文档库 最新最全的文档下载
当前位置:文档库 › 半主动动力吸振镗杆系统的颤振抑制机理

半主动动力吸振镗杆系统的颤振抑制机理

半主动动力吸振镗杆系统的颤振抑制机理
半主动动力吸振镗杆系统的颤振抑制机理

振动控制的基本原理

B 图1-1 振动控制的基本原理 (1)电动台的工作原理及框图 载流导体载磁场中受电磁力的作用而运动,根据电磁学的基本原理,一段载流元dI 放在磁场中(见图1-1)所受的电磁力可用下式表示Df=BId ?sin (d ?^B )式中B 一载流导体所处磁场的磁通(Gs )I 一载流导体的电流有效值 (A )dI ^B 一电流元与V 的夹角载振动台的设计中d ?^B=90°则sin (d ?^B )=sin90°=1∴df=BId ?整个驱动动圈的线圈式由无数小电流元组成的因此动圈所受的力F 为 F=∫? 0BId ?=IB ?………(1-1) ?…………动圈的有效长度 显然,在上式中,当振动台与定型时B ?为定值则F αI 因此,当动圈上通过的电流I 以正弦规律变化,即产生所谓振动。 由(1-1)式可知 振动台的激振力大小取决于I 、B 、?三个参数的打小,气隙磁通B 的大小式不能无限制地增加的,当采取恒磁场时,B 一般为6000Gs 一7000Gs ,当采用单磁场励磁时,B 一般在13000Gs 左右,采用双

图1-2 动台体体积大小限制。如果要增加激振力,则要增加动圈驱动电流I 的大小,而I是由功率放大器提供的,也就要增大功率放大器输出的大小。 为了表明由功率化为激振力的能力,人们常用数来表达,它定义为每产生一公斤的激振力所需功率放大器的瓦数,称为该振动台的力常数。 在振动台的应用中常用下列量纲 I…………安培(A) ?…………厘米(cm) B…………高斯(Gs) F…………公斤力(kgf) 则(1-1)改写成 F=2x10-7IB ?……………………1—2 (2)电动台的框图及各部件作用 电动台的框图如图1-2所示

结构振动的主动控制技术

硕士研究生 非笔试课程考核报告 (以论文或调研报告等形式考核用) 2013 至 2014 学年 第 1 学期 考核课程: 防灾减灾学 提交日期: 2013 年 12月 20 日 姓 名 程伟伟 学 号 2012010305 年 级 研二 专 业 防灾减灾及防护工程 所在学院 土木工程学院 山东建筑大学研究生处制 考核成绩 考核人

