文档库 最新最全的文档下载
当前位置:文档库 › 运筹学习题解答(chap2)(1)(1)

运筹学习题解答(chap2)(1)(1)

运筹学习题解答(chap2)(1)(1)
运筹学习题解答(chap2)(1)(1)

第二章 对偶问题与灵敏度分析

一、写出下列线性规划的对偶问题

1、P89,2.1(a)

321422m in x x x Z ++=

s.t ???????≥=++≤++≥++.

,0,;534;332;2433213213

21321无约束x x x x x x x x x x x x

解:原模型可化为

321422m in x x x Z ++=

s.t ?????

??≥=++≥≥++.

,0,;534;

3-3--2-;24332

13

2

1

32132

1321无约束x x x y y y x x x x x x x x x 于是对偶模型为

321532m ax y y y W +-=

s.t ???????≥≤+-≤+-≤+-.,0,;4334;243;223213213

21321无约束

y y y y y y y y y y y y

2、P89,2.1(b)

321365m ax x x x Z ++=

s.t ???????≤≥≤++≥-+-=++.

0,0,;8374;35;5223213213

21321x x x x x x x x x x x x 无约束

解:令033

≥-='x x 原模型可化为

3

21365m ax x x x Z '-+=

s.t ?????

??≥'≥≤'+≤'='+.

0,0,;

83-74;3--5-;52-2321

3

21

3213

21321x x x y y y x x x x x x x x x 无约束

于是对偶模型为

321835m in y y y W +-=

s.t ???????≥-≥---≥+-=++.

0,,;

332;

6752;

543213213

21321y y y y y y y y y y y y 无约束 或???????≥≤++≥+-=++.0,,;332;6752;54321321321321y y y y y y y y y y y y 无约束

二、灵敏度分析

1、P92, 2.11线性规划问题

213m ax x x Z += s.t ???

??≥≤+≤+0,1025;

742

12121x x x x x x

最优单纯形表如下

试用灵敏度分析的方法,分析:

(1) 目标函数中的系数21,c c 分别在什么围变化,最优解不变? (2) 约束条件右端常数项21,b b 分别在什么围变化,最优基保持不变? 解:(1) 1c 的分析:要使得最优解不变,则需

??????

?

≤?-?+=≤?+?-=034131003513201413c c σσ 即 ?????≤≥42511c c 所以:42

5

1≤≤c 时可保持最优解不变。

2c 的分析:要使得最优解不变,则需 ??????

?≤?-?+=≤?+?-=034313003532302423c c σσ 即 ???????

≤435622c c 所以:

5

6

432≤≤c 时可保持最优解不变。

(2)1b 的分析:要使得最优基保持不变,则需

03405310-2103/43/53/1-3/21111≥?????

?

??+-=???? ????????-=-b b b b B 即 ?????≥+-≥0

34050310

-211b b ???≤≥?8511b b

所以:851≤≤b 时可保持最优基不变。

2b 的分析:要使得最优基保持不变,则需 034353-1473/43/53/1-3/222

21≥????

?

?

?

?+-=???? ????????-=-b b b b B 即 ?????≥+-≥0343503-1422

b b ??

???≥≤?4351412b b

所以:144

35

2≤≤b 时可保持最优基不变。

2、P92, 2.12 已知线性规划问题 3212m ax x x x Z +-=

???

??≥≤+≤++0,,4263

212

1321x x x x x x x x 先用单纯形法求最优解,在讨论下列问题:

(1)目标函数中变量321,,x x x 的系数在什么围变化,最优解不变? (2)两个约束的右端项分别在什么围变化,最优基不变? (3)增加一个新的约束2221≥+-x x ,寻找新的最优解。 解:化标准型:

???

??≥=++-=+++042652

14

321i

x x x x x x x x

已得最优解10,651==x x ,其余变量均为0. (1)1c 的分析:要使最优解不变,必须

???

??≤-='≤-='≤--='0

0010114

13

12c c c σσσ 11≥?c

2c 的分析:要使最优解不变,必须

0222

≤-='c σ 22≤?c 3c 的分析:要使最优解不变,必须

0233

≤-='c σ 23≤?c

(2))1b 的分析:要使得最优基不变,则需

04411011111

≥??

????+=?

???????????=-b b b b B 01≥?b

2b 的分析:要使得最优基不变,则需

06661101111

≥??

????+=???????

?????=-b b b B 61-≥?b

3、P92, 2.13 已知线性规划问题

2123m ax x x Z +=

?????

????≥≤≤+≤+≤+0

,21-8262.

.212212121x x x x x x x x x t s

试用灵敏度分析的方法,分析:

(1)目标函数中的系数21,c c 在什么围变化,最优解不变? (2)约束条件右端常数项43,b b 在什么围变化,最优基保持不变?

(3)增加变量7x ,其在目标中的系数T P C )2,3,2,1(,477==,重新确定最优解; (4)增加一个新的约束31≤x ,重新确定最优解。 解:(1)1c 的分析:要使得最优解不变,则需

???

????≤-?+='≤+?-='032231003123201413c c σσ ???≥≤?1411c c 411≤≤?c

2c 的分析:要使得最优解不变,则需

???

????≤-+='≤+-='

02c 31001c 3202423σσ ?????≤≥?6c 23c 22 6c 232≤≤?

(2)3b 的分析:要使得最优基不变,则需

032

23103428610

3

13

2011100323

1003132

3

31≥?

????????

?

??????????+=???????????????????

???????????----=-b b b B 23-≥?b

4b 的分析:要使得最优基不变,则需

343

3103418610

3

132011100323

10031

32441≥?

?

????????

?????????

?-=??????????????????????????????----=-b b b B 34b 4≥?

(3)

?

????

???????=???????????????????

?

??????????----=='-24102321103

13

2011100323

1

0031

32P 717B P

增加变量7x 到最终表中,由于07>σ,故需继续迭代找到新的最优解,详见下表:

所有的0≤j σ,故得新的最优解3

1

,35,343

7521====x x x x ,。 (4)由于原解不满足31≤x ,故不是可行解。将新约束化为等式约束,即

371=+x x

由上表知新的最优解2

1,21,25,23376521====

=x x x x x ,。 3、P94,2.16 某厂生产A 、B 、C 三种产品,其所需劳动力、材料等等数据见下

(2) 产品A 的利润在什么围变化时,上述最有计划不需改变?

