文档库 最新最全的文档下载
当前位置:文档库 › 雷尼绍数控车床对刀仪的用途及设置.1

雷尼绍数控车床对刀仪的用途及设置.1

雷尼绍数控车床对刀仪的用途及设置.1
雷尼绍数控车床对刀仪的用途及设置.1

英国“雷尼绍”(RENISHAW)车床对刀仪的用途及原理

济南一机床集团有限公司李军

摘要:文中着重介绍了英国“雷尼绍”公司数控车床用对刀仪的种类、用途以及简要的工作原理,同时也简要介绍了在数控车床上采用对刀仪对提高加工精度及加工效率的意义。

关键词:对刀仪种类及用途工作原理

作为机械加工业中用量最大的数控车床,近些年来随国内经济的高速发展已迅速得到普及。今天,一个企业内拥有几十台甚至上百台数控车床早已不是什么稀罕事了。

但众所周知,使用数控车床的目地是提高工件的加工质量和效率。可是使用过数控车床的人都知道,在一个工件的加工过程中,工件的装卸、刀具的调整等辅助时间占用了加工周期中相当大的比例,其中的刀具调整更是既麻烦、又费力。统计资料证明,实现一个工件的加工,纯机动时间大约要占总时间的55%,装、夹和对刀等辅助时间却占到45%,这实在不是一个小数。

老话讲磨刀不误砍柴工,但在现代社会中,时间就是金钱,效率就是生命。要多砍柴就必须向磨刀要效益,对时间进行分秒必争。那么,在提高对刀效率方面我们还有什么好办法吗?实践证明,通过在数控车床上增设对刀仪装置即是一种向“磨刀”要时间的好方法。

以下,结合英国雷尼绍公司的对刀仪装置,谈谈它在构成、用途及简要工作原理等方面的知识:

1、雷尼绍公司有哪几种对刀仪装置?

目前在雷尼绍车床对刀仪系列产品中共有三种型号,其对刀的原理是一样的,只是按结构的复杂程度和操作的自动化水平分为低、中、高三档型号。

第一种,HPRA (H igh P recision R emovable A rm) 型:

这是一种结构较简单、价位低的型号,其特点是对刀仪的臂和基座之间是可分离的,使用时通过插拔机构把对刀仪臂安装至对刀仪基座上(图1)

图1:HPRA型对刀仪的系统构成

同时电器信号亦连通并进入可工作状态;用完后可将对刀臂从基座中拔出,放到合适的地方以保护精密的对刀臂和对刀传感器部分不受灰尘、碰撞的损坏。

第二种,HPPA (H igh P recision P ulldown A rm) 型:

这是一种较实用、中等价位的型号。其特点是对刀仪的臂和基座之间是可旋转联接、一体化的。使用时由操作者将对刀仪臂从保护套中摆动拉出(图2)

图2:HPPA型对刀仪的系统构成

不用时由操作者作把对刀仪臂再摆动推回保护套中。这一种对刀仪与上一种型号相比的优点是不必把对刀仪臂频繁地插上、拔出,避免了频繁插拔产生的磨损对对刀精度的影响及电信号传递的可靠性。因对刀仪摆回后传感器部分进入到保护套中,也不必担心其在工作过程中受到损坏。

第三种,HPMA (H igh P recision M otorised A rm) 型:

这是雷尼绍公司该系列产品中的高档型。其特点是对刀仪的臂和基座之间是通过扭矩电机来实现对刀臂的摆出和摆回(图3),除提高了自动化程度外,更重要的是可把对刀臂的摆出、摆回通过M代码编制到加工程序中,在加工循环过程中即可方便地实现刀具磨损值的自动测量、补偿和刀具破损的监测。

图3:HPMA型对刀仪

的系统构成

2、对刀仪都能干哪些工作?

(1)、可以快速、高效、精确地在±X、±Z及Y轴五个方向上进行刀具偏置值的测量和补偿,有效消除采用人工对刀易产生的对刀误差和效率低下的问题。

因为不管是采用何种切削刀具(外圆、端面、螺纹、切槽、镗孔还是车削中心上的铣、钻削动力刀具)进行工件型面车削或铣削时,所有参与切削刀具的刀尖点或刀具轴心线,都必须通过调整或补偿使其精确地位于工件坐标系的同一理论点或轴心线上。对动力型回转刀具,除要测量并补偿刀具长度方向上的偏置值外,同时还要测量和补偿刀具直径方向上的偏置值(刀具以轴心线分界的两个半径的偏置值)。否则机床也无法加工出尺寸正确的工件来。

安装、调整、或更换新刀具后,要使刀架上每把刀具的刀尖点或刀具的轴心线都准确地与机床坐标系零点(对数控车床而言,X轴机床坐标系的零点与主轴中心线重合;Z轴在主轴头前端发蓝的立面上)保持一个精准的固定值是不可能的,这是因刀具安装、调整、磨损后必然会产生的误差造成,或是更换刀具后新

刀具与旧刀具位置之间所产生的安装偏差值造成。所谓刀具偏置值就是指的这种误差值(图4)。

图4:四个坐标方向上的刀具的偏置值

在没有安装对刀仪的机床上,每把刀具的偏置值是通过对每把刀具都进行仔细的试切削,然后通过对试切削后的工件尺寸进行测量、计算、补偿(手工对刀)才可完成,肯定费时费力,稍不小心还会报废工件。当更换刀具后,这项工作还要重新进行。因而对刀实际上是占用机床辅助时间最长的工作内容之一。

在使用了对刀仪的机床上,因对刀后能够自动设置好刀具对工件坐标系的偏置值,从而自动建立起工件坐标系,在这种情况下加工程序中就无需再用“G50指令”来建立工件坐标系了。

(2)、可以对加工过程中的刀具磨损、破损进行自动监测、补偿和报警。

刀具在切削过程中会产生磨损,当这种磨损值达到一定程度后就应及时补偿,否则会影响工件尺寸的加工稳定性。在没有安装对刀仪的机床上完成磨损值的补偿是很麻烦的,需要频频的停下机床对工件的尺寸进行手工测量、还要将得到的磨损值人工敲到系统中去修改刀补参数。而当安装了对刀仪后,解决这个问题就方便简单的多了,特别是机床安装的是HPPA型或HPMA型后则更为方便。前者,只要根据刀具的磨损规律,干完一定数量的工件后停下机床,用对刀仪再进行一遍对刀的过程即可;后者,只要在程序中人为设定完成多少个加工循环后执行一次自动对刀,既可完成刀具的偏置补偿工作。

对于刀具破损报警或对刀具磨损到一定程度后进行强制更换,其原理也是一样,根据刀具允许的磨损量,人为设定一个“门槛值”,一旦对刀仪监测到的误差超过门槛值,即可认为刀具已破损或超过了允许的磨损值,则机床自动报警

停机,然后强制进行刀具的更换。

(3)、当机床因热变型造成滚珠丝杠伸长后,也可对由此而引起的刀具偏置值变动量进行补偿,以确保工件尺寸的稳定。

机床在工作循环过程中,由于机床直线运动产生的摩擦是以热量的形式体现出来,另还有一个不可忽视的热源是切削下来的铁屑向机床的热传导。这些因素的客观存在都会导致机床的变形特别是丝杠的热伸长,反映出来的现象是刀尖的位置要发生变化,其结果是工件的尺寸精度一定会随这种热变形同步变化。

如果在机床上安装了对刀仪装置,上述问题也可迎刃而解,无非是把这种由热变形产生的刀尖位置变化视为刀具的磨损值罢了,通过用对刀仪来测量及补偿这种新产生的刀具偏置值即可解决。

