文档库 最新最全的文档下载
当前位置:文档库 › 2018版高中数学 第二章 平面向量导学案 新人教A版必修4

2018版高中数学 第二章 平面向量导学案 新人教A版必修4

2018版高中数学 第二章 平面向量导学案 新人教A版必修4
2018版高中数学 第二章 平面向量导学案 新人教A版必修4

第二章 平面向量

1 向量和差作图全攻略

两个非零向量的和差作图,对同学们是一个难点,这里对其作图方法作出细致分析,以求尽快掌握.

一、向量a 、b 共线

例1 如图,已知共线向量a 、b ,求作a +b . (1)a 、b 同向;

(2)a 、b 反向,且|a |>|b |; (3)a 、b 反向,且|a |<|b |.

作法 在与a 平行的同一条直线上作出三个向量OA →=a ,AB →=b ,OB →

=a +b ,具体作法是:当

a 与

b 方向相同时,a +b 与a 、b 的方向相同,长度为|a |+|b |;当a 与b 方向相反时,a +b 与a 、b 中长度长的向量方向相同,长度为||a |-|b ||.为了直观,将三个向量中绝对值最

大的向量沿与a 垂直的方向稍加平移,然后分别标上a ,b ,a +b .作图如下:

例2 如图,已知共线向量a 、b ,求作a -b . (1)a 、b 同向,且|a |>|b |; (2)a 、b 同向,且|a |<|b |; (3)a 、b 反向.

作法 在平面上任取一点O ,作OA →=a ,OB →=b ,则BA →

=a -b .事实上a -b 可看作是a +(-b ),按照这个理解和a +b 的作图方法不难作出a -b ,作图如下:

二、向量a 、b 不共线

如果向量不共线,可以应用三角形法则或平行四边形法则作图.

例3 如图,已知向量a 、b . 求作:(1)a +b ;(2)a -b . 作法1 (应用三角形法则)

(1)一般情况下,应在两已知向量所在的位置之外任取一点O .

第一步:作OA →

=a ,方法是将一个三角板的直角边与a 重合,再将直尺一边与三角板的另一直角边重合,最后将三角板拿开,放到一直角边过点O ,一直角边与直尺的一边重合的位置,在此基础上取|OA →|=|a |,并使OA →

与a 同向.

第二步:同第一步方法作出AB →=b ,一定要保证方向相同且长度相等.(此处最易错的是把AB →

作成与b 的方向相反.)

第三步:作OB →,即连接OB ,在B 处打上箭头,OB →

即为a +b . 作图如下:

(2)第一步:在平面上a ,b 位置之外任取一点O ; 第二步:依照前面方法过O 作OA →=a ,OB →

=b ; 第三步:连接AB ,在A 处加上箭头,向量BA →

即为a -b . 作图如下:

点评 向量加法作图的特点是“首尾相接,首尾连”;向量减法作图的特点是“共起点,连终点,箭头指被减”.

作法2 (应用平行四边形法则)

在平面上任取一点A ,以点A 为起点作AB →

=a , AD →

=b ,以AB ,AD 为邻边作?ABCD ,则AC →=a +b ,DB →

=a -b .作图如下:

点评 向量的平行四边形法则和三角法则在本质上是一样的,但在解决某些问题时平行四边形法则有一定的优越性,因此两种法则都应熟练掌握.

向量和差作图,要注意的是保证所作向量与目标向量“方向相同,长度相等”,最忌讳的是“作法不一”,比如作法中要求的是作AB →=b ,可实际上作的是AB →

=-b .只要作图的过程与作法的每一步相对应,一定能作出正确的图形.