结构振动的主动控制技术 程伟伟 (山东建筑大学土木工程学院,济南,250101) 摘要:主动控制是一项积极主动的智能化措施,是根据外界刺激和结构响应预估计所需的控制力,从而输入能量驱使作动器施加控制力或调节控制器性能参数,达到减震效果。对目前的主动控制技术的研究现状作了简要评述,阐述了振动主动控制中主要控制方法和策略及应用中存在的问题,并提出了振动主动控制技术的发展趋势。 Abstraction:Active Control is an intelligent proactive measures, are needed to control the pre-estimate based on external stimuli and response structures, thereby driving the input energy is applied to the actuator control or regulate the controller performance parameters to achieve the damping effect. The current research status of active control techniques are briefly reviewed, elaborated mainly active vibration control and application control methods and strategies for the problems and proposed active vibration control technology trends. 关键词:主动控制作动器与传感器控制方法 引言:主动控制是指在振动控制过程中,经过实时计算,进而驱动作动器对控制目标施加一定的影响,达到抑制或消除振动的目的。其控制效果好,适应性强,正越来越受到人们的重视。近几年,随着科学技术的发展,特别是在计算机技术和测控技术的推动下,振动主动控制有了长足进步。主动控制在越来越多的实际工程中应用的越来越多。 正文 地震给世界各国人民造成了巨大的灾害,土木工程结构振动控制是工程结构抗震领域的新课题。姚治平将振动控制与土木工程相结合,首次提出了土木工程结构振动控制的概念。对有效减轻地震灾害有着重要的现实意义。主动控制在声学中并不是一个新概念,早在20世纪30年代,Paul Lueg 就提出了利用主动噪声抵消发代替被动噪声控制,对低频噪声进行控制。由于振动传递远比声音的传递复杂得多,致使主动振动控制的研究共走进展相对较慢,直到二次世界大战后的军备竞赛才促使其迅速发展。纵观主动振动控制的发展过程,将其划分为重点突破、广泛探索和重点攻关三个阶段。从20世纪50年年代起,主动控制取得了三项突破,即实现了机翼颤振的主动阻尼没提高了飞机航速;主动振动控制提供了超静环境,保证惯导系统满足核潜艇和洲际导弹导航的进度要求;磁浮轴承控制离心机转子成功,创造出分离铀同位素的新工艺。20世纪50-60年代主动振动控制发展的重点突破阶段。上述成就迅速吸引了众多的专家研究这项技术。于是20世纪70年代变成为空广泛探索主动振动控制在各个工程领域应用的阶段。进入20世纪80年代,主动振动技术在几个工程领域的应用前景相当明朗,其中就有控制高挠性土木工程结构振动在、控制,于是,主动振动控制研究进入重点攻关阶段。目前,对主动控制的研究主要集中在:传感器、致动器、动力学建模及其振动控制、传感器/致动器的优化配置等几方面。控制技术分为主动、被动和半主动等类型。主动控制是指在振动控制过程中,根据所检测的振动信号,应用一定的控制策略,经过计算,进而驱动作动器为控制目标施加一定的影响,达到抑制或消除振动的目的。其控制效果好,适应性强,正越来越受到人们的重视。本文主要介绍主动控制技术的发展和展望。 主动控制是一种需要额外能量的控制技术,它与被动控制的根本区别是有无额外能量的消耗,是否具有完整的反馈控制回路。与被动控制相比,主动控制技术复杂、造价昂贵、维护要求高,但对于高层建筑或抗震设防要求高的建筑来说,主动控制具有更好的控制效果。主动控制装置大体上由仪器测量系统(传感器)、控制系统(控制器)、动力驱动系统(作动器)等组成。传感器测量姐欧股的动力响应或外部激励信息;控制器处理传感器测量的信息,实现所需的空置力,并输出作动器

振动主动控制

振动主动控制 振动控制是振动工程领域内的一个重要分文,是振动研究的出发点与归宿。从广义上说,振动控制包括两方面的内容‘一是振动的利用,充分利用有利的扳动,如各类振动机器等;另一是振动的抑制,尽量减小有害的振动,因为振动加速运转机械的磨损,缩短产品与结构的寿命,使人易于疲劳,侵仪器易于失灵。本书所讲的振动控制,只是振动的如制。 振动控制的任务就是通过一定的手段位受控对象的振动水平满足人们的预定要求。 这里,受控对象是各类产品、结构或系统的统称。为达到振动控制的目的所采取的手段,通常需经历如下五个环节: (1)确定振源特性与振动特征:确定振源的位置,激励的特性(简谐件、周期性、窄带随机性或宽带随机性)。振动特征(受迫型、白激型或参微型)等,因为不同性质的振源引起的振动,其解决的方法也不同。 (2)确定振动控制水平,即确定衡量振动水平的量及其指标,这些量可以是位移、速度或加速度、应力等,也可以是其最大值或均方根值。 (3)确定振动控制方法:不同的振动控制方法其适用性不同,这些方法包括隔振、吸振、阻振、消振及结构修改等。 (4)进行分析与设计:包括建立受控对象与控制装置(如吸振器、隔振器、阻尼器等)的力学模型、进行振动分析,以及对控制装置参数与结构的设计。 (5)实现:将控制装置的结构与参数从设计转化为实物。可实现性是振动控制研究中必须注意的重要问题。 按所采用的抑制振动手段区分,振动控制方法有五种: (1)消振:即消除或减弱振源,这是治本的方法。因为受控对象的响应是由根源(激励)引起的,外因消除或减弱,响应自然也消除或减弱。如对不平衡的刚性或柔性转子,采用动平衡方法消除或减弱它们在转动时因质量不平衡出现的离心力及力矩;如对高烟囱、热交换器等结构,由于卡门涡引起的流激振动,

振动控制 主动控制算法简介..

