6) 式中,0A 为振幅常数;0ω定义为场振幅减小到最大值的1的r 值,称为腰斑,它是高斯光束光斑半径的最小值;()z ω、()R z 、ψ分别表示了高斯光束的光斑半径、等相面曲率半径、相位因子,是描述高斯光束的三个重要参数,其具体表达式分别为: ()z ωω= (7) 000 ()Z z R z Z Z z ?? =+ ??? (8) 1 z tg Z ψ-= (9) 其中,2 00Z πωλ = ,称为瑞利长度或共焦参数(也有用f 表示)。 (A )、高斯光束在z const =的面内,场振幅以高斯函数2 2 () r z e ω-的形式从中心向外平滑的减小, 因而光斑半径()z ω随坐标z 按双曲线:

2 20 ()1z z Z ωω - = (10) 规律而向外扩展,如图四所示 高斯光束以及相关参数的定义 图四 (B )、 在(10)式中令相位部分等于常数,并略去()z ψ项,可以得到高斯光束的等相面方程: 2 2() r z const R z += (11) 因而,可以认为高斯光束的等相面为球面。 (C )、瑞利长度的物理意义为:当0z Z = 时,00()Z ω= 。在实际应用中通常取0z Z =±范 围为高斯光束的准直范围,即在这段长度范围内,高斯光束近似认为是平行的。所以,瑞利长度越长,就意味着高斯光束的准直范围越大,反之亦然。 (D )、高斯光束远场发散角0θ的一般定义为当z →∞时,高斯光束振幅减小到中心最大值1e 处与z 轴的交角。即表示为: 00 ()lim z z z ωθλπω→∞ == (12) 三、实验仪器 He-Ne 激光器, 光电二极管, CCD , CCD 光阑,偏振片,电脑 四 实验内容: (一)发散角测量 关键是如何保证接收器能在垂直光束的传播方向上扫描,这是测量光束横截面尺寸和发散角的必要条件。

使用ZEMAX序列模式模拟激光二极管光源

使用ZEMAX序列模式模拟激光二极管光源 半导体激光器又称激光二极管,是用半导体材料作为工作物质的激光器。半导体二极管激光器是最实用最重要的一类激光器。它体积小、寿命长,并可采用简单的注入电流的方式来泵浦其工作电压和电流与集成电路兼容,因而可与之单片集成。并且还可以用高达GHz的频率直接进行电流调制以获得高速调制的激光输出。由于这些优点,半导体二极管激光器在激光通信、光存储、光陀螺、激光打印、测距以及雷达等方面以及获得了广泛的应用。工业激光设备上用的半导体激光器一般为1064nm、532nm、355nm,功率从几瓦到几千瓦不等。一般在SMT模板切割、汽车钣金切割、激光打标机上使用的是1064nm的,532nm 适用于陶瓷加工、玻璃加工等领域,355nm紫外激光适用于覆盖膜开窗、FPC切割、硅片切割与划线、高频微波电路板加工等领域。军事领域半导体激光器应用于如激光制导跟踪、激光雷达、激光引信、光测距、激光通信电源、激光模拟武器、激光瞄准告警、激光通信和激光陀螺等。 半导体激光二极管基本结构:垂直于PN结面的一对平行平面构成法布里—珀罗谐振腔,它们可以是半导体晶体的解理面,也可以是经过抛光的平面。其余两侧面则相对粗糙,用以消除主方向外其他方向的激光作用。激光二极管由于PN结发光位置不同,形成了两个方向的发散角,称之为二极管的快轴和慢轴如图所示,平行于PN结的方向为慢轴方向,垂直于PN结的方向为快轴方向,对于发光角度来说,快轴的发散角要大于慢轴发散角,一般两者的比值在2-3倍左右。 公式如下

公式中:θx和θy是快轴和慢轴的发散角,Gx和Gy是X和Y方向光束的超高斯因子,用来控制二极管光源能量的集中度。若Gx=Gy=1时则为理想高斯光束。αx或αy是光束发散角大小,用来计算激光半功率远场发散全角度因子。通常二极管厂家会给出激光功率衰减至一半时的半宽角度即θFWHM,也称为半功率角。对于高斯光束,光束半径通常定义为处于峰值强度的 1/e2处对应的半径。半功率角是由高斯光束半径确定的半发散角的1.18倍。 图1 OSRAM-SPL PL903 二极管参数表及半功率角图示 一般我们在ZEMAX中使用非序列模式来模拟激光二极管光源,方法较方便快捷。而当遇到较复杂系统运用或要求较高或光路优化时,需要在序列模式下模拟出激光二极管光源,此时光源模拟就较为复杂。