2 向量线性运算的应用

平面向量的线性运算包括加法、减法以及数乘运算,在解题中具有广泛的应用.在对向量实施线性运算时,要准确利用对应的运算法则、运算律,注意向量的大小和方向两个方面. 一、化简

例1 化简下列各式: (1)(2AB →-CD →)-(AC →-2BD →

); (2)1

24[3(2a +8b )-6(4a -2b )]. 解 (1)(2AB →-CD →)-(AC →-2BD →

)

=2AB →-CD →-AC →+2BD →=2AB →+DC →+CA →+2BD → =2(AB →+BD →)+(DC →+CA →)=2AD →+DA →=AD →. (2)1

24

[3(2a +8b )-6(4a -2b )] =124(6a +24b -24a +12b )=1

24(-18a +36b ) =-34a +32

b .

点评 向量的基本运算主要有两个途径:一是基于“形”,通过作出向量,运用平行四边形法则或三角形法则进行化简;二是基于“数”,满足“首尾相接且相加”或“起点相同且相减”的两个向量进行化简,解题时要注意观察是否有这两种形式出现,同时注意向量加法法则、减法法则的逆向应用.数乘运算,可类比实数积的运算方法进行,将向量a ,b ,c 等看成一般字母符号,其中向量数乘之间的和差运算,相当于合并同类项或提取公因式,这里的“同类项”与“公因式”指的是向量. 二、求参数

例2 如图,已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →

成立,则

m =________.

解析 如图,因为MA →+MB →+MC →

=0,

即MA →=-(MB →+MC →), 即AM →=MB →+MC →, 延长AM ,交BC 于D 点,

所以D 是BC 边的中点,所以AM →=2MD →

, 所以AD →=32AM →,所以AB →+AC →=2AD →=3AM →,

所以m =3. 答案 3

点评 求解含参数的向量线性运算问题,只需把参数当作已知条件,根据向量的加法、减法及数乘运算将问题中所涉及的向量用两个不共线的向量表示,列出向量方程,对比系数求参数的值. 三、表示向量

例3 如图所示,在△ABC 中,AD →=23AB →

,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于点N ,

设AB →=a ,AC →=b ,用向量a ,b 表示AE →、BC →、DE →、DN →、AM →.

解 因为DE ∥BC ,AD →=23

AB →

所以AE →=23AC →=23b ,BC →=AC →-AB →

=b -a ,

由△ADE ∽△ABC ,得DE →=23BC →=2

3(b -a ),

又M 是△ABC 底边BC 的中点,DE ∥BC , 所以DN →=12DE →=1

3

(b -a ),

AM →=AB →+BM →

=a +12BC →=a +12(b -a )=12

(a +b ).

点评 用已知向量表示另外一些向量,应尽量将所求向量转化到平行四边形或三角形中,利用向量共线条件和平面几何知识的一些定理、性质,如三角形中位线性质,相似三角形对应边成比例等,再利用向量加法、减法法则,即可用已知向量表示所求向量.

3 平面向量的基本定理应用三技巧

技巧一 构造某一向量在同一基底下的两种不同的表达形式,用“若e 1,e 2为基底,且a =

x 1e 1+y 1e 2=x 2e 1+y 2e 2,则用?

??

??

x 1=x 2

y 1=y 2来求解.

例1 在△OAB 的边OA ,OB 上分别取点M ,N ,使|OM →|∶|OA →|=1∶3,|ON →|∶|OB →

|=1∶4,设线段AN 与BM 交于点P ,记OA →=a ,OB →=b ,用a ,b 表示向量OP →

. 解 ∵B ,P ,M 共线,

∴存在常数s ,使BP →=sPM →

, 则OP →

=11+s OB →+s 1+s OM →.

即OP →=11+s OB →+s 3(1+s )OA →

s

3(1+s )

a +

1

1+s

b . ①

同理,存在常数t ,使AP →=tPN →

, 则OP →

=11+t a +t 4(1+t )

b .

∵a ,b 不共线,∴?????

11+t =s 3(1+s )

11+s =t

4(1+t )

解之得?????

s =92

t =8

3

,∴OP →=3

11a +211

b .