3、对刀仪的简要工作原理

雷尼绍对刀仪的核心构件是由一个高精度的开关(传感器)、一个高硬度高耐磨性的硬质合金四面体(对刀探针)和一个信号传输接口器组成(其它构件略)。四面体探针是用于与刀具进行接触并通过安装在其下的绕性支撑杆把力向高精度开关传递;开关所发出的通、断信号通过信号传输接口器传输到数控系统中去进行刀具方向识别、运算、补偿、存取等。

不管是刀具偏置值还是磨损值还是热变形引起的刀尖位置变动值,实质上都可归结为刀具初始偏置值与刀具经工作一段时间后的实际偏置值之间的变动量。

数控机床的工作原理决定,当机床返回各自运动轴的机械参考点后,建立起来的是机床坐标系。该参考点一旦建立,相对机床零点而言,在机床坐标系数轴上的各运动方向就有了数值上的实际意义。

一般情况下此时只要在机床坐标系的基础上通过编程,建立起G50工件坐标系就可以进行实际加工了(仅使用机床坐标系十分不便于加工程序的编制)。但仅此对于安装了对刀仪的机床还不行,还必须要通过参数设定的方法来精确确定对刀仪传感器距机床坐标系零点的各方向实际坐标固定值才能满足使用(图5),否则数控系统将无法在机床坐标系和对刀仪固定坐标之间进行相互位置的数据换算。

图5:对刀仪的坐标系

当我们在机床上建立起来了“机床坐标系”和“对刀仪固定坐标”后(不同规格的对刀仪应设置不同的固定坐标值),有以下对刀仪的简要工作原理描述:(1)、机床各直线运动轴返回各自的机械参考点之后,机床坐标系和对刀仪固定坐标之间的相对位置关系就建立起了具体的数值。

(2)不论是使用自动编程控制还是手动控制方式操作多刀仪,当移动所选定的某个轴的刀具并使刀尖(或动力回转刀具的外径)触动、靠向对刀仪上四面探针的对应平面并探针通过绕性支撑杆摆动触发了高精度开关传感器后,开关会立即通知系统锁定该进给轴的运动。因为数控系统是把这一信号作为高级信号来处理,所以动作的控制会极为迅速、准确。

(3)由于数控机床直线进给轴上均安装有进行位置环反馈的脉冲编码器,数控系统中也有记忆该进给轴实际位置的计数器,此时系统只要读出该轴停止的准确位置,通过机床、对刀仪两者之间相对关系的自动换算,即可确定该轴刀具刀尖(或直径)的初始刀具偏置值了。换一个角度说,如把它放到机床坐标系中来衡量,即相当于确定了机床参考点距机床坐标系零点的距离与该刀具测量点距机床坐标系零点的距离及两者之间的实际偏差值。

(4)不论是工件切削后产生的刀具磨损、还是滚珠丝杠热伸长后出现的刀尖变动量,只要再进行一次对刀的作业,数控系统就会自动把测得的该把刀具的新刀具偏置量与该把刀具的初始刀具偏置量进行比较计算,并将需要进行补偿的δ误差值自动补偿进刀补存储区中去。当然,如果换了新的一把刀具,再对其重新进行对刀,所获得的偏置值就应该是该刀具新的初始刀具偏置值了。

附:雷尼绍对刀仪能达到怎样的对刀精度?

根据实际应用情况及有关资料证明,雷尼绍对刀仪能达到以下精度:

15"以下卡盘(含15")的中小规格数控车床,使用雷尼绍对刀仪能达到的对刀重复精度为:±5um 。

18"以上卡盘(含18")的大规格数控车床,使用雷尼绍对刀仪能达到的对刀重复精度为:±8um 。

在以上篇幅中,只是将雷尼绍对刀仪装置的构成、用途及简单的工作原理进行了简要介绍。受篇幅所限,有关对刀仪安装后的调试、参数设置及使用方法、注意事项等,不在此赘述。

(完)

广州数控车床对刀操作要点

一、对刀:(切平端面为0点) 1、X 值比实际测量的直径值要小(X<实测值),输入“U-xxx ”(xxx 代表X 值与实测直径值的差值) 2、X 值比实际测量的直径值要大(X>实测值),输入“U+xxx ”(xxx 代表X 值与实测直径值的差值) 补完后按“位置”,看X 是不是等于实际的直径值。不是的话就是补错了,那就用回现在的(当前页面的)的X 值和实际直径值再比较,再补了。 3、Z 值是“-xxx ”(负数),就输入“W-xxx ” (xxx 代表Z 坐标的数字) 4、Z 值是“+xxx ”(正数),就输入“W+xxx ” (xxx 代表Z 坐标的数字) 补完后按“位置”,看Z 是不是等于0。不是的话就是补错了,那就用回现在的(当前页面的)的Z 值中的数字再补了。 5、如果X 或Z 的值跟实际的值一样就不用补了 注意!!改刀补:一定要在“序号”那个页面里改。按“上下翻页”可以切换的。 000 001 002 ….. 否则!重新对刀! 刚开机: 主轴转 MDI (录入方式)>>程序>> “ ”上下翻页 >> M03 >> 输入 >> S1000 >> 输入 >> 循环启动(绿色的) 对刀时换刀: MDI (录入方式) >>程序>> “ ”上下翻页 >> 输入 >>循环启动(绿 色的)

对刀时尽量保留多些用于对刀的面(是基准刀<1号刀>车出来的),不要都车掉,不然未对的刀(2、3、4号刀)对的就不是刚开始切的面了,误差就增大了。因为用于对刀的面是基准刀<1号刀>车出来的,所以第一把刀随便怎么切都行,只要不要车小于工件(滑轮)所需要的材料就行了,不然对刀的那段材料就废掉了。 对完刀后,车第一个工件后测量合格后再车第二个,直到合格为止。 如果测量不合格的在刀补上改,哪把刀车出来的就在哪把刀上面改,同时要注意分清楚是补“U”(X轴)还是“W”(Z轴),是正“+”还是负“-” 不合格的可能是以下4种情况: 1、车出来的外圆大了(即X轴方向),就输入“U-xxx”;车出来的外圆小了就输入“U+xxx” (xxx代表大了或小了的数值) 2、车出来的内孔大了(即X轴方向),就输入“U-xxx”;车出来的内孔小了就输入“U+xxx” (xxx代表大了或小了的数值) 3、车出来长度A尺寸小(短)了,同时B尺寸也小了,就是切断刀(2号刀)要往Z轴 的负方向补“W-xxx”;如果是A尺寸大(长)了,同时B尺寸也大了,就是切断刀(2号刀)要往Z轴的正方向补“W+xxx”(xxx代表长了或短了的数值) 4、其它情况的就是程序问题或刀磨损了。