一、主动控制简介 1.概念:结构主动控制需要实时测量结构反应或环境干扰,采用现代控制理论的主动控制算法在精确的结构模型基础上运算和决策最优控制力,最后作动器在很大的外部能量输入下实现最优控制力。 2.特点:主动控制需要实时测量结构反应或环境干扰,是一种需要额外能量的控制技术,它与被动控制的根本区别是有无额外能量的消耗。 3.优缺点:主动控制具有提高建筑物的抵抗不确定性地面运动,减少输入的干扰力,以及在地震时候自动地调整结构动力特征等能力,特别是在处理结构的风振反应具有良好的控制效果,与被动控制相比,主动控制具有更好的控制效果。但是,主动控制实际应用价格昂贵,在实际应用过程中也会存与其它控制理论相同的问题,控制技术复杂、造价昂贵、维护要求高。 4.组成:传感器、控制器、作动器 5.工作方式:开环、闭环、开闭环。 二、简单回顾主动控制的应用与MATLAB应用 1.主动变刚度AVS控制装置 工作原理:首先将结构的反应反馈至控制器,控制器按照事先设定好的控制算法并结合结构的响应,判断装置的刚度状态,然后将控制信号发送至电液伺服阀以操纵其开关状态,实现不同的变刚度状态。 锁定状态(ON):电液伺服阀阀门关闭,双出杆活塞与液压缸之间没有相对位移,斜撑的相对变形与结构层变形相同,此时结构附加一个刚度; 打开状态(OFF):电液伺服阀阀门打开,双出杆活塞与液压缸之间有相对位移,液压缸的压力差使得液体发生流动,此过程中产生粘滞阻尼,此时结构附加一个阻尼。 示意图如下: 2. 主动变阻尼AVD控制装置 工作原理:变孔径阻尼器以传统的液压流体阻尼器为基础,利用控制阀的开孔率调整粘性油对活塞的运动阻力,并将这种阻力通过活塞传递给结构,从而实现为结构提供阻尼的目的。关闭状态(ON):开孔率一定,液体的流动速度受限,流动速度越小,产生的粘滞阻尼力越大,开孔率最小时,提供最大阻尼力,此时成为ON状态; 打开状态(OFF):控制阀完全打开,由于液体的粘滞性可提供最小阻尼力。 示意图如下:

动力吸振器自_图文(精)

第 22卷第 324期 2007年 8月 实验力学 J OU RNAL OF EXPERIM EN TAL M ECHANICS Vol. 22No. 324 Aug. 2007 文章编号 :100124888(2007 03&0420429206 磁流变弹性体自调谐式吸振器及其优化控制 3 王莲花 , 龚兴龙 , 邓华夏 , 倪正超 , 孔庆合 (中国科学技术大学力学和机械工程系 , 中国科学院材料力学行为与设计重点实验室 , 安徽合肥 230027 摘要 :本文研制了一种基于磁流变弹性体的自调谐式吸振器 , 能材料作为吸振器的弹性元件和阻尼元件 , 吸振器的固有频率 , 实现吸振器的移频。 , 。实验结果表明 , 减振效果最佳点 , 减振效果 , 减振效果最高可达 关键词 :; ; :A 0引言 动力吸振器自 1911年问世以来 [1], 在实践中得到了广泛的应用。它通过在需要减振的结构 (称为主系统上附加子结构 , 改变系统的振动能量的分布和传递特性 , 使振动能量转移到附加的子结构上 , 从而达到控制主系统振动的目的。传

统的动力吸振器多属被动控制 , 它对于主系统的窄带响应有着良好的吸振效果 , 但由于其吸振带宽不可调节 , 对于宽频激励引起的主系统的振动 , 吸振效果不是很理想。近年来 , 对于主动吸振器的大量研究表明 , 主动吸振器可以根据主系统的振动状态 , 自动调节自身的结构参数或振动状态 , 实现宽频吸振 , 提高了吸振器减振效果 , 大大拓宽了吸振器的应用范围。根据吸振器自动调节机理的不同 , 主动吸振器可分为全主动式吸振器和半主动式吸振器。全主动式吸振器是根据主系统的振动状态反馈调节吸振器的振动状态 , 使其对主系统的动态作用力与主系统的振动加速度反相 , 从而实现主系统实时宽频振动控制。 Tewanim 等人首先将主动振动控制技术与动力吸振器结合起来 , 提出了主动动力吸振器 [2]。很多研究都表明全主动式吸振器对宽频振动确实可起到很好的控制作用 [3~6], 但它也不可避免地存在耗能大、系统易出现不稳定等问题。半主动式吸振器则融合了被动吸振器和全主动式吸振器的优点 , 它通过调整动力吸振器的结构参数 , 使之跟踪主系统的外界干扰频率 , 最大限度地抑制主系统的振动 , 其结构相对简单 , 耗能低 , 且能实现宽频吸振。目前半主动式吸振器多为刚度连续可调结构 , 如机械式 [7]、电液式 [8]、电磁式 [9]等 , 而将新材料如压电 [10]、记忆合金 [11]和磁流变弹性体 [12]等用于半主动式吸振器的设计也成为当今研究的热点。 本文在前期工作的基础上 , 以磁流变弹性体作为智能变刚度单元 , 改进设计了一种自调谐式吸振器 (A TVA , 将遗传算法改进移植到吸振器上 , 对其减振性能进行优化控制。 1磁流变弹性体自调谐式吸振器 1. 1吸振器的工作原理 图 1是磁流变弹性体自调谐式吸振器的结构示意图 , 图 2是其实物图。图中 1