北交大激光原理第4章高斯光束部分-final

第四章高斯光束理论一、学习要求与重点难点 学习要求 1.掌握高斯光束的描述参数以及传输特性; 2.理解q参数的引入,掌握q参数的ABCD定律; 3.掌握薄透镜对高斯光束的变换; 4.了解高斯光束的自再现变换,及其对球面腔稳定条件的推导; 5.理解高斯光束的聚焦和准直条件; 6.了解谐振腔的模式匹配方法。 重点 1.高斯光束的传输特性; 2.q参数的引入; 3.q参数的ABCD定律; 4.薄透镜对高斯光束的变换; 5.高斯光束的聚焦和准直条件; 6.谐振腔的模式匹配方法。 难点 1.q参数,及其ABCD定律; 2.薄透镜对高斯光束的变换; 3.谐振腔的模式匹配。

二、知识点总结 22 ()220 020()()112()lim 2r w z z e w z w w R R z z z w z e z w πλλθπ-→∞??=?? ???????? =+? ???????? ? ?===??? 振幅分布:按高斯函数从中心向外平滑降落。光斑半径高斯光束基本性质等相位面:以为半径的球面,远场发散角:基模高斯光束强度的点的远场发散角, ()0 1/2 221 22 22 00()()1()()()1()11()()() ()()w f w z w z R z R z z R z w z i q z R z w z W z R Z w q z if z q z i z πλλπλππλ--??????=+?? ????? ????→??????=+??? ????????? =-→=+=+=+0(或)及束腰位置w 高斯光束特征参数光斑半径w(z)和等相位面曲率半径R(z), q 参数,将两个参数和统一在一个表达式中,便于研究??????????????? ???? ?? 高斯光束通过光学系统的传输规律

Zemax激光高斯光束仿真——开题报告

Zemax激光高斯光束仿真 _____开题报告 学生:陈琪物理与信息工程学院 指导老师:陈翔宇江汉大学 一.研究的目的和意义 激光自60年代初问世以来,由于其亮度高、单色性好、方向性强等优点,在许多领域得到了广泛应用。例如激光加工、激光精密测量与定位、光学信息处理和全息术、模式识别和光计算、光通信等。但无论激光在哪方面的应用,都离不开激光束的传输,因此研究激光束在各种不同介质中的传输形式和传输规律,并设计出实用的激光光学系统,是激光技术应用的一个重要问题。 激光具有方向性好能量散射少接近与单色光单位面积能量高等优点所以在光纤通信材料加工等方面有广泛应用。 光作为目前应用领域不论是在工业切割还是在医学光子领域各种各样的场合越来越需要引进这种光源。但由于激光具有单位面积能量高不易进行实物实验;还有就是各种光学元器件价格昂贵为了减少损失各种光学模拟软件应运而生。 光学模拟软件可以极大程度的还原真实的实验过程可以做各种各样的光路模拟波形仿真。 Zmax作为一款光学模拟软件其具有上手容易功能强大基本可以满足光学设计要求。 二.国内外现状及发展趋势 Zmax作为一款光学模拟软件其具有上手容易功能强大基本可以满足光学设计的要求,目前市面上主要的光学辅助设计软件有 ■Zemax (光学设计软件) ■TracePro(光学仿真软件) ■ASAP(光学仿真软件) ■LightTools(光学仿真软件) ■CODEV (Optical Research Associates ) ■OSLO (Lambda光学设计软件) ?ZEMAX 是将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起的一套综合性的光学设计仿真软件。 ?OSLO 是处理光学系统的布局和优化的代表性光学设计软件。 ?CODE V是Optical Research Associates推出的大型光学设计软件,功能非常强大,价格相当昂贵。 ?TracePro 是能进行常规光学分析、设计照明系统、分析辐射度和亮度的软件。 ?ASAP:世界各地的光学工程师都公认ASAP(Advanced Systems Analysis Program,高级系统分析程序)为光学系统定量分析的业界标准。ASAP的分析功能包括照明分析、辐射度测量、偏振、光纤耦合效率、干涉测量、杂光分析(散射和鬼影分析)、成像质量及薄膜镀膜性能分析。 ?LightTools是一个全新的具有光学精度的交互式三维实体建模软件体系,在系统初步设计、复杂系统设计规划、光机一体设计、杂光分析、照明系统设计分析、单位各