雷尼绍检查规

QC20-W无线球杆仪系统 硬件 软件

QC20-W 球杆仪及球杆仪组件 QC20-W 球杆仪包括一个雷尼绍自主设计的精密位移传感器(已申请专利)。它用于测量球杆仪在绕一个固定点旋转时的半径变化。该数据用于根据 ISO 230-4、ASME B5.54/57和GB17421.4等国际标准计算定位精度的总体测量值(圆度、圆度偏差)。在采用雷尼绍独特的诊断报告格式分析该数据时,还可提供单个误差源的详细诊断。数据以图形和数字的格式显示,用以帮助故障诊断。 信号处理在球杆仪内部进行,数据传输使用Bluetooth ?(蓝牙)二类模块输送至匹配的个人计算机中。传感器壳体上有一个LED 状态指示灯,对通讯、电池和故障状态进行指示。 每套系统随机配备一只标准(非充电型)CR2锂电池,不过系统的电子装置和组件也允许使用可充电CR2电池。 Zerodur ?校准规 每套QC20-W 组件 (A-8014-1510) 均随附一个Zerodur ?校准规,用于校准球杆仪的长度。它是由零温度膨胀系数的材料制成的。 当与Zerodur ?校准规配合使用时,QC20-W 球杆仪可以计算绝对(而不是相对)误差,来决定各轴比例匹配关系和径向偏差值,满足ISO 230-4和ASME B5.54/57分析所需。 此外,此软件还会自动计算待测机器的位置公差。(位置公差值是在球杆仪测试区域、在无负载条件下对机器在某一平面内双向定位精度好坏的一个估计) Zerodur ?校准规可以校准100 mm 、150 mm 及300 mm 的长度。小圆组件包含一个50 mm Zerodur ?校准规。 QC20-W 球杆仪组件 组件包括 ? QC20-W 无线球杆仪(和一只CR2电池)? 中心座 ? 工具杯 ? 50、150和300 mm 加长杆? Zerodur ?校准规? 系统软件(含手册)? 中心设定球? 机器验证卡 ? 校准证书 ? 系统便携箱(便携箱组件包括用于存放小圆组件和VTL 适配器的带槽口的海绵块) Zerodur ?为Schott Glass T echnologies Inc.公司的商标。 2 QC20-W 球杆仪 Bluetooth 文字商标和标识归Bluetooth SIG, Inc.所有,Renishaw plc 使用的所有此类商标均已获得授权。其他商标和商品名为各自所有者拥有。

数控车床对刀原理及方法步骤实用详细

数控车床对刀原理及方法 步骤实用详细 Last revision date: 13 December 2020.

数控车床对刀原理及对刀方法 对刀是数控加工中的主要操作和重要技能。在一定条件下,对刀的精度可以决定零件的加工精度,同时,对刀效率还直接影响数控加工效率。 仅仅知道对刀方法是不够的,还要知道数控系统的各种对刀设置方式,以及这些方式在加工程序中的调用方法,同时要知道各种对刀方式的优缺点、使用条件(下面的论述是以FANUC OiMate数控系统为例)等。 1 为什么要对刀 一般来说,零件的数控加工编程和上机床加工是分开进行的。数控编程员根据零件的设计图纸,选定一个方便编程的坐标系及其原点,我们称之为程序坐标系和程序原点。程序原点一般与零件的工艺基准或设计基准重合,因此又称作工件原点。 数控车床通电后,须进行回零(参考点)操作,其目的是建立数控车床进行位置测量、控制、显示的统一基准,该点就是所谓的机床原点,它的位置由机床位置传感器决定。由于机床回零后,刀具(刀尖)的位置距离机床原点是固定不变的,因此,为便于对刀和加工,可将机床回零后刀尖的位置看作机床原点。 在图1中,O是程序原点,O'是机床回零后以刀尖位置为参照的机床原点。 编程员按程序坐标系中的坐标数据编制刀具(刀尖)的运行轨迹。由于刀尖的初始位置(机床原点)与程序原点存在X向偏移距离和Z向偏移距离,使得实际的刀尖位置与程序指令的位置有同样的偏移距离,因此,须将该距离测量出来并设置进数控系统,使系统据此调整刀尖的运动轨迹。 所谓对刀,其实质就是侧量程序原点与机床原点之间的偏移距离并设置程序原点在以刀尖为参照的机床坐标系里的坐标。 2 试切对刀原理 对刀的方法有很多种,按对刀的精度可分为粗略对刀和精确对刀;按是否采用对刀仪可分为手动对刀和自动对刀;按是否采用基准刀,又可分为绝对对刀和相对对刀等。但无论采用哪种对刀方式,都离不开试切对刀,试切对刀是最根本的对刀方法。 以图2为例,试切对刀步骤如下:

数控车床对刀操作方法

数控车床对刀操作方滕 一、FANUC绻统对刀操作、设置方滕 1、必须完成回零操作。 2、装夹好刀具、工件。 3、选择手动方式(JOG),使刀具接近工件。 4、选择MDI方式,输入转速如M3S400,按下启动键。 5、选择手轮方式,选择合适的位移速度。 6、选择X轴,踃整好切削深度,溿Z轴切削一段距离。 7、然后溿Z轴退回(滨意:在Z轴退回前、后,X轴方向不能移动,待输入参数后方可移动) 8、按下 键让主轴停止旋转,再按下 键进入刀补界面,接着再按下 ―→ ,此 时CRT显示如下:(滨意:第一竖列中显示应为G001,而不是WOO1) 9、用游标卡帺测量试切过的外圆直径,帆光标移到G001行中的X列,并帆测量值Φ输入为XΦ后 按下 ,完成X方向对刀设置。 10、再次在启动主轴,踃整好端面切削量,溿X轴切平端面,并溿X轴退回(Z方向不可移动)。 11、帆光标移到G001行中的Z列,输入Z0后按下 ,完成Z方向对刀设置。 12、帆刀具移至安全位置。

二、SIEMENS绻统对刀操作、设置方滕 1、必须完成回零操作。 2、装夹好刀具、工件。 3、选择手动方式(JOG),使刀具接近工件。 4、选择MDI方式,输入转速如M3S400,按下启动键 。 5、选择手轮方式,选择合适的位移速度。 6、按下JOG键,再按 键,按 键选X轴,踃整好切削深度,溿Z轴切削一段距离。 7、然后溿Z轴退回(滨意:在Z轴退回前、后,X轴方向不能移动,待输入参数后方可移动) 8、按下 键让主轴停止旋转,再按下 ―→ ,此时CRT显示如下: 9、用游标卡帺测量试切过的外圆直径,帆光标移到Φ后,输入测量值Φ如 后按 下 ―→ ,完成X方向对刀设置。 10、再次在启动主轴,踃整好端面切削量,溿X轴切平端面,并溿X轴退回(Z方向不可移动)。

数控机床FANUC系统对刀步骤

数控机床F A N U C系统对 刀步骤 Last updated on the afternoon of January 3, 2021

数控机床对刀步骤 法兰克加工中心机床 一、主轴转速的设定 ○1、将工作方式置于“MDI”模式; ○2、按下“程序键”; ○3、按下屏幕下方的“MDI”键; ○4、输入转速和转向(如“S500M03;”后按“INSRT”); ○5、按下启动键。 二、分中 1、意义:确定工件X、Y向的坐标原点。 2、X、Y平面原点的确定。 ○1、四面分中 ○2、两面分中,碰单边 ○3、单边碰数 3、抄数 ○1、意义:将分中后的机械值输入工件坐标系中,借以建立与机床坐标原点的位置关系。○2、方法: →切换到工件坐标系:OFS/SET→坐标系→选择具体的工件坐标系(如G54、G55、 G56、G57、G58、G59等)→输入“X0”后按屏幕下方的“测量”键(或直接输入机械坐标值)。 4、分中的类型 ○1、四面分中