受电弓振动主动控制研究现状分析

受电弓振动主动控制研究现状分析 □宋一凡郭德勇梁继国 【内容摘要】电力机车高速行驶时,弓网振动将导致弓网接触力产生波动进而引起机车受流不良,降低机车运行性能甚至会损害机车电气设备。受电弓主动控制可以有效减小弓网振动,本文从控制算法方面介绍了受电弓振动主动控制的研 究现状,总结分析了近年来国内外学者在这方面取得的研究成果以及各种控制算法的优缺点,并展望了未来受电 弓振动主动控制的发展趋势和研究方向。 【关键词】电力机车;受电弓振动;主动控制;控制算法 【基金项目】本文为东北林业大学国家级大学生创新实验项目“电动载货车高速路随动取电装置”(编号:201810225079)资助项目研究成果。 【作者单位】宋一凡、郭德勇,东北林业大学交通学院;梁继国,吉林省辉南经营局 一、引言 受电弓与接触网接触受流牵引电力机车运行,空气动力、接触网的波传播和波反射、不规则风和轮轨状况等因素将引起弓网振动,而弓网振动将降低机车受流质量、加剧弓网磨损、增大运行噪声。随着机车运行时速提高,弓网振动带来的危害也将加剧,弓网振动成为限制电力机车提速的重要因素。目前,主要有两种方法解决振动问题:一是提高接触网刚度或增大接触线张力,二是增大弓网接触力。这两种方法均在一定程度上减小了弓网振动,但第一种需要更换接触网,成本巨大;第二种加剧弓网磨损的同时增大了安全隐患[1]。研究人员不得不寻找新的途径来解决振动问题,早期研究者提出利用主动控制技术来提高受电弓的跟随性。进行可控受电弓的研究渐渐成为了机车受电弓研究的一个重要课题。 对于受电弓振动主动控制的研究,欧洲和日本学者起步较早,2003年7月速度可达230km/h的振动主动控制受电弓在德国就已试验成功[2]。而我国学者对此类课题的研究起步较晚,发展尚停留在实验室阶段。尽管国内外已有很多研究涉及这一领域,但大多仅停留在控制策略的提出和数值仿真验证,难以在实践中得到应用,实现的瓶颈主要在于作动器的选择和能量供应问题,以及接触力反馈信号的实用性。本文从控制算法和作动器两个方面来介绍受电弓主动控制的研究现状和存在的问题,以期为受电弓主动控制的研究提供一些思路。 二、控制算法 控制算法作为主动控制的核心对其应有如下要求:所需控制信息量少,计算速度快,输出信息易于执行,复杂控制具有一定的自适应性。国内外对控制算法进行了大量研究,大体可分为以下五类(列出)。 (一)模糊控制。模糊控制自第一次成功应用以来,模糊控制理论已得到突飞猛进的发展,解决了许多现实问题。模糊控制具有很强的鲁棒性,适用于工作条件下具有非线性和参数时变性的受电弓,因此受电弓的模糊控制受到了学者的关注。 (二)变结构控制。由于变结构控制具有极强的鲁棒性且实现容易,尤其可以良好地自适应系统干扰,适用于线性和非线性,可有效处理弓网振动问题。但其缺点是当变结构控制到达切换面后受时滞和惯性的影响在滑模面附近来回穿梭,引起变结构振颤。变结构控制可分为两类,一类是非滑模变结构控制,另一类是滑模变结构控制。研究者对这两种变结构控制均有应用。 (三)线性二次型控制。线性二次型控制适用于时变系统,控制能量低,计算精度高,能有效处理扰动信号和测量噪声问题且易于构成闭环最优控制,可作为处理弓网振动问题的有效途径。 (四)预测控制。预测控制应具备以下三项基本原理:预测模型、滚动优化和反馈校正。线性模型的预测控制算法已非常成熟,但实际所需的控制系统大多是非线性的,因此现在预测控制的研究重点就成为非线性模型预测控制,弓网振动模型便是一种典型的非线性模型,相关研究者也将非线性模型预测控制用于受电弓的主动控制。 Mihai-Florin Taran等提出了一种基于模型预测控制策略的接触力闭环控制方法。预测控制使用有限变量构造的有限滚动时域估计,使用系统模型的离散时间公式,利用接触网模型中时变表达式得到离散模型,并提出二阶离散化方法,增设积分以消除稳态误差,得到线性时变模型。将控制目标转化为一个凸函数以表达误差的权重和对有限滚动时域估计的控制力[3]。任志玲根据弓网模型和接触力数据,利用预测控制技术预测下一时刻接触力,将预测值与理论值比较计算误差,模型预测控制器通过电流变阻尼器将计算结果转换为接触力的控制输入量。实验结果表明能够有效提高弓网耦合质量[4]。 (五)神经网络模型。刘仕兵等将NARMA-L2模型应用到弓网振动控制系统中并给出了控制方案:控制系统分为系统辨识部分和控制部分。系统识别部分采用在线辨识,响应快迟滞小,增加了系统的实时性。系统首先从被控制系统 · 36 ·