(3) 如果设计一种新产品D ,单件劳动力消耗为8h ,材料消耗为2kg ,每件获

利30元,问该种产品是否值得生产?

(4) 如果原材料数量不增,劳动力不足时可从市场雇佣,费用为1.8元/h ,问

该厂要不要雇佣扩大生产?以雇佣多少为宜?

解:(1)设A 、B 、C 三种产品各生产321,,x x x 件,建立模型如下:

???

??≥≤++≤++++=;0,,;30543;450536.401030max Z 3

21321321321x x x x x x x x x t

s x x x 材料约束劳动力约束

求解该模型,得最优解0,0,10321===x x x ,最大利润300元。最终表如下:

(2)设A 产品的利润为1c ,则要使得最优计划不变,需

??

?

?

?

?

???

≤-=≤-=≤-=.

0310;

03540;03410151312c c c σσσ ???????≥≥≥?024215111c c c 241≥?c 即A 的利润高于24元时不需改变生产计划。

(3)设新产品D 生产6x 件,其资源消耗向量T P )2,8(6=,在最终表中的结果为

?

??

?

??=???? ????????-=='3/24283/1021B 61-6P P 其检验数为0103/24)30,0(306>=????

??-=σ,增加该产品的生产可以增加总利润。

(4) 因劳动力的影子价格(4x 的检验数)为0(<1.8),因而增加劳动力对利润无益,故不需要雇佣劳动力。

(或者:最优解情况下,劳动力只用了)450(60106<=?,并未全部用完,故增加劳动力无益于利润的增加。)

运筹学试题及答案

运筹学A卷) 一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。每小题1分,共10分) 1.线性规划具有唯一最优解就是指 A.最优表中存在常数项为零 B.最优表中非基变量检验数全部非零 C.最优表中存在非基变量的检验数为零 D.可行解集合有界 2.设线性规划的约束条件为 则基本可行解为 A.(0, 0, 4, 3) B.(3, 4, 0, 0) C.(2, 0, 1, 0) D.(3, 0, 4, 0) 3.则 A.无可行解 B.有唯一最优解medn C.有多重最优解 D.有无界解 4.互为对偶的两个线性规划, 对任意可行解X 与Y,存在关系 A.Z > W B.Z = W C.Z≥W D.Z≤W 5.有6 个产地4个销地的平衡运输问题模型具有特征 A.有10个变量24个约束

B.有24个变量10个约束 C.有24个变量9个约束 D.有9个基变量10个非基变量 6、下例错误的说法就是 A.标准型的目标函数就是求最大值 B.标准型的目标函数就是求最小值 C.标准型的常数项非正 D.标准型的变量一定要非负 7、m+n-1个变量构成一组基变量的充要条件就是 A.m+n-1个变量恰好构成一个闭回路 B.m+n-1个变量不包含任何闭回路 C.m+n-1个变量中部分变量构成一个闭回路 D.m+n-1个变量对应的系数列向量线性相关 8.互为对偶的两个线性规划问题的解存在关系 A.原问题无可行解,对偶问题也无可行解 B.对偶问题有可行解,原问题可能无可行解 C.若最优解存在,则最优解相同 D.一个问题无可行解,则另一个问题具有无界解 9、有m个产地n个销地的平衡运输问题模型具有特征 A.有mn个变量m+n个约束…m+n-1个基变量 B.有m+n个变量mn个约束 C.有mn个变量m+n-1约束 D.有m+n-1个基变量,mn-m-n-1个非基变量 10.要求不超过第一目标值、恰好完成第二目标值,目标函数就是

运筹学习题精选

运筹学习题精选

运筹学习题精选 第一章线性规划及单纯形法 选择 1.在线性规划模型中,没有非负约束的变量称为……………………………………………………( C ) A.多余变量 B.松弛变量 C.自由变量 D.人工变量 2.约束条件为0 AX的线性规划问题的可行解集 b ,≥ =X 是………………………………………( B ) A.补集 B.凸集 C.交集 D.凹集 3.线性规划问题若有最优解,则一定可以在可行域的( C)上达到。 A.内点 B.外点 C.顶点 D.几何点 4.线性规划标准型中bi(i=1,2,……m)必须是…………………………………………………( B) A.正数 B.非负数 C.无约束 D.非零的 5.线性规划问题的基本可行解X对应于可行域D 的………………………………………………( D) A.外点 B.所有点 C.内点 D.极点 6.基本可行解中的非零变量的个数小于约束条件数时,该问题可求得……………………………( B ) A.基本解 B.退化解 C.多重解 D.无解 7.满足线性规划问题全部约束条件的解称为…………………………………………………( C ) A.最优解 B.基本解 C.可行解 D.多重解 8.线性规划一般模型中,自由变量可以用两个非负变量的(B )代换。 A.和 B.差 C.积 D.商 9.当满足最优检验,且检验数为零的变量的个数大于基变量的个数时,可求得………………………( A ) 第 2 页共 30 页

第 3 页 共 30 页 A .多重解 B .无解 C .正则解 D .退化解 10.若线性规划问题有最优解,则必定存在一个( D )是最优解。 A .无穷多解 B. 基解 C. 可行解 D. 基可行解 填空 计算 1. 某厂生产甲、乙、丙三种产品,已知有关数据如下表所示,求使该厂获利最大的生产计划。 2. 目标函数为max Z =28x4+x5+2x6,约束形式为“≤”,且x1,x2,x3为松弛变量, 表中的解代入目标函数中得Z=14,求出a~g 的值,并判断→j c 0 0 0 28 1 2 B C 基 b 1x 2x 3x 4x 5x 6x 2 6x A 3 0 -14/3 0 1 1 0 2x 5 6 D 2 0 5/2 0 28 4x 0 0 E F 1 0 0 j j z c - B C 0 0 -1 G