○2、单边碰数 ○3、X轴分中,Y轴碰单边 ○4、Y轴分中,X轴碰单边 ○5、有偏数工件原点的确定,如X30Y20 5、分中的方法 试切分中 如果分中的要求不高,或工件为毛坯料,而且外形均可铣去,为了方便操作,可采用加工时所用的刀具直接进行碰刀,从而确定工作原点,其步骤如下(一四面分中为例): ○1、将所要用到的铣刀装在主轴上,并使主轴中速旋转; ○2、手动移动铣刀沿X方向靠近工件被测边,直到铣刀刚好切削刀工件材料即可; ○3、保持X、Y不变将Z轴沿+Z方向升起,并在相对值处将X轴置零; 归零方法: 按下X后按屏幕下方的“起源”或“归零”; ○4、将X轴移动到工件另一边,同样用刀具刚好切到工件材料即可; ○5、将主轴沿+Z方向升起; ○6、将X轴移到此时X轴相对值的1/2处(口算、心算或计算器); ○7、利用相同的方法测Y轴; ○8、抄数。 注:试切分中虽然比较简单,但会在工件表面留有刀痕,所以常用于铝和铜等毛坯料的分中。 6、分中棒分中: ○1、原理:采用离心力的原理。 ○2、方法及步骤:

FANUC0i-TD数控车床对刀理论及方法的探讨

FANUC0i-TD数控车床对刀理论及方法的探讨 [摘要]通过对数控加工中工件坐标系建立的理论实质的探讨,分别介绍了在 FANUC0i-TD数控车床上用G50、G54、T指令对刀的实质和方法,并介绍了如何充分运用三种指令建立工件坐标系的有效途径。 [关键词]刀偏基准刀非基准刀刀位点绝对刀偏相对刀偏 在数控加工操作中,最重要的一环就是建立工件坐标系,工件坐标系的建立是通过对刀来实现的。对刀的目的有两个,一方面通过对刀建立工件坐标系,另一方面通过对刀可以找出非基准刀与基准刀之间的刀位偏差(简称刀偏)。 (一)绝对刀偏法和相对刀偏法对刀的实质 加工工件时,通常要使用多把刀具,我们将其中的一把常用的刀称为基准刀,把其它的刀称为非基准刀。如果刀位偏差为零,如图1所示,则每一把刀转到加工位置时,其刀位点都应在图1A所示的位置。但由于每一把刀的几何形状及其安装位置的不同,不同刀位上的刀具转到工作位置时,它们的刀位点的位置并不重合,如图2所示,而在X、Z向存在一定的偏差。我们将非基准刀的刀位点相对于基准刀的刀位点(或基准点)在X、Z向的偏差ΔΧ、ΔΖ称为刀位偏差(简称刀偏)。 根据非基准刀刀位点相对位置的不同,可以把刀位偏差分为绝对刀偏和相对刀偏。某一把的绝对刀偏是指该把刀的刀位点位于工件原点时,刀架的转塔中心相对于机床零点在X 和Z向的偏差。而相对刀偏是指非基准刀的刀位点位于工件原点时刀架的转塔中心相对于基准刀的刀位点位于工件原点时刀架的转塔中心在X、Z方向的偏差。根据所采用的刀位偏差的不同,对刀又可以分为绝对刀偏对刀法和相对刀偏对刀法。相对刀偏法只为基准刀建立了一个工件坐标系,而非基准刀是根据其刀位偏差的正负,来确定它在对应的X、Z方向应比基准刀多走或少走一个刀位偏差,从而使长度不一样的刀具达到同一实际位置。一般来说,如果某一非基准刀在X或Z方向的刀位偏差为负值,说明这把刀在对应的X或Z向比基准刀短。程序运行时,通过刀具长度补偿使该把刀在对应的方向比基准刀多走一个刀位偏差。如果某一非基准刀的刀位偏差为正值,说明这把刀在对应的X或Z向比基准刀长。程序运行时,通过刀具长度补偿使该把刀在对应的方向比基准刀少走一个刀位偏差。 绝对刀偏法对刀的过程,实质上就是压某一把刀的刀位点与工件原点重合时,找出刀架的转塔中心在机床坐标系中的坐标。只是我们没有把这个坐标存储在G54这个寄存器中,而是直接把它存储到刀补寄存器中,这样调用T指令进行刀具长度补偿时,就相当于为每一把刀建立了一个工件坐标系。每一把刀的工件坐标系原点实质上并不是建立在刀位点上,而是建在刀架的转塔中心上,但是不管那一把刀转到工作位置,当刀架的转塔中心位于该把刀的工件坐标系的原点如图3的A时,这把刀的刀位点都应在O点,为了便于描述,所以我们通常说工件坐标系的原点建在O点,实质上它是在A点的。

数控车床对刀的原理及方法

一、数控车床对刀得原理: 对刀就是数控加工中得主要操作与重要技能。在一定条件下,对刀得精度可以决定零件得加工精度,同时,对刀效率还直接影响数控加工效率、仅仅知道对刀方法就是不够得,还要知道数控系统得各种对刀设置方式,以及这些方式在加工程序中得调用方法,同时要知道各种对刀方式得优缺点、使用条件等。 一般来说,数控加工零件得编程与加工就是分开进行得。数控编程员根据零件得设计图纸,选定一个方便编程得工件坐标系,工件坐标系一般与零件得工艺基准或设计基准重合,在工件坐标系下进行零件加工程序得编制。 对刀时,应使指刀位点与对刀点重合,所谓刀位点就是指刀具得定位基准点,对于车刀来说,其刀位点就是刀尖。对刀得目得就是确定对刀点, 在机床坐标系中得绝对坐标值,测量刀具得刀位偏差值。对刀点找正得准确度直接影响加工精度。在实际加工工件时,使用一把刀具一般不能满足工件得加工要求,通常要使用多把刀具进行加工。在使用多把车刀加工时,在换刀位置不变得情况下,换刀后刀尖点得几何位置将出现差异,这就要求不同得刀具在不同得起始位置开始加工时,都能保证程序正常运行。为了解决这个问题,机床数控系统配备了刀具几何位置补偿得功能,利用刀具几何位置补偿功能,只要事先把每把刀相对于某一预先选定得基准刀得位置偏差测量出来,输入到数控系统得刀具参数补正栏指定组号里,在加工程序中利用T 指令,即可在刀具轨迹中自动补偿刀具位置偏差。刀具位置偏差得测量同样

也需通过对刀操作来实现。 生产厂家在制造数控车床,必须建立位置测量、控制、显示得统一基准点,该基准点就就是机床坐标系原点,也就就是机床机械回零后所处得位置。 数控机床所配置得伺服电机有绝对编码器与相对编码器两种,绝对编码器得开机不用回零,系统断电后记忆机床位置,机床零点由参数设定。相对编码器得开机必须回零,机床零点由机床位置传感器确定、编程员按工件坐标系中得坐标数据编制得刀具运行轨迹程序,必须在机床坐标系中加工,由于机床原点与工件原点存在X向偏移距离与Z向偏移距离,使得实际得刀尖位置与程序指令得位置有同样得偏移距离,因此,须将该距离测量出来并设置进数控系统,使系统据此调 整刀具得运动轨迹,才能加工出符合零件图纸得工件。这个过程就就是对刀,所谓对刀其实质就就是测量工件原点与机床原点之间得偏移距离,设置工件原点在以刀尖为参照得机床坐标系里得坐标。 二、对刀方法 对刀得方法有很多种,按对刀得精度可分为粗略对刀与精确对刀;按就是否采用对刀仪可分为手动对刀与自动对刀;按就是否采用基准刀,又可分为绝对对刀与相对对刀等、但无论采用哪种对刀方式,都离不开试切对刀,试切对刀就是最根本得对刀方法。 1。数控车床试车对刀方法