现代控制理论实验报告1__亚微米超精密车床振动控制系统设计

现代控制理论基础 上机实验报告之一 亚微米超精密车床振动控制系统的状态空间法设计

一:工程背景介绍 超精密机床是实现超精密加工的关键设备,而环境振动又是影响超精密加工精度的重要因素。为了充分隔离基础振动对超精密机床的影响,目前国内外均采用空气弹簧作为隔振元件,并取得了一定的效果,但是这属于被动隔振,这类隔振系统的固有频率一般在2Hz左右。 这种被动隔振方法难以满足超精密加工对隔振系统的要求。为了解决这个问题,有必要研究被动隔振和主动隔振控制相结合的混合控制技术。其中,主动隔振控制系统采用状态空间法设计。 二:实验目的 通过本次上机实验,使同学们熟练掌握: 1. 控制系统机理建模; 2. 时域性能指标与极点配置的关系; 3. 状态反馈控制律设计; 4. MATLAB语言的应用。 三:工程背景的物理描述 图1

图1表示了亚微米超精密车床隔振控制系统的结构原理,其中被动隔振元件为空气弹簧,主动隔振元件为采用状态反馈控制策略的电磁作动器。此为一个单自由度振动系统,空气弹簧具有一般弹性支承的低通滤波特性,其主要作用是隔离较高频率的基础振动,并支承机床系统。主动隔振系统具有高通滤波特性,其主要作用是有效地隔离较低频率的基础振动。主、被动隔振系统相结合可有效地隔离整个频率范围内的振动。 经物理过程分析得出床身质量的运动方程为: p a 0m s F F ++= (1) F ——空气弹簧所产生的被动控制力。 F ——作动器所产生的主动控制力。 假设空气弹簧内为绝热过程,则被动控制力可以表示为: p 0r r r e e {1[/()]}n F c y k y pV V A y A =++-+ (2) V ——标准压力下的空气弹簧体积; 0y s s =-——相对位移(被控制量); p ——空气弹簧的参考压力; A ——参考压力下单一弹簧的面积; e r 4A A =——参考压力下空气弹簧的总面积; n ——绝热系数。 电磁作动器的主动控制力与电枢电流、磁场的磁通量密度及永久磁铁和电磁铁之间的间隙面积有关,这一关系具有强非线性。 由于系统工作在微振动状况,且在低于作动器截止频率的低频范围内,因此主动控制力可近似线性化地表示为: a e a F k I = (3) e k ——力-电流转换系数; I ——电枢电流。 其中,电枢电流I 满足微分方程: a a a (,)()L I R I E Iyu t ++= (4) L ——控制回路电枢电感系数; R ——控制回路电枢电阻; E ——控制回路反电动势; u ——控制电压。 四:闭环系统的性能指标要求 要求闭环系统单位阶跃响应的超调量不大于5%,过渡过程时间不大于0.5 秒(0.02?=)。 五:车床振动系统的开环状态空间模型的建立