高斯光束

高斯光束的瞬时辐射照度示意图 纳米激光器产生的激光

场强(蓝色)和辐射照度(黑色)在坐标轴上的分布情况 共焦腔基模高斯光束腰斑半径 数学形式

高斯光束作为电磁波,其电场的振幅为: 这里 为场点距离光轴中心的径向距离 为光轴上光波最狭窄位置束腰的位置坐标 为虚数单位(即) 为波数(以弧度每米为单位) , 为电磁场振幅降到轴向的1/e、强度降到轴向的1/e2的点的半径 为激光的束腰宽度 为光波波前的曲率半径 为轴对称光波的Gouy相位,对高斯光束的相位也有影响 对应的辐射照度时域平均值为 这里为光波束腰处的辐射照度。常数为光波传播介质的波阻抗(Wave impedance)在真空中,。 对于在自由空间传播的高斯光束,其腰斑(spot size)位置的半径在光轴方向总大于一个最小值,这个最小值被称为束腰。波长为的光波的腰斑位置在轴上的分布为

这里将定义为束腰的位置。 与束腰轴向距离等于瑞利距离处的束宽为 曲率半径 是光束波前的曲率半径,它是轴向距离的函数 光束偏移 当,参数趋近于一条直线。这条直线与中央光轴的夹角被称为光束的“偏移”,它等于 在原理束腰的位置,光束弯散的总角度为

由于这一性质,聚焦于一个小点的高斯激光在远离这个点的传播过程中迅速散开。为了保持激光的准直,激光束必须具有较大的直径。束宽和光束偏移的这一关系是由于衍射的缘故。非高斯光束同样会表现这一效应,但是高斯光束是一种特殊情况,其束宽和偏移的乘积是可能达到的最小值。 由于高斯光束模型使用了近轴近似,当波前与光传播方向倾斜程度大于30度之后,这种模型将不再适用。通过上述偏移的表达式,这意味着高斯光束模型进队束腰大于的光束适用。 激光束的质量可以用束参数乘积(beam parameter product (BPP))来衡量。对于高斯光束,BBP的数值就是光束的偏移量与束腰的乘积。实际光束的BPP通过计算光束的最小直径和远场偏移量的乘积来获得。在波长一定的情况下,实际光束的BPP数值与理想激光束的BPP数值的比值被称为“M2”。高斯光束的M2值为1,而所有的是激光束的M2值均大于1,并且质量越好的激光的M2值越接近1。 Gouy相位 光束的纵向相位延迟,或称Gouy相位为 当光束通过焦点时,除了正常情况的相移,Gouy相移为。 复数形式的光束参数 光束参数的复数为 为了计算方便,常常使用它的倒数 光束参数的复数形式在高斯光束传播的分析中有着重要地位,特别是分析它在光谐振腔中谐振过程时。利用复数光束参数,具有一个横向维度的高斯光束电磁场与下式成比例 在二维的情况里,可以讲散光的光束表达为乘积的形式

在Zemax下模拟单模光纤的光束耦合

在Zemax下模拟单模光纤的光束耦合 文章来源: https://www.wendangku.net/doc/ba7887909.html,/index.php?doc-view-318 设计前的准备 Zemax公司感谢Suss MicroOptics SA公司的Reinhard Voelkel博士提供本文使用到的实验数据。 我们同时提供本文的的日文版本 本文描述了一种商用的光纤耦合器,系统使用SUSS MicroOptics FC-Q-250微透镜阵列来耦合两根康宁(Corning)SMF-28e光纤。如下图所示: 供应商提供的上述元件的参数如下:单模光纤,康宁SMF-28e 数值孔径 0.14 纤芯直径8.3μm 模场直径@1.31μm 9.2±0.4μm 微透镜阵列,SUSS MicroOptics SMO39920 基片材料熔融石英