运筹学例题

例9 分析在原计划中是否应该安排一种新产品。以第一章例1为例。设该厂除了生产产品Ⅰ、Ⅱ外,现有一种新产品Ⅲ。已知生产产品Ⅲ,每件需要消耗原材料A ,B 各为6kg ,3kg ,使用设备2台时;每件可获利5元。问改产是否应生产该产品和生产多少?若能以10个单位的价格再买进15单位的原材料A ,这样做是否有利? ()()T B P B C c 3,6,20,125.0,5.153133-='-'='-σ =1.25>0 21max x x z += ?????? ?≥≤+-≤+为整数 21212 121,0,13651914x x x x x x x x ()T n X ??? ??=310,23 ()629=*z 2,111≥≤x x 21max x x z += 21max x x z = (IP1)?????????≥≤≤+-≤+为整数212112121,0,113651914x x x x x x x x x (IP2)????? ????≥≥≤+-≤+为整数 212112121,0,21 3651914x x x x x x x x x 继续解(IP1)和(IP2),得最优解分别为: ()()()()941,923,2310,37,12211= ?? ? ??== ??? ??=z X z X T T ()9410≤≤*z 3,221≥≤x x 21max x x z = 21max x x z +=

(IP3)??????????≥≤≥≤--为整数2121212121,0,22136x x x x x x x x (IP3)??????????≥≥≥≤+-为整数 2121212121,0,32 1 36x x x x x x x x ()()1461,2,143333=?? ? ??=z X T IP4无可行解 21max x x z += 21max x x z = (IP5)???????????≥≤≤≤+-≤+为整数2121212121,0,2113651914x x x x x x x x x x (IP6)???????????≥≤≤≤+-≤+为整数 2121212121,0,31 1 3651914x x x x x x x x x x ()()()3,2,155==z X T IP6无可行解 14613≤≤*z ()T 2,1433=不为整数 3,211≥≤x x 分别加入问题(IP3)形成两个子问题 21max x x z += 21max x x z =

运筹学典型考试试题及答案

二、计算题(60分) 1、已知线性规划(20分) MaxZ=3X1+4X2 X1+X2≤5 2X1+4X2≤12 3X1+2X2≤8 X1,X2≥0 其最优解为: 基变量X1X2X3X4X5 X33/2 0 0 1 -1/8 -1/4 X25/2 0 1 0 3/8 -1/4 X1 1 1 0 0 -1/4 1/2 σj 0 0 0 -3/4 -1/2 1)写出该线性规划的对偶问题。 2)若C2从4变成5,最优解是否会发生改变,为什么? 3)若b2的量从12上升到15,最优解是否会发生变化,为什么? 4)如果增加一种产品X6,其P6=(2,3,1)T,C6=4该产品是否应该投产?为什么?解: 1)对偶问题为 Minw=5y1+12y2+8y3 y1+2y2+3y3≥3 y1+4y2+2y3≥4 y1,y2≥0 2)当C2从4变成5时, σ4=-9/8 σ5=-1/4 由于非基变量的检验数仍然都是小于0的,所以最优解不变。 3)当若b2的量从12上升到15 X=9/8 29/8 1/4 由于基变量的值仍然都是大于0的,所以最优解的基变量不会发生变化。 4)如果增加一种新的产品,则 P6’=(11/8,7/8,-1/4)T σ6=3/8>0 所以对最优解有影响,该种产品应该生产 2、已知运输问题的调运和运价表如下,求最优调运方案和最小总费用。(共15分)。 B1B2B3产量销地 产地 A1 5 9 2 15 A2 3 1 7 11 A3 6 2 8 20 销量18 12 16 解:初始解为

计算检验数 由于存在非基变量的检验数小于0,所以不是最优解,需调整 调整为: 重新计算检验数 所有的检验数都大于等于0,所以得到最优解 3、某公司要把4个有关能源工程项目承包给4个互不相关的外商投标者,规定每个承包商只能且必须承包一个项目,试在总费用最小的条件下确定各个项目的承包者,总费用为多少?各承包商对工程的报价如表2所示: (15分) 项目 投标者 A B C D 甲 15 18 21 24 乙 19 23 22 18 丙 26 17 16 19 丁 19 21 23 17 答最优解为: X= 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 总费用为50 4. 考虑如下线性规划问题(24分) B 1 B 2 B 3 产量/t A 1 15 15 A 2 11 11 A 3 18 1 1 20 销量/t 18 12 16 B 1 B 2 B 3 产量/t A 1 5 13 0 15 A 2 -2 0 0 11 A 3 0 0 20 销量/t 18 12 16 B 1 B 2 B 3 产量/t A 1 15 15 A 2 11 11 A 3 7 12 1 20 销量/t 18 12 16 B 1 B 2 B 3 产量/t A 1 5 13 0 15 A 2 0 2 2 11 A 3 0 0 0 20 销量/t 18 12 16

运筹学大作业

大连科技学院运筹学(Z)大作业LINGO软件在函数最大值中的运用 学院名称 专业班级 学生组号 学生姓名 指导教师 二〇一八年五月

实验LINGO软件在函数最大值中的运用 大作业目的 掌握LINGO软件求解函数最大值的基本步骤,了解LINGO软件解决函数最大值的基本原理,熟悉常用的函数最大值计算代码,理解函数最大值的迭代关系。 仪器、设备或软件 电脑,LINGO软件 大作业内容 1.LINGO软件求解函数最大值的基本原理; 2.编写并调试LINGO软件求解函数最大值的计算代码; 实施步骤 1.使用LINGO计算并求解函数最大值问题; 2.写出实验报告,并浅谈学习心得体会(选址问题的基本求解思路与方法及求解过程中出现的问题及解决方法)。 实施过程 有一艘货轮,分为前、中、后三个舱位,它们的容积与允许载重量如下表所示。现有三种商品待运,已知有关数据列于下表中。又为了航运安全,要求前、中、后舱在实际载重量上大体保持各舱最大允许载重量的比例关系。具体要求前、后舱分别与中舱之间的载重量比例偏差不超过15%,前、后舱之间不超过10%。问货轮应装载A、B、C各多少件,运费收入为最大?试建立这个问题的线性规 首先分析问题,建立数学模型: 确定决策变量 假设i=1,2,3分别代表商品A、B、C,8用j=1,2,3分别代表前、中、后舱,设决策变量x ij为装于j舱位的第i种商品的数量(件)。 确定目标函数