点评 这里选取OA →,OB →作为基底,构造OP →

在此基底下的两种不同的表达形式,再根据相同基底的系数对应相等得到实数方程组,最后进行求解.

技巧二 构造两个共线向量在同一基底下的表达形式,用“若e 1,e 2为基底,a =x 1e 1+y 1e 2,

b =x 2e 1+y 2e 2,且a ∥b ,则x 1y 2-x 2y 1=0”来求解.

例2 如图,在△OAB 中,OC →=14OA →,OD →=12

OB →,AD 与BC 交于点M ,设OA →=a ,OB →

=b

.

(1)用a 、b 表示OM →

(2)已知在线段AC 上取一点E ,在线段BD 上取一点F ,使EF 过M 点,设OE →=pOA →,OF →=qOB →

,求证:17p +3

7q =1.

(1)解 设OM →

=m a +n b ,则 AM →

=(m -1)a +n b ,AD →

=-a +12

b .

∵点A 、M 、D 共线,∴AM →与AD →

共线, ∴1

2

(m -1)-(-1)×n =0,∴m +2n =1.

而CM →=OM →-OC →=(m -14)a +n b ,CB →

=-14a +b .

∵C 、M 、B 共线,∴CM →与CB →

共线, ∴-14n -(m -1

4)=0.∴4m +n =1.

联立①②可得m =17,n =37,

∴OM →=1

7a +37

b .

(2)证明 EM →=(1

7-p )a +37

b ,EF →=-p a +q b ,

∵EF →与EM →

共线,

∴(17-p )q -3

7×(-p )=0. ∴17q -pq =-37p ,即17p +3

7q

=1. 点评 这里多次运用构造一组共线向量的表达形式,再根据共线向量基底的系数关系建立方程组求解.

技巧三 将题目中的已知条件转化成λ1e 1+λ2e 2=0的形式(e 1,e 2不共线),根据λ1=λ2

=0来求解.

例3 如图,已知P 是△ABC 内一点,且满足条件AP →+2BP →+3CP →

=0,设Q 为CP 的延长线与

AB 的交点,令CP →=p ,试用向量p 表示CQ →

.

解 ∵AP →=AQ →+QP →,BP →=BQ →+QP →, ∴(AQ →+QP →)+2(BQ →+QP →)+3CP →

=0, ∴AQ →+3QP →+2BQ →+3CP →

=0,

又∵A ,B ,Q 三点共线,C ,P ,Q 三点共线, ∴AQ →=λBQ →,CP →=μQP →, ∴λBQ →+3QP →+2BQ →+3μQP →

=0, ∴(λ+2)BQ →+(3+3μ)QP →

=0.

而BQ →,QP →

为不共线向量,∴???

??

λ+2=0,3+3μ=0.

∴λ=-2,μ=-1.∴CP →=-QP →=PQ →

. 故CQ →=CP →+PQ →=2CP →

=2p .

点评 这里选取BQ →,QP →

两个不共线的向量作为基底,运用化归与转化思想,最终变成λ1e 1+λ2e 2=0的形式来求解.

4 直线的方向向量和法向量的应用

直线的方向向量和法向量是处理直线问题的有力工具.由于直线和平面向量的学习分散在必修2和必修4先后进行,学习中对它们的认识还不到位,重视程度还不够,下面对直线的方向向量和法向量的灵活应用结合例子加以剖析. 一、直线的方向向量 1.定义

设P 1,P 2是直线l :Ax +By +C =0上的不同两点,那么向量P 1P 2→

以及与它平行的非零向量都称为直线l 的方向向量,若P 1(x 1,y 1),P 2(x 2,y 2),则P 1P 2→

的坐标为(x 2-x 1,y 2-y 1);特别当直线l 与x 轴不垂直时,即x 2-x 1≠0,直线的斜率k 存在时,那么(1,k )是它的一个方向向量;当直线l 与x 轴平行时,方向向量可为(1,0);而无论斜率存在与否,其方向向量均可表示为(-B ,A ). 2.应用 (1)求直线方程