基片厚度 0.9mm 内部透过率 >0.99 透镜直径240μm 透镜节距250μm 曲率半径330μm 圆锥常数(Conic constant) 0 数值孔径 0.17 附件中的文件single mode coupler.zmx是整个系统的Zemax文件。请注意一下几点: 物面到透镜的距离和透镜到像面的距离设定为0.1mm,是因为这比较接近实际情况。后面经过优化过程时候,这个尺寸还会发生变化; 透镜到像面的距离使用了Pick-up solve,以确保和前面的物面到透镜的距离之间相等。既然两组透镜和光纤之间是完全一致的(在制造公差之内),因而整个系统也就应该是空间反演对称和轴对称的(either way round); 两个透镜之间的距离设定为2mm,因为这个是实验中使用的数据。同样地,这个距离后面也将会被严格的优化; 系统孔径光阑设定为根据光阑尺寸浮动(float by stop size),而光阑设定在第一个透镜的后表面。这就意味着系统的孔径光阑由透镜的实际孔径决定。因而光纤的模式在这个系统中传输的过程中,就有可能受限于透镜的实际孔径。在这个例子中,光纤的模式要比透镜的实际孔径小很多。 当心“数值孔径”的多种不同定义。它有可能指的是边缘光束倾角的正弦值,有可能是光强降低到1/e2时的光束倾角的正弦值(我们将会看到Zemax会在不同的场合使用这两种定义),也有可能定义为光强降到1%峰值强度时光束倾角的正弦值,康宁便使用这种定义。这些非常重要! 孔径上定义了高斯切趾(Gaussian apodization),用来产生光束的高斯分布。当前这只是一

激光原理教案第4章

《激光原理技术及应用》讲义(第4章高斯光束) 王菲 长春理工大学 2007年4月

第四章 高 斯 光 束(4学时) §1.高斯光束的基本性质 一、波动方程的基模解 在标量近似下稳态传播的电磁场满足赫姆霍茨方程 (4-1-1) 其中标量u 0表示相干光的场分量。缓变振幅近似下的特解 (4-1-2) (4-1-3) 是Z 的缓变函数。 将(4-1-3)代入(4-1-1)得 (4-1-4) 设解 (4-1-5) 参数P(z)是与光束传播有关的复相移,q(z)是复曲率半径,表示光束强度随与光轴的距离22y x r += 呈高斯变化,在近轴处是球面。 (4-1-4)→(4-1-5) => (4-1-6) => (4-1-7a ) (4-1-7b ) (4-1-7a )=> (4-1-8) Z 0为输入与输出面间距离。(4-1-8)→(4-1-5)=> (4-1-9) 振幅r 下降到中心值的1/e 时,光斑尺寸k z r 02==0ω,即 (4-1-10) => (4-1-11)

又 (4-1-12) (4-1-12)→(4-1-5)=> (4-1-13) (4-1-14) (4-1-14)(4-1-10)=> (4-1-15) (4-1-13)=> (4-1-16) 由(4-1-7b )→(4-1-8)=>=> (4-1-17) (4-1-11)→(4-1-17)=> (4-1-18) 又 (4-1-19) => (4-1-20) 综上知 (4-1-21) (4-1-21)是波动方程(4-1-1)的一特解,称基模高斯光束。 基模高斯光束的性质由三参数决定。 (4-1-22) 二、高斯光束的基本性质 1.高斯光束在z =常数的平面内,场振幅以高斯函数 ) ) (exp(2z r ω- 的形式从中心(即传播轴

高斯光束定义

高斯光束介绍 通常情形,激光谐振腔发出的基模辐射场,其横截面的振幅分布遵守高斯函数,故称高斯光束。 我们常常会收到客户关于光斑大小的查询,其实问的就是光斑的束腰直径或束腰半径。束腰,是指高斯光绝对平行传输的地方。半径,是指在高斯光的横截面考察,以最大振幅处为原点,振幅下降到原点处的0.36788倍,也就是1/e倍的地方,由于高斯光关于原点对称,所以1/e的地方形成一个圆,该圆的半径,就是光斑在此横截面的半径;如果取束腰处的横截面来考察,此时的半径,即是束腰半径。沿着光斑前进,各处的半径的包络线是一个双曲面,该双曲面有渐近线。高斯光束的传输特性,是在远处沿传播方向成特定角度扩散,该角度即是光束的远场发散角,也就是一对渐近线的夹角,它与波长成正比,与其束腰半径成反比,计算式是:2*波长/(3.1415926*束腰半径),故而,束腰半径越小,光斑发散越快;束腰半径越大,光斑发散越慢。光斑描述如下图: 我们用感光片可以看到,在近距离时,准直器发出的光在一定范围内近似成平行光,距离稍远,光斑逐渐发散,亮点变弱变大;可是从光纤出来的光,很快就发散;这是因为,准直器的光斑直径大约有400微米,而光纤的光斑直径不到10微米。同时,对于准直器最大工作距离的定义,往往可理解为该准直器输出光斑的共焦参数,该参数与光斑束腰半径平方成正比,与波长成反比,计算式是:3.1415926*束腰半径*束腰半径/波长。所以要做成长工作距