数控车床如何对刀

数控车床如何对刀? 答:车床分有对刀器和没有对刀器,但是对刀原理都一样,先说没有对刀器。 车床本身有个机械原点,你对刀时一般要试切的啊,比如车外径一刀后Z向退出,测量车件的外径是多少,然后在G画面里找到你所用刀号把光标移到X输入X...按测量机床就知道这个刀位上 的刀尖位置了,内径一样,Z向就简单了,把每把刀都在Z向碰一个地方然后测量Z0就可以了. 这样所有刀都有了记录,确定加工零点在工件移里面(offshift),可以任意一把刀决定工件原点。 这样对刀要记住对刀前要先读刀. 有个比较方便的方法,就是用夹头对刀,我们知道夹头外径,刀具去碰了输入外径就可以,对内径时可以拿一量块用手压在夹头上对,同样输入夹头外径就可以了. 如果有对刀器就方便多了,对刀器就相当于一个固定的对刀试切工件,刀具碰了就记录进去位置了. 所以如果是多种类小批量加工最好买带对刀器的.节约时间. 数控车床基本坐标关系及几种对刀方法比较 在数控车床的操作与编程过程中,弄清楚基本坐标关系和对刀原理是两个非常重要的环节。这对我们更好地理解机床的加工原理,以及在处理加工过程中修改尺寸偏差有很大的帮助。 一、基本坐标关系 一般来讲,通常使用的有两个坐标系:一个是机械坐标系;另外一个是工件坐标系,也叫做程序坐标系。 在机床的机械坐标系中设有一个固定的参考点(假设为(X,Z))。这个参考点的作用主要是用来给机床本身一个定位。因为每次开机后无论刀架停留在哪个位置,系统都把当前位置设定为(0,0),这样势必造成基准的不统一,所以每次开机的第一步操作为参考点回归(有的称为回零点),也就是通过确定(X,Z)来确定原点(0,0)。 为了计算和编程方便,我们通常将程序原点设定在工件右端面的回转中心上,尽量使编程基准与设计、装配基准重合。机械坐标系是机床唯一的基准,所以必须要弄清楚程序原点在机械坐标系中的位置。这通常在接下来的对刀过程中完成。 二、对刀方法 1. 试切法对刀 试切法对刀是实际中应用的最多的一种对刀方法。下面以采用MITSUBISHI 50L数控系统的RFCZ12车床为例,来介绍具体操作方法。 工件和刀具装夹完毕,驱动主轴旋转,移动刀架至工件试切一段外圆。然后保持X坐标不变移动Z轴刀具离开工件,测量出该段外圆的直径。将其输入到相应的刀具参数中的刀长中,系统会自动用刀具当前X坐标减去试切出的那段外圆直径,即得到工件坐标系X原点的位置。再移动刀具试切工件一端端面,在相应刀具参数中的刀宽中输入Z0,系统会自动将此时刀具的Z坐标减去刚才输入的数值,即得工件坐标系Z原点的位置。 例如,2#刀刀架在X为150.0车出的外圆直径为25.0,那么使用该把刀具切削时的程序原点X值为150.0-25.0=125.0;刀架在Z为180.0时切的端面为0,那么使用该把刀具切削时的程序原点Z值为180.0-0=180.0。分别将(125.0,180.0)存入到2#刀具参数刀长中的X与Z中,在程序中使用T0202就可以成功建立出工件坐标系。 事实上,找工件原点在机械坐标系中的位置并不是求该点的实际位置,而是找刀尖点到达(0,0)时刀架的位置。采用这种方法对刀一般不使用标准刀,在加工之前需要将所要用刀的刀具全部都对好。

对刀仪使用办法

对刀仪使用办法 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

对刀仪使用方法随着的广泛使用,许多用户也开始使用刀具装置。它不仅可以检测刀具的磨损情况,而且可实现自动补偿(通过修改刀补值实现),极大的提高了加工效率和精度。另外,同时使用其刀具破损检测功能与刀具寿命管理功能,还可以实现自动寻找同组刀具的功能,节约了刀具检查和更换的时间。但由于用户对原理不是很了解,使用时容易产生误区,有时补偿后的精度反而不如补偿前,这就使用户产生了迷惑,限制了测量装置的广泛使用。本文以英国.html"target="_blank"class="keylink">雷尼绍()公司TS27R测头的安装调试为例,就如何更好的使用刀具测量装置做一详细介绍,供读者参考借鉴。 刀具测量的基本原理是利用系统的跳步功能(G31):在程序中指令“G31ZxxxFxxx”(与GO1的动作相同)。但此时如果SKIP信号由“0”变为“1”时,Z轴将停止运动,再用宏程序控制坐标轴后退,然后再次碰触量块,反复测量并运算后得出刀具的实际长度和直径,最后修改系统宏变量从而达到修改刀补值的目的。 刀具测量装置的使用主要包括三个步骤:安装和接线;标定;测量。 1安装和接线

刀具侧量装置通常包括测头和信号转换装置(硬件)及相关的测量程序(软件包)。测头(TS27R)安装在工作台上,并尽量远离加工区域,外部应加防护装置,使用前先将防护装置打开并将刀具用风吹干净(用M代码控制气动元件可实现自动),确保刀具表面无杂物,测量完成后关闭防护。 测头安装完成后,首先要调整测头接触面的平行度和直线度。将一只百分表(或千分表DTI)吸在头上,表头打在量块(圆形或方形)的上表面;用手轮控制X轴沿量块表面来回移动,观察表针变化,同时调整测头上的调节螺钉,使X向的直线度保证在0.010mm,调整好后紧固螺钉。再控制Y轴沿量块表面来回移动,同时调整测头上的调节螺钉,使Y向的直线度也保证在0.010mm,调整好后紧固螺钉。 转换装置(MI8-4)用35mm标准导轨安装在电气柜里。需要注意的是,给转换装置提供DC24V的稳压电源最好是单独的,尽量不要和电磁阀或中间继电器共用电源,如果必须共用,就要考虑信号的抗干扰能力,否则可能会影响测量结果。 安装结束后,按照图1(三菱系统)或图2(系统)正确接线。 图1测量装置接线原理图(三菱64M系统) 图2测量装置接线原理图(-0i-M系统) 2测头的标定

数控车床对刀原理及方法步骤(实用详细)

数控车床对刀原理及对刀方法 对刀是数控加工中的主要操作和重要技能。在一定条件下,对刀的精度可以决定零件的加工精度,同时,对刀效率还直接影响数控加工效率。 仅仅知道对刀方法是不够的,还要知道数控系统的各种对刀设置方式,以及这些方式在加工程序中的调用方法,同时要知道各种对刀方式的优缺点、使用条件(下面的论述是以FANUC OiMate数控系统为例)等。 1 为什么要对刀 一般来说,零件的数控加工编程和上机床加工是分开进行的。数控编程员根据零件的设计图纸,选定一个方便编程的坐标系及其原点,我们称之为程序坐标系和程序原点。程序原点一般与零件的工艺基准或设计基准重合,因此又称作工件原点。 数控车床通电后,须进行回零(参考点)操作,其目的是建立数控车床进行位置测量、控制、显示的统一基准,该点就是所谓的机床原点,它的位置由机床位置传感器决定。由于机床回零后,刀具(刀尖)的位置距离机床原点是固定不变的,因此,为便于对刀和加工,可将机床回零后刀尖的位置看作机床原点。 在图1中,O是程序原点,O'是机床回零后以刀尖位置为参照的机床原点。 编程员按程序坐标系中的坐标数据编制刀具(刀尖)的运行轨迹。由于刀尖的初始位置(机床原点)与程序原点存在X向偏移距离和Z向偏移距离,使得实际的刀尖位置与程序指令的位置有同样的偏移距离,因此,须将该距离测量出来并设置进数控系统,使系统据此调整刀尖的运动轨迹。