例1 已知三角形三顶点坐标分别为A (2,-3),B (-7,9),C (18,9),求AB 边上的中线、高线方程以及∠C 的内角平分线方程. 解 ①求中线方程

由于CB →=(-25,0),CA →=(-16,-12),那么AB 边上的中线CD 的方向向量为CB →+CA →

=(-41,-12),

也就是? ????1,1241,因而直线CD 的斜率为1241, 那么直线CD 的方程为y -9=12

41(x -18),

整理得12x -41y +153=0. ②求高线方程

由于k AB =9+3-7-2=-4

3,

因而AB 的方向向量为? ????1,-43,

而AB 边上的高CE ⊥AB ,

则直线CE 的方向向量为? ??

??1,34, 那么高线CE 的方程为y -9=3

4(x -18),

整理得3x -4y -18=0. ③求∠C 的内角平分线方程

CB

|CB →|=(-1,0),CA →

|CA →|=? ????-4

5

,-35,

则∠C 的内角平分线的方向向量为 CB

|CB →|

CA

|CA →|

=? ????-95,-35,也就是? ????1,13, 因而内角平分线CF 的方程为y -9=1

3(x -18),

整理得x -3y +9=0.

点评 一般地,经过点(x 0,y 0),与直线Ax +By +C =0平行的直线方程是A (x -x 0)+B (y -

y 0)=0;与直线Ax +By +C =0垂直的直线方程是B (x -x 0)-A (y -y 0)=0.

(2)求直线夹角

例2 已知l 1:x +3y -15=0与l 2:y -3mx +6=0的夹角为π

4,求m 的值.

解 直线l 1的方向向量为v 1=(-3,1), 直线l 2的方向向量为v 2=(1,3m ), ∵l 1与l 2的夹角为π

4

∴|cos〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|=|3m -3|9+1·1+9m 2

=2

2, 化简得18m 2

+9m -2=0.解得m =-23或m =16

.

点评 一般地,设直线l 1:y =k 1x +b 1,其方向向量为v 1=(1,k 1),直线l 2:y =k 2x +b 2,其方向向量为v 2=(1,k 2),当1+k 1k 2=0时,两直线的夹角为90°;当1+k 1k 2≠0时,设夹角为θ,则cos θ=|v 1·v 2||v 1|·|v 2|=|1+k 1k 2|

1+k 21·1+k 2

2;若设直线l 1:A 1x +B 1y +C 1=0,其方向向量为(-B 1,A 1),直线l 2:A 2x +B 2y +C 2=0,其方向向量为(-B 2,A 2),那么cos θ=|A 1A 2+B 1B 2|

A 21+

B 21·A 22+B 2

2

.

二、直线的法向量 1.定义

直线Ax +By +C =0的法向量:如果向量n 与直线l 垂直,则称向量n 为直线l 的法向量.因此若直线的方向向量为v ,则n ·v =0,从而对于直线Ax +By +C =0而言,其方向向量为v =(B ,-A ),则由于n ·v =0,于是可取n =(A ,B ). 2.应用

(1)判断直线的位置关系

例3 已知直线l 1:ax -y +2a =0与直线l 2:(2a -1)x +ay +a =0. (1)若l 1⊥l 2,求实数a 的值; (2)若l 1∥l 2,求实数a 的值.

解 直线l 1,l 2的法向量分别为n 1=(a ,-1),n 2=(2a -1,a ),

(1)若l 1⊥l 2,则n 1·n 2=a (2a -1)+(-1)×a =0,解得a =0或a =1.∴a =0或1时,l 1⊥l 2.

(2)若l 1∥l 2,则n 1∥n 2,∴a 2-(2a -1)×(-1)=0.解得a =-1±2,且a 2a -1=-1a

≠2.∴a

=-1±2时,l 1∥l 2.