离(意味着在更长的传输距离里高斯光束仍近似成平行光)的准直器,必然要把光斑做大,透镜相应要加长加粗。 我们对于准直系统的计算,理论根据就是高斯光束的传输特性计算式。对于线度远大于输入光斑的透镜来讲,该输入光可视为点光源,其远场发散角就是该点光源的“边沿线”夹角;于是我们可根据透镜的具体参数,简单的用几何光学的方法计算该准直系统的光斑大小和最大工作距离。 而从高斯函数,我们可以计算当通光孔径多大时,光能的损失是多少。并不是通光区直径等于或略大于光斑直径时,光能就可以完全通过,事实上,此时的损耗高达0.6dB。简单的估计,是让通光直径是光斑的2倍或以上。

激光原理 复习题答案(考研可参考)

激光原理复习题 第一章 电磁波 1. 麦克斯韦方程中 0000./.0t t μμερε????=-???????=+????=???=?B E E B J E B 麦克斯韦方程最重要的贡献之一是揭示了电磁场的内在矛盾和运动;不仅电荷和电流可以激发电磁场,而且变化的电场和磁场也可以相互激发。在方程组中是如何表示这一结果? 答:(1)麦克斯韦方程组中头两个分别表示电场和磁场的旋度, 后两个分别表示电场和磁场的散度; (2) 由方程组中的1式可知,这是由于具有旋度的随时间变化 的电场(涡旋电场),它不是由电荷激发的,而是由随时间变化的磁场激发的; (3)由方程组中的2式可知,在真空中,, J =0,则有 t E ??=? 00B *εμ ;这表明了随时间变化的电场会 导致一个随时间变化的磁场;相反一个空间变化的磁场会导致一个随时间变化的电场。这种交替的不断变换会导致电磁波的产生。 2, 产生电磁波的典型实验是哪个?基于的基本原理是什

么? 答:产生电磁波的典型实验是赫兹实验。基于的基本原理:原子可视为一个偶极子,它由一个正电荷和一个负电荷中心组成,偶极矩在平衡位置以高频做周期振荡就会向周围辐射电磁波。简单地说就是利用了振荡电偶极子产生电磁波。 3 光波是高频电磁波部分,高频电磁波的产生方法和机理与低频电磁波不同。对于可见光范围的电磁波,它的产生是基于原子辐射方式。那么由此原理产生的光的特点是什么? 答:大量原子辐射产生的光具有方向不同,偏振方向不同,相位随机的光,它们是非相干光。 4激光的产生是基于爱因斯坦关于辐射的一般描述而提出的。请问爱因斯坦提出了几种辐射,其中那个辐射与激光的产生有关,为什么? 答:有三种:自发辐射,受激辐射,受激吸收。其中受激辐射与激光的产生有关,因为受激辐射发出来的光子与外来光子具有相同的频率,相同的发射方向,相同的偏振态和相同的相位,是相干光。 5光与物质相互作用时,会被介质吸收或放大。被吸收时,光强会减弱,放大时说明介质对入射光有增益。请问增益系数是与原