商品A 的件数为: 商品B 的件数为: 商品A 的件数为: 为使运费最高,目标函数为: 确定约束条件 前、中、后舱位载重限制为: 前、中、后舱位体积限制为: A 、 B 、 C 三种商品数量的限制条件: 各舱最大允许载重量的比例关系构成的约束条件: 且决策变量要求非负,即x ij ≥0,i=1,2,3;j=1,2,3。 综上所述,此问题的线性规划数学模型为: 111213x x x ++212223x x x ++313233x x x ++()()()111213212223313233 1000700600Max Z x x x x x x x x x =++++++++112131122232132333865200086530008651500 x x x x x x x x x ++≤++≤++≤112131122232132333105740001057540010571500 x x x x x x x x x ++≤++≤++≤1112132122233132336001000800 x x x x x x x x x ++≤++≤++≤1121311222321323331222321121311323338x 6x 5x 2 2(10.15)(1+0.15)38x 6x 5x 3 8x 6x 5x 11(10.15)(1+0.15)28x 6x 5x 2 8x 6x 5x 4 4(10.10)(1+0.10)38x 6x 5x 3++-≤≤++++-≤≤++++-≤≤++()()() 111213212223313233112131122232132333112131122232132333 1000700600865200086530008651500105740001057540010571500 Max Z x x x x x x x x x x x x x x x x x x x x x x x x x x x =++++++++++≤++≤++≤++≤++≤++≤

运筹学试题

运筹学试题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

运筹学试题 一、填空题(本大题共8小题,每空2分,共20分) 1.线性规划闯题中,如果在约束条件中出现等式约束,我们通常用增加___的方法来产生初始可行基。 2.线性规划模型有三种参数,其名称分别为价值系数、___和___。 3.原问题的第1个约束方程是“=”型,则对偶问题相应的变量是___变量。 4.求最小生成树问题,常用的方法有:避圈法和 ___。 5.排队模型M/M/2中的M,M,2分别表示到达时间为___分布,服务时间服从负指数分布和服务台数为2。 6.如果有两个以上的决策自然条件,但决策人无法估计各自然状态出现的概率,那么这种决策类型称为____型决策。 7.在风险型决策问题中,我们一般采用___来反映每个人对待风险的态度。 8.目标规划总是求目标函数的___信,且目标函数中没有线性规划中的价值系数,而是在各偏差变量前加上级别不同的____。 二、单项选择题(本大题共l0小题,每小题3分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。多选无分。 9.使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题【】 A.有唯一的最优解 B.有无穷多最优解 C.为无界解 D.无可行解 10.对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中【】 A.b列元素不小于零 B.检验数都大于零 C.检验数都不小于零 D.检验数都不大于零

11.已知某个含10个结点的树图,其中9个结点的次为1,1,3,1,1,1,3,1,3,则另一个结点的次为【】 A.3 B.2 C.1 D.以上三种情况均有可能 12.如果要使目标规划实际实现值不超过目标值。则相应的偏离变量应满足【】 13.在运输方案中出现退化现象,是指数字格的数目【】 A.等于 m+n B.等于m+n-1 C.小于m+n-1 D.大于m+n-1 14.关于矩阵对策,下列说法错误的是【】 A.矩阵对策的解可以不是唯一的 C.矩阵对策中,当局势达到均衡时,任何一方单方面改变自己的策略,都将意味着自己更少的赢得和更大的损失 D.矩阵对策的对策值,相当于进行若干次对策后,局中人I的平均赢得或局中人Ⅱ的平均损失值 【】 A.2 8.—l C.—3 D.1 16.关于线性规划的原问题和对偶问题,下列说法正确的是【】 A.若原问题为元界解,则对偶问题也为无界解

运筹学例题解析

(一)线性规划建模与求解 B.样题:活力公司准备在5小时内生产甲、乙两种产品。甲、乙两种产品每生产1 单位分别消耗2小时、1小时。又根据市场需求信息,乙产品的产量应该至少是甲产品产量的3倍。已知甲、乙两种产品每销售1单位的利润分别为3百元和1百元。请问:在5小时内,甲、乙两种产品各生产多少单位,才能够使得总销售利润最大? 要求:1、建立该问题的线性规划模型。 2、用图解法求出最优解和最大销售利润值,并写出解的判断依据。如果不存在最优解,也请说明理由。 解:1、(1)设定决策变量: 设甲、乙两种产品分别生产x 1 、x 2 单位 。 (2)目标函数: max z=2 x 1+x 2 (3)约束条件如下:1221 12 25..3,0+≤??≥??≥?x x s t x x x x 2、该问题中约束条件、目标函数、可行域和顶点见图1所示,其中可行域用阴影部分标记,不等式约束条件及变量约束要标出成立的方向,目标函数只须画出其中一条等值线, 结论:本题解的情形是: 无穷多最优解 ,理由: 目标函数等值线z=2 x 1 +x 2 与 约束条件2 x 1+x 2≤5的边界平行 。甲、乙两种产品的最优产量分别为 (5,0)或(1,3)单位;最大销售利润值等于 5 百元。 (二)图论问题的建模与求解样题 A.正考样题(最短路问题的建模与求解,清华运筹学教材编写组第三版267-268页例 13)某企业使用一台设备,每年年初,企业都要做出决定,如果继续使用旧的,要付维修费;若购买一台新设备,要付购买费。但是变卖旧设备可以获得残值收入,连续使用1年、2年、3年、4年以上卖掉的设备残值分别为8万元、6万元、3万元和0万元。试制定一个5年的更新计划,使总支出最少。已知设备在各年的购买费与维修费如表2所示。要求:(1)建立某种图论模型;(2)求出最少总支出金额。