所谓对刀,其实质就是侧量程序原点与机床原点之间的偏移距离并设置程序原点在以刀尖为参照的机床坐标系里的坐标。 2 试切对刀原理 对刀的方法有很多种,按对刀的精度可分为粗略对刀和精确对刀;按是否采用对刀仪可分为手动对刀和自动对刀;按是否采用基准刀,又可分为绝对对刀和相对对刀等。但无论采用哪种对刀方式,都离不开试切对刀,试切对刀是最根本的对刀方法。 以图2为例,试切对刀步骤如下: ①在手动操作方式下,用所选刀具在加工余量范围内试切工件外圆,记下此时显示屏中的X坐标值,记为Xa。(注意:数控车床显示和编程的X坐标一般为直径值)。 ②将刀具沿+Z方向退回到工件端面余量处一点(假定为α点)切削端面,记录此时显示屏中的Z坐标值,记为Za。 ③测量试切后的工件外圆直径,记为φ。 如果程序原点O设在工件端面(一般必须是已经精加工完毕的端面)与回转中心的交点,则程序原点O在机床坐标系中的坐标为 Xo=Xa-φ(1) Zo=Za 注意:公式中的坐标值均为负值。将Xo、Zo设置进数控系统即完成对刀设置。3 程序原点(工件原点)的设置方式 在FANUC数控系统中,有以下几种设置程序原点的方式:①设置刀具偏移量补偿;②用G50设置刀具起点;③用G54~G59设置程序原点;④用“工件移”设置程序原点。 程序原点设置是对刀不可缺少的组成部分。每种设置方法有不同的编程使用方式、不同的应用条件和不同的工作效率。各种设置方式可以组合使用。

广州数控980TD对刀

2008-08-3116:19 一、980T对刀过程 1、对1号刀(把一号刀设为基准刀),远离工件换刀 [程序]——录入方式——T0100——按[输入]键——再按[循环启动]键 对Z轴:[手动]方式——车Z轴端面,X轴方向退出Z方向不变——[录入]方式——G50[输入]键——Z0.0[输入]键——再按[循环启动]键。

对X轴:[手动]方式——车X轴端面,Z轴方向退出X方向不变,移动到安全位置停主轴,测量外径——[录入]——G50[输入]键——X外径值[输入]键——再按[循环启动]键。 2、对2号刀: [程序]——[录入]——T0200——按[输入]键——再按[循环启动]键 对Z轴:[手动]方式——刀尖碰Z轴端面,碰到即停,——[刀补]——[录入]——光标移止102处,——输入Z0.0按[输入]键。 对X轴:[手动]方式——刀尖碰X轴端面,碰到即停,——[刀补]——[录入]——光标移止102处,——输入X轴外径值,按[输入]键。 3、对3、4号刀的过程与2号刀相同,只是要把光标移至103,104处。 4、检查对刀是否正确: [程序]——[录入]——T0202——按[输入]键——再按[循环启动]键 ——输入X30,Z0.0——按[输入]键——再按[循环启动]键 注意:1、在对2、3、4号刀时,输入值时要加小数点,如测量X外径是28,但输入时要输入28.0,否则对刀失败。

2、对螺纹刀时,先对X轴,再将Z轴退出,向X轴进1个丝,再对Z轴,这样对刀较准确。 3、对刀后不能使用手动换刀键,否则对刀失败,刀补被清除。 fficeffice"/> 二、980T中途崩刀,重新对刀和中途加工是办法。 1、重新对刀:磨好刀具安装好后,清除刀补再一次对刀即可,若为基准刀崩刀,在程序里改成T0101在[刀补]101处输入方法同非基准刀。 2、中途加工方法:在编辑方式下,把光标移到所要加工的程序下,然后再手动方式下转动主轴,开冷却液,最后进入自动方式,按[循环启动]加工。 三、980T刀补的修改 由于第一次对刀误差,可通过修改刀补使工件达到要求尺寸,修改方法: 1、绝对坐标输入法:根据大减小,小加大的原则,在“001~004“处修改,如:2号切刀切槽直径大了0.1mm,而在002处是X3.8,可输入X3.7,减少2号刀补。

广州数控gsk980td车床数控系统详细对刀方法[1]

广州数控gsk980td车床数控系统详细对刀方法 为了能使你对数控车床的操作编程能快速上手,我特别编写该章节,希望能给你带来一定的帮助: 一:你应学会如何把主轴、水泵、刀架运转起来: 1)主轴的启动、停止,从目前经济型数控车床的配置来说主轴的启动基本上可分三种形式: a)主轴为机械换档,主轴电机为单速电机:这种配置时数控系统只能实现主轴的开启和停止首先把数控系统的方式切换到<手动方式>直接按主轴正转键,主 轴就可运转起来.按主轴<停止>键主轴便停止. b)主轴为机械换档,主轴电机为双速电机:这种配置时数控系统可以实现主轴的开启、停止和高低速的自动切换,首先把数控系统的方式切换到<录入方式>, 再按<程序>键并按<翻页>键翻页到<程序段>界面, 按M3(主轴正转指令)、输入;S1(主轴低速指令)再按输入(IN)键最后按<

运行>键,主轴便运转起来.同理,如果要转换为高速,则输入S2(主轴高速指令)、输入,按<运行>键,则主轴运转在高速档上.如果要停止主轴则输 入M5(主轴停止指令)按<运行>键,主轴并停止运转.当然也可以把方式切换到<手动方式>按主轴<停止>键主轴同样可以停止运转.(值得一提的是:当第一次在<录入方式>下运行主轴后,只要在未切断主电源之前要再次运行主轴,只需按照a)项的方法在<手动方式>下按主轴<正转>键,主轴便可运转起来,如果要在S1、S2之间切换还是在<录入方式>下进行。) c)主轴为变频电机调速:这种配置时数控系统可以实现主轴的开启、停止和在主轴转速范围内转速自由切换,首先把数控系统的方式切换到<录入方式>,再 按<程序>键并按<翻页>、键翻页到<程序段>界面, 按M3(主轴正转指令)、输入;再S500(主轴每分钟500转的指令)再按输入 (IN)键最后按<运行>键,主轴便运转起来. (例如:你的机床主轴范围为125-3000转,你可输入S的转速值在125-3000之间的任意整数值:如S300,S450,S315,S2790,S3000...等等,则主轴运转在你