点评 一般地,设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,它们的法向量分别为n 1=(A 1,B 1),n 2=(A 2,B 2),当n 1⊥n 2,即A 1A 2+B 1B 2=0时,l 1⊥l 2,反之亦然;当n 1∥n 2,即

A 1

B 2-A 2B 1=0时,l 1∥l 2或l 1与l 2重合.

(2)求点到直线的距离

例4 已知点M (x 0,y 0)为直线l :Ax +By +C =0外一点. 求证:点M (x 0,y 0)到直线l 的距离d =|Ax 0+By 0+C |

A 2+

B 2

.

证明 设P (x 1,y 1)是直线Ax +By +C =0上任一点,n 是直线l 的一个法向量,不妨取n =(A ,

B ).则M (x 0,y 0)到直线l :Ax +By +

C =0的距离d 等于向量PM →

在n 方向上投影的长度,如图

所示.

d =|PM →|·|cos〈PM →

,n 〉|

=|PM →·n ||n |

|(x 0-x 1,y 0-y 1)·(A ,B )|

A 2+

B 2

|A (x 0-x 1)+B (y 0-y 1)|

A 2+

B 2

|Ax 0+By 0-(Ax 1+By 1)|

A 2+

B 2

.

∵点P (x 1,y 1)在直线l 上,

∴Ax 1+By 1+C =0,∴Ax 1+By 1=-C , ∴d =|Ax 0+By 0+C |A 2+B 2

.

点评 同理应用直线的法向量可以证明平行直线l 1:Ax +By +C 1=0与直线l 2:Ax +By +C 2=0(A 2+B 2

≠0且C 1≠C 2)的距离为d =|C 2-C 1|A 2+B 2.

证明过程如下:

设P 1(x 1,y 1),P 2(x 2,y 2)分别为直线l 1:Ax +By +C 1=0,直线l 2:Ax +By +C 2=0上任意两点,取直线l 1,l 2的一个法向量n =(A ,B ),则P 1P 2→

=(x 2-x 1,y 2-y 1)在向量n 上的投影的长度,就是两平行线l 1、l 2的距离.

d =|P 1P 2→

||cos 〈P 1P 2→

,n 〉|=|P 1P 2,→

·n |

|n |

|(x 2-x 1,y 2-y 1)·(A ,B )|

A 2+

B 2

=|A (x 2-x 1)+B (y 2-y 1)|

A 2+

B 2

|(Ax 2+By 2)-(Ax 1+By 1)|A 2+B 2=|C 2-C 1|

A 2+

B 2

.

5 向量法证明三点共线

平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力.下面就一道习题的应用探究为例进行说明. 典例 已知OB →=λOA →+μOC →

,其中λ+μ=1.求证:A 、B 、C 三点共线. 思路 通过向量共线(如AB →=kAC →

)得三点共线.

证明 如图,由λ+μ=1得λ=1-μ,则OB →=λOA →+μOC →=(1-μ)OA →+μOC →.∴OB →-OA →

=μ(OC →-OA →),

∴AB →=μAC →,

∴A 、B 、C 三点共线.

思考 1.此题揭示了证明三点共线的又一向量方法,点O 具有灵活性;

2.反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满足OB →=λOA →

+μOC →

,且λ+μ=1.揭示了三点共线的又一个性质;

3.特别地,λ=μ=12时,OB →=12(OA →+OC →),点B 为AC →

的中点,揭示了△OAC 中线OB 的一个向

量公式,应用广泛. 应用举例

例1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且BN =1

3BD .利用向量法

证明:M 、N 、C 三点共线.

思路分析 选择点B ,只须证明BN →=λBM →+μBC →

,且λ+μ=1.

证明 由已知BD →=BA →+BC →,又点N 在BD 上,且BN =13BD ,得BN →=13BD →=13(BA →+BC →)=13BA →+13BC →

.