运筹学试题及答案汇总

3)若问题中 x2 列的系数变为(3,2)T,问最优解是否有变化; 4)c2 由 1 变为 2,是否影响最优解,如有影响,将新的解求出。 Cj CB 0 0 Cj-Zj 0 4 Cj-Zj 3 4 Cj-Zj 最优解为 X1=1/3,X3=7/5,Z=33/5 2对偶问题为Minw=9y1+8y2 6y1+3y2≥3 3y1+4y2≥1 5y1+5y2≥4 y1,y2≥0 对偶问题最优解为 y1=1/5,y2=3/5 3 若问题中 x2 列的系数变为(3,2)T 则P2’=(1/3,1/5σ2=-4/5<0 所以对最优解没有影响 4)c2 由 1 变为2 σ2=-1<0 所以对最优解没有影响 7. 求如图所示的网络的最大流和最小截集(割集,每弧旁的数字是(cij , fij )。(10 分) V1 (9,5 (4,4 V3 (6,3 T 3 XB X4 X5 b 9 8 X1 6 3 3 X4 X3 1 8/5 3 3/5 3/5 X1 X3 1/3 7/5 1 0 0 1 X2 3 4 1 -1 4/5 -11/5 -1/3 1 - 2 4 X 3 5 5 4 0 1 0 0 1 0 0 X4 1 0 0 1 0 0 1/3 -1/ 5 -1/5 0 X5 0 1 0 -1 1/5 -4/5 -1/3 2/5 -3/5 VS (3,1 (3,0 (4,1 Vt (5,3 V2 解: (5,4 (7,5 V4 V1 (9,7 (4,4 V3 (6,4 (3,2 Vs (5,4 (4,0 Vt (7,7 6/9 V2 最大流=11 (5,5 V4 8. 某厂Ⅰ、Ⅱ、Ⅲ三种产品分别经过 A、B、C 三种设备加工。已知生产单位各种产品所需的设备台时,设备的现有加工能力及每件产品的预期利润见表:ⅠⅡⅢ设备能力(台.h A 1 1 1 100 B 10 4 5 600 C 2 2 6 300 单

运筹学例题

某昼夜服务的公交线路 解:设x i 表示第i班次时开始上班的司机和乘务人员数,这样我们建立如下的数学模型。目标函数:Min x1 + x2 + x3 + x4 + x5 + x6 s.t. x1 + x6≥60 x1 + x2≥70 x2 + x3≥60 x3 + x4≥50 x4 + x5≥20 x5 + x6≥30 x1,x2,x3,x4,x5,x6 ≥0 解得50,20,50,0,20,10(x1到x6)一共需要150人 一家中型的百货商场 解:设x i ( i = 1,2,…,7)表示星期一至日开始休息的人数,这样我们建立如下的数学模型。目标函数:Min x1 + x2 + x3 + x4 + x5 + x6 + x7 s.t. x1 + x2 + x3 + x4 + x5 ≥28 x2 + x3 + x4 + x5 + x6≥15 x3 + x4 + x5 + x6 + x7≥24 x4 + x5 + x6 + x7 + x1≥25 x5 + x6 + x7 + x1 + x2≥19 x6 + x7 + x1 + x2 + x3≥31 x7 + x1 + x2 + x3 + x4≥28 x1,x2,x3,x4,x5,x6,x7 ≥0 解得12.0.11.5.0.8.0(x1到x7) 最小值36 某工厂要做100套钢架 设x1,x2,x3,x4,x5 分别为5 种方案下料的原材料根数。这样我们建立如下的数学模型。 目标函数:Min x1 + x2 + x3 + x4 + x5 s.t. x1 + 2x2 +x4≥100 2x3+2x4 +x5≥100 3x1+x2+2x3+3x5≥100 x1,x2,x3,x4,x5≥0 解得30,10,0,50,0 只需要90根原料造100钢架某工厂要用三种原料1、2、3 设设x ij 表示第i 种(甲、乙、丙)产品中原料j 的含量。 目标函数:Max z = -15x11+25x12+15x13-30x21+10x22-40x31-10x33 s.t. 0.5 x11-0.5 x12 -0.5 x13≥0 -0.25x11+0.75x12 -0.25x13≤0 0.75x21-0.25x22 -0.25x23≥0 -0.5 x21+0.5 x22 -0.5 x23≤0 x11+x21 +x31≤100 x12+x22 +x32≤100 x13+x23+x33≤60 x ij≥0 , i = 1,2,3; j = 1,2,3 解得x11=100,x12=50,x13=50原料分别为第1种100 第2种50 第3种50 资源分配 解:将问题按工厂分为三个阶段,甲、乙、丙三个厂分别编号为1、2、3厂。设sk= 分配给第k个厂至第3个厂的设备台数(k=1、2、3)。xk=分配给第k个工厂的设备台数。 已知s1=5, 并有S2=T1(s1,x1)=s1-x1,S3=T2(s2,x2)=s2-x2从Sk与Xk的定义,可知s3=x3 以下我们从第三阶段开始计算。Maxr3(s3,x3)=r3(s3,x3)即F3(s3)= Maxr3(s3,x3)=r3(s3,x3). 第二阶段F2(s2)=max[r2(s2,x2)+f3(s3)]第一阶段当s1=5时最大盈利为f1(5)=max[r1(5,x1)+f2(5-x1)] 得出2个方案⑴分配给甲0台乙0台丙3台⑵分配甲2台乙2台丙1台,他们的总盈利值都是21. 背包 设Sk=分配给第k种咨询项目到第四种咨询项目的所有客户的总工作日Xk=在第k种咨询项目中处理客户的数量已知s1=10,有S2=T1(s1,x1)=s1-x1. S3=T2(s2,x2)=s2-3x2. S4=T3(s3,x3)=s3-4x3,第四阶段F4(s4)=maxr4(s4,x4)=r4(s4,[s4/7])第三阶段F3(s3)=max[r3(s3,x3)+f4(s3-4x3)]第二阶段F2(s2)=max[r2(s2,x2)+f3(s2-3x2)]第一阶段已知s1=10,又因s2=s1-x1有F1(10)=max[r1(10,x1)+f2(10-x1)] 综上当x1*=0,x2*=1,x3*=0,x4*=1,最大盈利为28 京城畜产品 解:设:0--1变量xi = 1 (Ai 点被选用)或0 (Ai 点没被选用)。这样我们可建立如下的数学模型:Max z =36x1+40x2+50x3+22x4+20x5+30x6+25x7+48x8+58x9+61x10 s.t. 100x1+120x2+150x3+80x4+70x5+90x6+80x7+140x8+160x9+180x10 ≤720 x1 + x2 + x3 ≤2 x4 + x5 ≥1 x6 + x7 ≥1 x8 + x9 + x10 ≥2 xi≥0 且xi为0--1变量,i = 1,2,3,……,10 函数值245 最优解1,1,0,0,1,1,0,0,1,1(x1到x10的解) 高压容器公司