数控车床对刀有关的概念和对刀方法

数控车床对刀有关的概念和对刀方法(1)刀位点:代表刀具的基准点,也是对刀时的注视点, 一般是刀具上的一点。(2)起刀点:起刀点是刀具相对与工件运动的起点,即零件加工程序开始时刀位点的起始位置,而且往往还是程序的运行的终点。(3)对刀点与对刀:对刀点是用来确定刀具与工件的相对位置关系的点,是确定工件坐标系与机床坐标系的关系的点。对刀就是将刀具的刀位点置于对刀点上,以便建立工件坐标系。(4)对刀基准(点):对刀时为确定对刀点的位置所依据的基准,该基可以是点、线、面,它可以设在工件上或夹具上或机床上。(5)对刀参考点:是用来代表刀架、刀台或刀盘在机床坐标系内的位置的参考点,也称刀架中心或刀具参考点。用试切法确定起刀点的位置对刀的步骤(1)在MDI或手动方式下,用基准刀切削工件端面;(2)用点动移动X轴使刀具试切该端面,然后刀具沿X轴方向退出,停主轴。记录该Z轴坐标值并输入系统。(3)用基准刀切量工件外径。(4)用点动移动Z轴使刀具切该工件的外圆表面,然后刀具沿Z方向退出,停主轴。用游表卡尺测量工件的直径,记录该X坐标值并输入系统。(5)对第二把刀,让刀架退离工件足够的地方,选择刀具号,重复(1)—(4)步骤。数控铣床(加工中心)Z轴对刀器Z轴对刀器主要用于确定工件坐标系原点在机床坐标系的Z轴坐标,或者说是确定刀具在机床坐标系中的高度。Z轴对刀器有光电式()和指针式等类型,通过光电指示或指针,判断刀具与对刀器是否接触,对刀精度一般可达100.0±0.0025(mm),对刀器标定高度的重复精度一般为0.001~0.002(mm)。对刀器带有磁性表座,可以牢固地附着在工件或夹具上。Z轴对刀器高度一般为50mm或lOOmm。Z轴对刀器的使用方法如下: (1)将刀具装在主轴上,将Z轴对刀器吸附在已经装夹好的工件或夹具平面上。(2)快速移动工作台和主轴,让刀具端面靠近Z轴对刀器上表面。(3)改用步进或电子手轮微调操作,让刀具端面慢慢接触到Z轴对刀器上表面,直到Z轴对刀器发光或指针指示到零位。(4)记下机械坐标系中的Z值数据。(5)在当前刀具情况下,工件或夹具平面在机床坐标系中的Z坐标值为此数据值再减去Z轴对刀器的高度。(6)若工件坐标系Z 坐标零点设定在工件或夹具的对刀平面上,则此值即为工件坐标系Z坐标零点在机床坐标系中的位置,也就是Z坐标零点偏置值。3.寻边器寻边器主要用于确定工件坐标系原点在机床坐标系中的X、Y零点偏置值,也可测量工件的简单尺寸。它有偏心式()、迥转式()和光电式()等类型。偏心式、迥转式寻边器为机械式构造。机床主轴中心距被测表面的距离为测量圆柱的半径值。光电式寻边器的测头一般为10mm的钢球,用弹簧拉紧在光电式寻边器的测杆上,碰到工件时可以退让,并将电路导通,发出光讯号。通过光电式寻边器的指示和机床坐标位置可得到被测表面的坐标位置。利用测头的对称性,还可以测量一些简单的尺寸。注意:运行程序前要先将基准刀移到设定的位置。在用G50设置刀具的起点时,一般要将该刀的刀偏值设为零。此方式的缺点是起刀点位置要在加工程序中设置,且操作较为复杂。但它提供了用手工精确调整起刀点的操作方式,有的人对此比较喜欢。(3)用 G54~G59设置程序原点①试切和测量步骤同前述一样。②按“OFSET SET”键,进人“坐标系”设置,移动光标到相应位置,输入程序原点的坐标值,按“测量”或“输入”键进行设置。如图4所示。③在加工程序里调用,例如:G55 X100 Z5...。G54为默认调用。注意:若设置和使用了刀偏补偿,最好将G54~G59的各个参数设为0,以免重复出错。对于多刀加工,可将基准刀的偏移值设置在G54~G59的其中之一,将基准刀的刀偏补偿设为零,而将其它刀的刀偏补偿设为其相对于基准刀的偏移量。这种方式适用于批量生产且工件在卡盘上有固定装夹位置的加工。铣削加工用得较多。执行G54~G59指令相当于将机床原点移到程序原点。(4)用“工件移”设置程序原点①通过试切工件外圆、端面,测量直径,根据公式(1)计算出程序原点(工件原点)的X坐标,记录显示屏显示的原点Z坐标。②按“OFSET SET”键,进入“工件移”设置,将光标移到对应位置,分别输入得到的X. Z坐标值,按机床MDI 键盘上的“INPUT”键进行设置。如图5所示。③使X、Z轴回机床原点(参考点),建立程序原点坐标。“工件移”设置亦相当于将机床原点移到程序原点(工件原点)。对于单刀加工,如果设置了“工件移”,最好将其刀偏补偿设为0,以防重复出错;对于多刀加工,“工件移”中的数值为基准刀的偏移值,将其它刀具相对于基准刀的偏移值设置在相应的刀偏补偿中。4 多刀对刀FANUC数控系统多刀对刀的组合设置方式有:①绝对对刀;②基准刀G50+相对刀偏;③基准刀“工件移”+相对刀偏;④基准刀G54~G59+相对刀偏。(1)绝对对刀所谓绝对对刀即是用每把刀在加工余量范围内进行试切对刀,将得到的偏移值设置在相应刀号的偏置补偿中。这种方式思路清晰,操作简单,各个偏移值不互相关联,因而调整起来也相对简单,所以在实际加工中得到广泛应用。(2)相对对刀所谓相对对刀即是选定一把基准刀,用基准刀进行试切对刀,将基准刀的偏移用G50,“工件移”或G54~G59来设置,将基准刀的刀偏补偿设为零,而将其它刀具相对于基准刀的偏移值设置在各自的刀偏补偿中。下面以图2所示为例,介绍如何获得其它刀相对基准刀的刀偏值。①当用基准刀试切完外圆,沿Z轴退到a点时,按显示器下方的“相对”软键,使显示屏显示机床运动的相对坐标。②选择“MDI”方式,按"SHIFT"换档键,按"XU"选择U,这时U坐标在闪烁,按“ORIGIN”置零,如图6所示。同样将w坐标置零。③换其它刀,将刀尖对准a点,显示屏上的U坐标、W坐标即为该刀相对于基准刀的刀偏值。此外,还可用对刃仪测定相对刀偏值。5 精确对刀从理论上说,上述通过试切、测量、计算;得到的对刀数据应是准确的,但实际上由于机床的定位精度、重复精度、操作方式等

(数控加工)数控车床对刀及建立工件坐标系的方法精编

(数控加工)数控车床对刀及建立工件坐标系的方法

数控车床对刀及建立工件坐标系的方法 摘要:利用数控车床进行零件加工时,开机后,我们先要执行回参考点的操作,以便建立机床坐标系;然后要进行对刀及建立工件坐标系的操作,最后再编制零件的程序且加工。对刀的准确和否直接会影响后面的加工。在实际使用中,试切法对刀有三种形式,本文主要介绍这三种对刀形式。 关键字:数控车床机床坐标系工件坐标系试切法对刀 正文: 在数控车床上加工零件时,我们通常先开机回零,然后安装零件毛坯和刀具,接着要进行对刀和建立工件坐标系的操作,最后才是编制程序和自动加工。对刀操作的正确和否,直接会影响后续的加工。对刀有误的话,轻则影响零件的加工精度,重则会造成机床事故。所以作为数控车床的操作者,首先要掌握对刀及工件坐标系的建立方法。 数控车床上的对刀方法有俩种:试切法对刀和机外对刀仪对刀。壹般学校没有机外对刀仪这种设备,所以采用试切法对刀。而根据实际需要,试切法对刀又能够采用三种形式,本文以华中数控HNC-21/T系统为例来阐述这三种形式的对刀及工件坐标系的建立方法。 壹、T对刀 T对刀的基本原理是:对于每壹把刀,我们假设将刀尖移至工件右端面中心,记下此时的机床指令X、Z的位置,且将它们输入到刀