又点M 是AB 的中点,

∴BM →=12BA →,即BA →=2BM →.∴BN →=23BM →+13BC →

.

而23+1

3=1.∴M 、N 、C 三点共线. 点评 证明过程比证明MN →=mMC →

简洁.

例2 如图,平行四边形OACB 中,BD =13BC ,OD 与AB 相交于E ,求证:BE =1

4

BA .

思路分析 可以借助向量知识,只需证明: BE →=14

BA →,而BA →=BO →+BC →

,又O 、D 、E 三点共线,存在唯一实数对λ、μ,且λ+μ=1,使BE →

=λBO →

+μBD →

,从而得到BE →与BA →

的关系.

证明 由已知条件,BA →=BO →+BC →,又B 、E 、A 三点共线,可设BE →=kBA →

,则

BE →

=kBO →+kBC →

又O 、E 、D 三点共线,则存在唯一实数对λ、μ, 使BE →=λBO →+μBD →

,且λ+μ=1. 又BD →=13BC →,

∴BE →=λBO →+13

μBC →,

根据①②得?????

k =λ,k =1

3μ,

λ+μ=1,

解得?????

k =14,

λ=1

4,

μ=34.

∴BE →=14BA →

,∴BE =14

BA .

点评 借助向量知识,充分运用三点共线的向量性质解决问题,巧妙、简洁.

6 平面向量中的三角形“四心”问题

在三角形中,“四心”是一组特殊的点,它们的向量表达形式具有许多重要的性质,在近年高考试题中,总会出现一些新颖别致的问题,不仅考查了向量等知识点,还培养了考生分析问题、解决问题的能力.现就“四心”作如下介绍: 1.重心

三角形三条中线的交点叫重心,它到三角形顶点距离与该点到对边中心距离之比为2∶1.在向量表达形式中,设点G 是△ABC 所在平面内的一点,则当点G 是△ABC 的重心时,有GA →+GB →+GC →=0或PG →=13(PA →+PB →+PC →)(其中P 为平面任意一点).反之,若GA →+GB →+GC →

=0,则点G 是

△ABC 的重心.在向量的坐标表示中,若G ,A ,B ,C 分别是三角形的重心和三个顶点,且坐标分别为G (x ,y ),A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则有x =

x 1+x 2+x 3

3

,y =

y 1+y 2+y 3

3

.

例 已知△ABC 内一点O 满足关系OA →+2OB →+3OC →

=0,试求S △BOC ∶S △COA ∶S △AOB 的值. 解 如图,延长OB 至B 1,使BB 1=OB ,延长OC 至C 1,使CC 1=2OC ,连接AB 1,AC 1,B 1C 1

.

则OB 1→=2OB →,OC 1→=3OC →.

由条件,得OA →+OB 1→+OC 1→

=0, ∴点O 是△AB 1C 1的重心.

从而S △B 1OC 1=S △C 1OA =S △AOB 1=1

3S ,其中S 表示△AB 1C 1的面积.

∴S △COA =19S ,S △AOB =16S ,S △BOC =12S △B 1OC =12×13S △B 1OC 1=1

18S .

于是S △BOC ∶S △COA ∶S △AOB =118∶19∶1

6

=1∶2∶3.

点评 本题条件OA →+2OB →+3OC →=0与三角形的重心性质GA →+GB →+GC →

=0十分类似,因此我们通过添加辅助线,构造一个三角形,使点O 成为辅助三角形的重心,而三角形的重心与顶点的连线将三角形的面积三等分,从而可求三部分的面积比.