运筹学复习题目加答案

一、单选题 1.目标函数取极小(minZ )的线性规划问题可以转化为目标函数取极大的线性规划问题求解,原问题的目标函数值等于( )。 A. maxZ B. max(-Z) C. –max(-Z) D.-maxZ 2.下列说法中正确的是( )。 A .基本解一定是可行解 B .基本可行解的每个分量一定非负 C .若B 是基,则B 一定是可逆 D .非基变量的系数列向量一定是线性相关的 3.在线性规划模型中,没有非负约束的变量称为 ( ) A.多余变量 B .松弛变量 C .人工变量 D .自由变量 4. 当满足最优解,且检验数为零的变量的个数大于基变量的个数时,可求得( )。 A .多重解 B .无解 C .正则解 D .退化解 5.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足 ( )。 A .等式约束 B .“≤”型约束 C .“≥”约束 D .非负约束 6. 原问题的第i个约束方程是“=”型,则对偶问题的变量i y 是( )。 A .多余变量 B .自由变量 C .松弛变量 D .非负变量 7.在运输方案中出现退化现象,是指数字格的数目( )。 A.等于m+n B.大于m+n-1 C.小于m+n-1 D.等于m+n-1 二、判断题 1.线性规划问题的一般模型中不能有等式约束。 2.对偶问题的对偶一定是原问题。 3.产地数与销地数相等的运输问题是产销平衡运输问题。 4.对于一个动态规划问题,应用顺推或逆解法可能会得出不同的最优解。 5.线性规划问题的每一个基本可行解对应可行域上的一个顶点。 6.线性规划问题的基本解就是基本可行解。 三、填空题 1.如果某一整数规划:MaxZ=X 1+X 2 X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3 X 1,X 2≥0且均为整数 所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 和 。 2.如希望I 的2 倍产量21x 恰好等于II 的产量2x ,用目标规划约束可表为: 3. 线性规划解的情形有 4. 求解指派问题的方法是 。 5.美国的R.Bellman 根据动态规划的原理提出了求解动态规划的最优化原理为 6. 在用逆向解法求动态规划时,f k (s k )的含义是:

运筹学第四次作业排队论问题.doc

一、汽车维修站问题 某汽车维修站只有一名修理工,一天8h 平均修理10辆汽车。已知维修时间服从负指数分布,汽车的到来服从泊松流,平均每小时有1辆汽车到达维修站。假如一位司机愿意在维修站等候,一旦汽车修复就立即开走,问司机平均需要等待多长时间。如果假设每小时有1.2辆汽车去修理,试问该维修工每天的空闲时间有多少?这对维修站里的汽车数及修理后向顾客交货时间又有怎样的影响?结合以上所求得的数据,分析汽车维修站的服务质量水平。 解:该问题是一个标准的M/M/1/2模型,即汽车司机相继到达间隔时间的分布满足负指数分布,维修工服务时间分布满足负指数分布,服务台数为c=1,系统容量限制为N=2。 (1)已知汽车的到来服从泊松流,平均到达率为=1/h λ,维修时间服从负指数分布,平均每辆汽车接受服务的时间为T=0.8h,单位时间服务车辆的数量为 1.25μ=。则根据该模型运行指标的计算公式可得出: ①系统的平均服务强度为/0.8ρλμ==; ②顾客到达后理科就能得到服务的概率,即维修站空闲,没有顾客的概率为 0+1 11N P ρ ρ -= -; ③系统的队长为1 1 (1)11N s N N L ρ ρρρ +++=---; ④系统的排队长0(1)q S L L P =--; ⑤系统的有效到达率为0(1)e P λμ=-; ⑥顾客逗留时间为0(1) s s s e L L W P λμ= = -; ⑦系统满员的概率,即顾客被拒绝的概率为1 1·1N N N P ρ ρρ +-=-; 利用LINGO 软件来求解,记有关参数1c =,系统最大容量为N=2,顾客平均到达率为1L λ==,平均每个顾客的服务时间为1 0.8T μ ==。则相应程序如 下: MODEL: sets:

运筹学习题答案

第一章习题 1.思考题 (1)微分学求极值的方法为什么不适用于线性规划的求解? (2)线性规划的标准形有哪些限制?如何把一般的线性规划化为标准形式? (3)图解法主要步骤是什么?从中可以看出线性规划最优解有那些特点? (4)什么是线性规划的可行解,基本解,基可行解?引入基本解和基可行解有什么作用? (5)对于任意基可行解,为什么必须把目标函数用非基变量表示出来?什么是检验数?它有什么作用?如何计算检验数? (6)确定换出变量的法则是什么?违背这一法则,会发生什么问题? (7)如何进行换基迭代运算? (8)大M法与两阶段法的要点是什么?两者有什么共同点?有什么区别? (9)松弛变量与人工变量有什么区别?试从定义和处理方式两方面分析。 (10)如何判定线性规划有唯一最优解,无穷多最优解和无最优解?为什么? 2.建立下列问题的线性规划模型: (1)某厂生产A,B,C三种产品,每件产品消耗的原料和设备台时如表1-18所示: 润最大的模型。 (2)某公司打算利用具有下列成分(见表1-19)的合金配制一种新型合金100公斤,新合金含铅,锌,锡的比例为3:2:5。 如何安排配方,使成本最低? (3)某医院每天各时间段至少需要配备护理人员数量见表1-20。

表1-20 假定每人上班后连续工作8小时,试建立使总人数最少的计划安排模型。能否利用初等数学的视察法,求出它的最优解? (4)某工地需要30套三角架,其结构尺寸如图1-6所示。仓库现有长6.5米的钢材。如何下料,使消耗的钢材最少? 图1-6 3. 用图解法求下列线性规划的最优解: ?????? ?≥≤+-≥+≥++=0 ,425.134 1 2 64 min )1(21212 12121x x x x x x x x x x z ?????? ?≥≤+≥+-≤++=0 ,82 5 1032 44 max )2(21212 12121x x x x x x x x x x z ????? ????≥≤≤-≤+-≤++=0 ,6 054 4 22232 96 max )3(2122 1212121x x x x x x x x x x x z ??? ??≥≤+-≥+ +=0,1 12 34 3 max )4(2 12 12121x x x x x x x x z