偏表里该刀的X偏置和Z偏置中。以后数控系统在执行程序指令时,会将刀具的偏置值加到指令的X、Z坐标中,从而保证所到达的位置正确。其具体的操作如下: (1)开启机床,释放“急停”按钮,按“回零”,再按“+X”和“+Z”,执行回参考点操作。 (2)按“主轴正转”启动主轴,按“手动”,将刀具移动到合适的位置然后按“-Z”手动车削外圆,最后按“+Z”沿Z向退刀,如图1所示。 (3)按“主轴停止”停止主轴,然后测量试切部分的直径,测得直径为Φ69.934,按“F4(MDI)”,再按“F2(刀偏表)”,将光条移到1号刀的试切直径上,回车,输入69.934,再回车,1号刀的X 偏置会自动计算出来,如图3所示。 图1图2 (4)移动刀具到合适的位置,按“主轴正转”启动主轴,按“手动”,然后按“-X”手动车削端面,最后按“+X”沿X向退刀,如图2所示。 (5)按“主轴停止”停止主轴,将光条移到1号刀的试切长度上,回车,输入0,再回车,1号刀的Z偏置会自动计算出来,如图3所示。 图3

对刀仪使用方法

对刀仪使用方法 随着加工中心的广泛使用,许多用户也开始使用刀具测量装置。它不仅可以检测刀具的磨损情况,而且可实现自动补偿(通过修改刀补值实现),极大的提高了加工效率和精度。另外,同时使用其刀具破损检测功能与刀具寿命管理功能,还可以实现自动寻找同组刀具的功能,节约了刀具检查和更换的时间。但由于用户对测量原理不是很了解,使用时容易产生误区,有时补偿后的精度反而不如补偿前,这就使用户产生了迷惑,限制了测量装置的广泛使用。本文以英国RENISHAW.html" target="_blank" class="keylink">雷尼绍(RENISHAW) 公司TS27 R测头的安装调试为例,就如何更好的使用刀具测量装置做一详细介绍,供读者参考借鉴。 刀具测量的基本原理是利用系统的跳步功能(G31):在程序中指令“G31 Zx x x Fx x x”(与GO1的动作相同)。但此时如果SKIP信号由“0”变为“1”时,Z轴将停止运动,再用宏程序控制坐标轴后退,然后再次碰触量块,反复测量并运算后得出刀具的实际长度和直径,最后修改系统宏变量从而达到修改刀补值的目的。 刀具测量装置的使用主要包括三个步骤:安装和接线;标定;测量。

1 安装和接线 刀具侧量装置通常包括测头和信号转换装置(硬件)及相关的测量程序(软件包)。测头(TS27R)安装在工作台上,并尽量远离加工区域,外部应加防护装置,使用前先将防护装置打开并将刀具用风吹干净(用M代码控制气动元件可实现自动),确保刀具表面无杂物,测量完成后关闭防护。 测头安装完成后,首先要调整测头接触面的平行度和直线度。将一只百分表(或千分表DTI)吸在主轴头上,表头打在量块(圆形或方形)的上表面;用手轮控制X轴沿量块表面来回移动,观察表针变化,同时调整测头上的调节螺钉,使X 向的直线度保证在0.010mm,调整好后紧固螺钉。再控制Y轴沿量块表面来回移动,同时调整测头上的调节螺钉,使Y向的直线度也保证在0.010mm,调整好后紧固螺钉。 转换装置(MI 8-4)用35mm标准导轨安装在电气柜里。需要注意的是,给转换装置提供DC24V的稳压电源最好是单独的,尽量不要和电磁阀或中间继电器共用电源,如果必须共用,就要考虑信号的抗干扰能力,否则可能会影响测量结果。

数控车床对刀及建立工件坐标系的几种方法

数控车床对刀及建立工件坐标系的方法 在数控车床上加工零件时,我们通常先开机回零,然后安装零件毛坯和刀具,接着要进行对刀和建立工件坐标系的操作,最后才是编制程序和自动加工。对刀操作的正确与否,直接会影响后续的加工。对刀有误的话,轻则影响零件的加工精度,重则会造成机床事故。所以作为数控车床的操作者,首先要掌握对刀及工件坐标系的建立方法。 数控车床上的对刀方法有两种:试切法对刀和机外对刀仪对刀。一般学校没有机外对刀仪这种设备,所以采用试切法对刀。而根据实际需要,试切法对刀又可以采用三种形式,本文以华中数控HNC-21/T系统为例来阐述这三种形式的对刀及工件坐标系的建立方法。 一、T对刀 T对刀的基本原理是:对于每一把刀,我们假设将刀尖移至工件右端面中心,记下此时的机床指令X、Z的位置,并将它们输入到刀偏表里该刀的X偏置和Z 偏置中。以后数控系统在执行程序指令时,会将刀具的偏置值加到指令的X、Z 坐标中,从而保证所到达的位置正确。其具体的操作如下: (1)开启机床,释放“急停”按钮,按“回零”,再按“+X”和“+Z”,执行回参考点操作。 (2)按“主轴正转”启动主轴,按“手动”,将刀具移动到合适的位置然后按“-Z”手动车削外圆,最后按“+Z”沿Z向退刀,如图1所示。 (3)按“主轴停止”停止主轴,然后测量试切部分的直径,测得直径为Φ69.934,按“F4(MDI)”,再按“F2(刀偏表)”,将光条移到1号刀的试切直径

上,回车,输入69.934,再回车,1号刀的X偏置会自动计算出来,如图3所示。 图1 图2 (4)移动刀具到合适的位置,按“主轴正转”启动主轴,按“手动”,然后按“-X”手动车削端面,最后按“+X”沿X向退刀,如图2所示。 (5)按“主轴停止”停止主轴,将光条移到1号刀的试切长度上,回车,输入0,再回车,1号刀的Z偏置会自动计算出来,如图3所示。

数控车床对刀步骤

数控车床对刀步骤 一、开机回零(返回参考点)操作 1、打开数控车床电气柜总开关。 2、按下机床面板上的“系统启动键”,接通电源,显示屏由原先的黑屏变为有文字 显示,电源指示灯亮。 3、按“急停键”,使“急停键”抬起。 4、在操作选择中按下“回零键”,这时该键左上方的小红灯亮。 5、在坐标轴选项键中按下“+X键”,X轴返回参考点,同时X回零指示灯亮。 6、依上述方法,按下“+Z键”,Z轴返回参考点,同时Z回零指示灯亮。 二、对刀操作 1、“方式选择”为“MDI”方式,显示屏将显示MDI程序编辑页面。如果没有显示此页面,则按功能键中的“PROG”键,进入该页面。在键盘上按“T0101;M03 S600”; →“INSERT”→“START”,换上1号刀,并使主轴转动。 2、“方式选择”变为“JOG”方式,利用“方向”键并结合“进给倍率”旋 钮移动1号刀,切削端面。切削完端面后,不要移动Z轴,按“+X”键以原进给速度退出。退出后,按下“主轴停止”按钮,使主轴停止转动。 3、按功能键中的“OFSETSET”键以及该页面下“形状”对应的软键盘进入下图所示页面,利用键盘上的光标键使光标移动到“G01”,在键盘上按“Z0”→“测量”软键,完成1号刀Z向的对刀。

4、“方式选择”为“MDI”方式,重新使主轴转动;再变为“JOG”方式,利用方向键移动1号刀,试切外圆。车一段外圆后,不要移动X轴,按“+Z”键以原进给速度退出。退出后,按下“主轴停止”按钮,使主轴停止转动。用外径千分尺测量试切部分的外圆直径。 5、再次进入如上图页面,在“G01”下,在键盘上输入刚才测量的外径植→“测量”,完成1号刀X向对刀。 6、完成1号刀的对刀后,利用“方向”键使刀架离开工件,退回到换刀位置附近。 7、采用同样方式继续完成各种刀具的对刀。 三、结束 至此,对刀过程已经结束,在程序中只需调取刀补号即可运行。如“T0101”后面的“01” 即为调用“G01”里的对刀数据,其他依此类推。

相关文档
相关文档 最新文档