试论高斯光束整形技术

试论高斯光束整形技术 发表时间:2016-01-27T14:56:49.093Z 来源:《医师在线》2015年10月第21期供稿作者:张海英 [导读] 北京V美精致雕颜平顶光束的转化,多年来一直成为中外学者研究探索的重要课题。 张海英 北京V美精致雕颜 100123 【摘要】:本文给出了一个整形系统的设计实例,简化了高斯光束整形系统的光学设计;解释了高斯光束的形成原理;利用Zemax编写计算了坐标变换的ZPL宏指令;通过非球面透镜实验,证实了高斯光束的整形变化。仿真设计结果表明,输出光斑的光强均匀度高、能量损耗小、符合使用标准。且方法易于操作、计算简单、具有较高的实用价值。 【关键词】光束整形高斯光束平顶光束 【引言】 平顶光束的转化,多年来一直成为中外学者研究探索的重要课题,国外主要以Alavinejad和B.Ghafar等人为主,国内的研究学者主要有罗时荣、季小玲、曾庆刚等人,本文利用ZEMAX软件对整形系统进行研究,根据上述理论设计了针对高斯光束的仿真实验系统,据此进行了相关实验,验证了设计结果。 目前将高斯光束转化为平顶光束的方法主要有:衍射光学元件法、长焦深整形原件法、双折射透镜组法、陈列光学元件法、液晶空间光调制器法、以及非球面透镜法,其中非球面最具实用价值,故而本文将重点对其进行介绍。 一基础理论 1.光束整形原理 依据M.F.Frieden的整形原理示意图,分别用字母表示入射光强,出射光强,入射面任意一条光线的坐标值,以及与其对应的出射平面坐标值,高斯光束束腰,平顶光半径,依据能量守恒定律,建立入射光线与出射光线的联系,可以得出入射面光线的坐标值和与其对应的出射面坐标值间的能量相等。 2.非球面面型参数 利用单片透视镜使光强分布在平面B,实现均匀分布,因为R与r间是非线性关系,所以B平面内光波,不是平面光波,因此需要采用双片式结构使B处光波转换为平面光波。根据三角函数关系及几何光学为依据;配合snell定律、三角恒等式等进行计算,通过大量的计算和比对,我们发现该方法计算过程较为复杂,不利于光学软件的优化设计。 二 .ZEMAX软件仿真设计 1软件功能介绍 ZEMAX软件是美国 Radiant Zemax 公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射、折射绕射等光学模型,并结合优化、公差等分析功能,是一套可以运算sequential及Non-Sequential的软件。可以按照光学系统的不同需求进行仿真操作,操作方便且精确度高,在激光整形系统中应用较为广泛。在序列模式下建模与优化,非序列模式下仿真,公差分析。选择适合的初始结构和系统优化三大步骤。 2平顶光束实验 在ZEMAX系统中,将工作波长设定为532nm,高斯光束束腰为6mm,平顶光束半径为6mm,通过率为90%,以硅胶玻璃为介质,采用双透镜系统进行整形,选取入射平面上的200条光线,作为样品,利用zemax软件上的“reay”对每条出射光的投射高度进行操控。 要保证实验结果的准确性以及精确度,必须要保证初始结构的选取绝对精确,否则将无法达到预期的效果。为保证设计效果的准确。须要分进行步完成设计。 首先设计但透镜整形系统:第一面为平面,第二面为高次非球面。在zpl下进行语言优化。借助图标可以得到,经过单透镜系后的高斯光束,已转换为平顶光束,此系统光程差较大,只能在固定区域内实现光束平均化,因而将对其进行更为精准的优化。 在原有的设计基础上,将一非球面透镜加至原像面处,有zemax的无焦像空间模式就,对准直系统进行进一步优化。实验结果表明,高斯光束,在普乐系统重整后,变为了平顶光束,出射光以平行状分布,但光束边缘处波动较大。 进一步对其进行公差分析可知,元件的偏心公差和倾斜公差,透视面的倾斜公差,对灵敏度的影响十分明显。因此提高系统装调精度,才能使光学系统得到更好的发挥。 三.平顶光束的特性 平顶光束的优势在于,可以将场分布函数用有限的厄米-高斯或拉盖尔-高斯模的和来表示。且于abcd相吻合。利用Li提出的模型以及基模高斯光束传播规律作为依据,对于平顶光束的特性进行研究,将不同模型的平顶光束表达式带入Collins公式中,得到结论,阶数增大,会使光场均匀性增强,会呈现平顶方波形式,阶数大时,光束光场分布变化减小。 平顶光束处于自由空间时,光阶数增加,平顶光束趋于平坦。呈现方形分布,若光阶数超出一定范围,光强分布逐渐减弱。 四.复杂的高斯光束 实验证明上述方法,至适用于球面整形的设计。对于谐振腔为方形德的激光器并不适用。因此研究厄米特-高斯光束和拉盖尔高斯光束的整形方法,是解决这一问题的关键。 首先利用zemax分别对两种光束,进行自动优化设计,得到光束设计图,通过对设计图的分析研究,找出平顶光束传输,存在一种特定的模式,不同的平顶光模型间存在的这种联系,可以将复杂的平顶光束转化为简单的光传输形式。这种传输形式的转换,对于复杂平顶光线在科学,医学,以及物理学方面的应用,提供了更加便利的条件。对于复杂平顶光线的应用具有重大意义。 五.总结与展望 概括来说,平顶光束可以弥补高斯光束,光束分布不均的缺点,且具有更强的实用性,对于人类科学,医疗方面的发展,具有重大的意义。本文对高斯光束转化为平顶光束,进行了合理的设计及论证;利用光学软件进行了设计优化;对于相对复杂的平顶光模型的整形技术进行了整合、细化、及推广。 然而,为了使其实用价值得到更加充分的体现,仍需对其进行更加系统化的实验研究,进而得到更为精确完整的理论。与此同时还应

相关文档
相关文档 最新文档