运筹学练习题分析

第1题单选 题 A、决策变量 B、松弛变量 C、偏差变量 D、人工变量 2.第2题单选题若用图解法求解线性规划问题,则该问题所含决策变量的数目应为( ) A、二个 B、五个以下 C、三个以上 D、无限制 3.第3题单选题用单纯形法求解目标函数为极大值的线性规划问题,当所有非基变量的检验数均小于零时,表明该问题( ) A、有无穷多最优解 B、无可行解 C、有且仅有一个最优解 D、有无界解 4.第4题单选题 A、1个

B、4个 C、6个 D、9个 5.第5题单选题线性规划问题中基可行解与基解的区别在于( ) A、基解都不是可行解 B、 C、基解是凸集的边界 D、 6.第6题判断题如果线性规划问题问题存在最优解,则最优解一定对应可行域边界上的一个点 标准答案:正确 7.第7题判断题若线性规划问题有两个最优解 , 则它一定有无穷多个最优解 标准答案:正确 8.第8题判断题任何线性规划问题存在并具有唯一的对偶问题 标准答案:正确 9.第9题判断 题 标准答案:正确 10.第10题判断题对偶问题的对偶问题一定是原问题 标准答案:正确 11.第11题判断题线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域范围一般将扩大 标准答案:正确 12.第12题判断题线性规划问题的基解对应可行域的顶点

标准答案:错误 13.第13题判断题若线性规划的原问题有无穷多个最优解,则其对偶问题也一定具有无穷多最优解 标准答案:错误 第1题单选题对于 m 个发点、n 个收点的运输问题,叙述错误的是 ( ) A、该问题的系数矩阵有m × n 列 B、该问题的系数矩阵有 m n 行 C、该问题的系数矩阵的秩必为 m n-1 D、该问题的最优解必唯一 2.第2题单选题在解运输问题时,若已求得各个空格的改进路线和判别数,则选择调整格的原则是( ) A、在所有空格中,挑选绝对值最大的正判别数所在的空格作为调整格 B、在所有空格中,挑选绝对值最小的正判别数所在的空格作为调整格 C、在所有空格中,挑选绝对值最大的负判别数所在的空格作为调整格 D、在所有空格中,挑选绝对值最小的负判别数所在的空格作为调整格 3.第3题单选题在运输方案中出现退化现象,是指数字格的数目( ) A、等于m n B、大于m n-1 C、小于m n-1 D、等于m n-1 4.第4题单选题求最初运输方案可采用( ) A、大M法 B、位势法 C、西北角法 D、闭合回路法 5.第5题单选题 A、使诸供应点的供应总量减少G-Q B、使诸需求点的需求总量增加G-Q

运筹学大作业 哈工大

课程名称:对偶单纯形法 一、教学目标 在对偶单纯形法的学习过程中,理解和掌握对偶问题;综合运用线性规划和对偶原理知识对对偶单纯形法与单纯形法进行对比分析,了解单纯形法和对偶单纯形法的相同点和不同点,总结出各自的适用范围;掌握对偶单纯形法的求解过程;并能运用对偶单纯形法独立解决一些运筹学问题。 二、教学内容 1) 对偶单纯形法的思想来源(5min) 2) 对偶单纯形法原理(5min) 3) 总结对偶单纯形法的优点及适用情况(5min) 4) 对偶单纯形法的求解过程(10min) 5) 对偶单纯形法例题(15min) 6) 对比分析单纯形法和对偶单纯形法(10min) 三、教学进程: 1)讲述对偶单纯形法思想的来源: 1954年美国数学家C.莱姆基提出对偶单纯形法(Dual Simplex Method )。单纯形法是从原始问题的一个可行解通过迭代转到另一个可行解,直到检验数满足最优性条件为止。对偶单纯形法则是从满足对偶可行性条件出发通过迭代逐步搜索原始问题的最优解。在迭代过程中始终保持基解的对偶可行性,而使不可行性逐步消失。因此在保持对偶可行性的前提下,一当基解成为可行解时,便也就是最优解。 2)讲述对偶单纯形法的原理 A.对偶问题的基本性质 依照书第58页,我们先介绍一下对偶问题的六个基本性质: 性质一:弱对偶性 性质二:最优性。如果 x j (j=1...n)原问题的可行解,y j 是其对偶问题可 行解,且有 ∑=n j j j x c 1 =∑=m i i i y b 1 ,则x j 是原问题的最优解,y j 是其对偶问题的最

优解。 性质三:无界性。如果原问题(对偶问题)具有无界解,则其对偶问题(原问题)无可行解。 性质四:强对偶性。如果原问题有最优解,则其对偶问题也一定有最优解。 性质五:互补松弛型。在线性规划问题的最优解中,如果对应某一约束条件的对偶变量值为零,则该约束条件取严格等式;反之如果约束条件取严格不等式,则其对应的对偶变量一定为零。 性质六:线性规划的原问题及其对偶问题之间存在一对互补的基解,其中原问题的松弛变量对应对偶问题的变量,对偶问题的剩余变量对应原问题的变量;这些互相对应的变量如果在一个问题的解中是基变量,则在另一问题的解中是非基变量;将这对互补的基解分别代入原问题和对偶问题的目标函数有z=w. B.对偶单纯形法(参考书p64页) 设某标准形式的线性规划问题,对偶单纯形表中必须有c j -z j ≤0(j=1...n),但b i (i=1...m)的值不一定为正,当对i=1...m ,都有b i ≥0时,表中原问题和对偶问题均为最优解,否则通过变换一个基变量,找出原问题的一个目标函数值较小的相邻的基解。 3)为什么要引入对偶单纯形法 从理论上说原始单纯形法可以解决一切线性规划问题,然而实际问题中,由于考虑问题的角度不同,变量设置的不同,便产生了原问题及其对偶问题,对偶问题是原问题从另外一个角度考虑的结果。用对偶单纯形法求解线性规划问题时,当约束条件为“≥”时,不必引入人工变量,使计算简化。 例如,有一线性规划问题: min ω =12 y 1 +16y 2 +15 y 3 约束条件 ?? ?? ???≥=≥+≥+0)3,2,1(3522 423121 i y y y y y i