宽带动力吸振器优化设计

宽带动力吸振器优化设计 某炮舱在特定工况下壁板振动比较剧烈,需要采取有效措施抑制壁板振动。文章根据炮舱前两阶固有频率设计宽带动力吸振器,综合利用MATLAB和NASTRAN编制优化程序,提出了一种设计动力吸振器的新方法。计算炮舱安装吸振器前后的振动特性和频率响应特性。结果显示,综合优化后吸振器能够有效降低炮舱壁板的振动,说明这种优化方法是可行的。 标签:动力吸振器;参数优化;动力学设计 引言 振动工程实际中经常采用动力吸振的方法来抑制结构振动。根据结构动力学原理,某结构受到简谐激励的频率接近其的固有频率时便会发生共振。若此时在这个结构上附加动力吸振器,合理优化动力吸振器的结构参数,便可以吸收主结构的能量,达到动力吸振的效果。 目前,动力学优化的商业软件有iSIGHT和HyperWorks等。这些软件功能强大,对尺寸优化和材料优化等通用性的优化可以很好的完成。但是,动力吸振器的优化设计有其自身的特殊性,这些软件并不能完全适应这种情况。 以梁式动力吸振器为例,通用商业软件只能优化材料的密度、厚度或者针对几何体的边缘进行小范围的形貌优化;本文综合运用MATLAB计算软件和NASTRAN有限元软件,设计了一种优化程序。将优化变量设置为质量块的质量、梁的长度和厚度。同时,本文给出了这种优化方法的基本原理和可行性。 1 优化的基本思想 利用MATLAB可以调用外部程序的特点和其数据处理能力,对具有不同几何参数和物理参数的结构进行分析。具体步骤如下: (1)在Patran中建立舱体和吸振器的初始模型,提交Nastran分析,得到初始的bdf文件;(2)使用MATLAB修改初始BDF文件,从而改变相应的几何参数和物理参数;(3)用Nastran调用bdf文件进行动力学分析得到结果文件;(4)使用MATLAB编制程序提取出相关数据作为目标函数和约束。以上四个步骤依次迭代,直到满足优化条件为止。 2 优化算法的实现 2.1 确定优化变量 确定优化变量为吸振器的厚度t1、t2和吸振器上附加质量m1、m2。如图1,beam01的厚度为t1,beam02的厚度为t2,mass01的质量为m1,mass02的质量

振动主动控制系统

近年来随着各种高科技产业制程越来越精 密,相关的仪器设备对于环境振动隔离的要求也越来越严格。在半导体产业有许多设备都必须考虑降低环境振动,如曝光设备scanner、stepper,检验设备SEM、SPM、TEM、椭圆偏光仪等等,几乎每一台设备都需要安装隔振系统。 传统被动式隔振系统多半是以气垫弹簧或者是钢圈弹簧阻成,有些会再加入阻尼以降低自然频率的共振效果。适当的设计通常可以隔离频率在3、4 Hz以上的振动,而且越高频率的振动隔离效果越佳,但是却会放大低频率的振动,尤其是隔振系统自然频率的振动。对于结构第一自然频率超过20、30 Hz的多数仪器设备而言,这些无法隔离而传递上来的低频率地板振动在经过设备仪器结构体时,已经大幅衰弱而没有明显的影响。然而对于现代微奈米等

级的精密设备仪器而言,许多都对2、3 Hz的低频率振动十分敏感,变化缓慢的低频率振动可能对于承载大质量组件的梁结构造成类似静态弯曲的明显位移,造成系统内各个组件的相对运动,严重影响其定位的精度。例如,对于长行程的雷射量测应用,会产生光程的扰动;对于SPM(Scanning Probe Microscope)会使光学影像模糊;或是造成电子束偏离预期的路径等等。因此,如何有效隔离低频率振动,以降低对超精密仪器设备的影响,一直是高科技产业所关切的问题。在整个科技界朝向微小化的过程中,硬盘储存密度越来越大、半导体制程的线宽越来越小、所有光学系统分辨率越来越高,这些发展将使得低频率微振动的主动控制研究益发显得重要。因此,国内自行研发一个符合微奈米等级之精密仪器设备振动规范需求的主动式隔振系统,实为高科技产业所迫切需要的。

相关文档