《运筹学》题库

运筹学习题库 数学建模题(5) 1、某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示: 试建立使得该厂能获得最大利润的生产计划的线性规划模型,不求解。 解:设甲、乙产品的生产数量应为x1、x2,则x1、x2≥0,设z 是产品售后的总利润,则 max z =70x 1+120x 2 s.t. ????? ??≥≤+≤ +≤+0 300103200643604921212121x x x x x x x x , 2建立使利润最大的生产计划的数学模型,不求解。 解:设甲、乙两种产品的生产数量为x 1、x 2, 设z 为产品售后总利润,则max z= 4x 1+3x 2 s.t. ???????≥≤≤+≤+ ,50040005.253000222112121x x x x x x x 3、一家工厂制造甲、乙、丙三种产品,需要三种资源——技术服务、劳动力和行政管理。每种产品的资源消耗量、单位产品销售后所能获得的利润值以及这三种资源的储备量如下表所示:

建立使得该厂能获得最大利润的生产计划的线性规划模型,不求解。 解:建立线性规划数学模型: 设甲、乙、丙三种产品的生产数量应为x 1、x 2、x 3,则x 1、x 2、x 3≥0,设z 是产品售后的总利润,则 max z =10x 1+6x 2+4x 3 s.t. ???????≥≤++≤++≤++0 3006226005410100321321321321x x x x x x x x x x x x ,, 4、一个登山队员,他需要携带的物品有:食品、氧气、冰镐、绳索、帐篷、照相器材、通 信器材等。每种物品的重量合重要性系数如表所示。设登山队员可携带的最大重量为25kg,试建立队员所能携带物品最大量的线性规划模型,不求解。 解:引入0—1变量x i , x i =1表示应携带物品i ,,x i =0表示不应携带物品I ?? ?==≤++++++++++++=7 ,...,2,1,10254212625510481418152076543217654321i x x x x x x x x x x x x x x x naxz i 或 5、工厂每月生产A 、B 、C 三种产品,单件产品的原材料消耗量、设备台时的消耗量、资源根据市场需求,预测三种产品最低月需求量分别是150、260、120,最高需求量是250、310、130,试建立该问题数学模型,使每月利润最大,为求解。 解:设每月生产A 、B 、C 数量为321,,x x x 。 321121410x x x MaxZ ++= 250042.15.321≤++x x x

运筹学例题解析word精品

(一)线性规划建模与求解 B.样题: 活力公司准备在 5小时内生产甲、乙两种产品。甲、乙两种产品每生产 1 单位分别消耗2小时、1小时。又根据市场需求信息,乙产品的产量应该至少是甲产品产量 的3倍。已知甲、乙两种产品每销售 1单位的利润分别为 3百元和1百元。请问:在5小时 内,甲、乙两种产品各生产多少单位,才能够使得总销售利润最大? 要求:1、建立该问题的线性规划模型。 2、用图解法求出最优解和最大销售利润值, 并写出解的判断依据。如果不存在最优解, 也请说明理由。 解: 1、(1)设定决策变量: 设甲、乙两种产品分别生产 X]、X 2单位 _____________ max z=2 X 1+X 2 _________________________________ 12X 1 亠X 2 乞5 s.t X 2 _3X ! X,X 2 _0 1所示,其中可行域用阴影部分 目标函数只须画出其中一条等值线, 求解过程如下: 1?各个约束条件的边界及其方向如图 1中直线和箭头所示,其中阴影部分为可 行域,由直线相交可得其顶点 A(5,0)、 B(1,3)和 0(0,0)。 2. 画出目标函数的一条等值线 CD : 2x 什X 2=0,它沿法线向上平移,目标函数 值z 越来越大。 3. 当目标函数平移到线段 AB 时时,z ⑵目标函数:. (3)约束条件如下: 2、该问题中约束条件、目标函数、可行域和顶点见图 标记,不等式约束条件及变量约束要标出成立的方向, 顶点用大写英文字母标记。 -2 -1 X 2> 3 X 4 B(1,3) 3 图1 X2 5; A(5,O) T Max z 。 1 MaX 2

运筹学例题及解答

运筹学例题及解答 一、市场对I、II两种产品的需求量为:产品I在1-4月每月需10000件,5-9月每月需30000件,10-12月每月需100000件;产品II在3-9月每月需15000件,其它月份每月需50000件。某厂生产这两种产品成本为:产品I在1-5月内生产每件5元,6-12月内生产每件4.50元;产品II在1-5月内生产每件8元,6-12月内生产每件7元。该厂每月生产两种产品能力总和应不超过120000件。产品I容积每件0.2立方米,产品II容积每件0.4立方米,而该厂仓库容积为15000立方米,要求:(a)说明上述问题无可行解;(b)若该厂仓库不足时,可从外厂借。若占用本厂每月每平方米库容需1元,而租用外厂仓库时上述费用增加为1.5元,试问在满足市场需求情况下,该厂应如何安排生产,使总的生产加库存费用为最少。 解:(a) 10-12月份需求总计:100000X3+50000X3=450000件,这三个月最多生产120000X3=360000件,所以10月初需要(450000-360000=90000件)的库存,超过该厂最大库存容量,所以无解。 ? ?(b)考虑到生产成本,库存费用和生产费用和生产能力,该厂10-12月份需求的不足只需在7-9月份生产出来库存就行, 则设xi第i个月生产的产品1的数量,yi第i个月生产的产品2 的数量,zi,wi分别为第i个月末1,2的库存数s1i,s2i分别

为用于第i+1个月库存的原有及租借的仓库容量m3,可建立模型: Lingo 程序为 MODEL: sets: row/1..16/:; !这里n 为控制参数; col/1..7/:; AZ(row,col):b,x; endsets 1211 127777778 7887898998910910109101110111110111211min (4.57)( 1.5) 30000150003000015000300001500030000150003000015000.i i i i i i z x y s s x z y w x z z y w w x z z y w w x z z y w w x z z y w w st x z ===+++-=→-=+-=→+-=+-=→+-=+-=→+-=+-=→+-=+∑∑1211121100005000 120000(712)0.20.415000(712)0i i i i i i i y w x z i z w s s s i ?????????=→+=??+≤≤≤?+=+??≤≤≤???变量都大于等于

相关文档