引申推广 已知△ABC 内一点O 满足关系λ1OA →+λ2OB →+λ3OC →

=0,则S △BOC ∶S △COA ∶S △AOB =λ1∶λ2∶λ3. 2.垂心

三角形三条高线的交点叫垂心,它与顶点的连线垂直于对边.在向量表达形式中,若H 是△ABC 的垂心,则HA →·HB →=HB →·HC →=HC →·HA →或HA →2+BC →2=HB →2+CA →2=HC →2+AB →2.反之,若HA →·HB →=HB →·HC →=HC →·HA →

,则H 是△ABC 的垂心. 3.内心

三角形三条内角平分线的交点叫内心.内心就是三角形内切圆的圆心,它到三角形三边的距离相等.在向量表达形式中,若点I 是△ABC 的内心,则有|BC →|·IA →+|CA →|·IB →+|AB →|·IC →=0.反之,若|BC →|·IA →+|CA →|·IB →+|AB →|·IC →

=0,则点I 是△ABC 的内心. 4.外心

三角形三条边的中垂线的交点叫外心.外心就是三角形外接圆的圆心,它到三角形的三个顶点的距离相等.在向量表达形式中,若点O 是△ABC 的外心,则(OA →+OB →)·BA →=(OB →+OC →)·CB →=(OC →+OA →)·AC →=0或|OA →|=|OB →|=|OC →|.反之,若|OA →|=|OB →|=|OC →|,则点O 是△ABC 的外心.

人教版高中数学必修二全册导学案

必修2 第一章 §2-1 柱、锥、台体性质及表面积、体积计 算 【课前预习】阅读教材P1-7,23-28完成下面填空 1.棱柱、棱锥、棱台的本质特征 ⑴棱柱:①有两个互相平行的面(即底面),②其余各面(即侧面)每相邻两个面的公共边都互相平行(即侧棱都). ⑵棱锥:①有一个面(即底面)是,②其余各面(即侧面)是 . ⑶棱台:①每条侧棱延长后交于同一点, ②两底面是平行且相似的多边形。 2.圆柱、圆锥、圆台、球的本质特征 ⑴圆柱: . ⑵圆锥: . ⑶圆台:①平行于底面的截面都是圆, ②过轴的截面都是全等的等腰梯形, ③母线长都相等,每条母线延长后都与轴交于同一点. (4)球: . 3.棱柱、棱锥、棱台的展开图与表面积和体积的计算公式 (1)直棱柱、正棱锥、正棱台的侧面展开图分别是 ①若干个小矩形拼成的一个, ②若干个, ③若干个 . (2)表面积及体积公式: 4.圆柱、圆锥、圆台的展开图、表面积和体积的计算公式 5.球的表面积和体积的计算公式【课初5分钟】课前完成下列练习,课前5分钟回答下列问题 1.下列命题正确的是() (A).有两个面平行,其余各面都是四边形的几何体叫棱柱。 (B)有两个面平行,其余各面都是平行四边形的几何体叫棱柱。 (C) 有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱。 (D)用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台。 2.根据下列对于几何体结构特征的描述,说出几何体的名称: (1)由8个面围成,其中两个面是互相平行且全等的六边形,其他面都是全等的矩形。 (2)一个等腰三角形绕着底边上的高所在的直线旋转180°形成的封闭曲面所围成的图形。 3.五棱台的上下底面均是正五边形,边长分别是 6cm和16cm,侧面是全等的等腰梯形,侧棱长是13cm,求它的侧面面积。 4.一个气球的半径扩大a倍,它的体积扩大到原来的几倍? 强调(笔记): 【课中35分钟】边听边练边落实 5 .如图:右边长方体由左边的平面图形围成的

高一数学必修4第二章测试题

平面向量单元测试题 一、选择题(每小题5分,共50分) 1.化简AC -u u u r BD +u u u r CD -u u u r AB u u u r 得( ) A .A B u u u r B .DA C .BC D .0r 2.如图,四边形ABCD 中,AB →=DC →,则相等的向量是( ) A. AD →与CB → B. OB →与OD → C. AC →与BD → D. AO →与OC → 3.某人先位移向量a r :“向东走5 km ”,接着再位移向量b r :“向西走3 km ”,则a b +r r 表示( ) A .向东走2 km B .向西走2 km C .向东走8 km D .向西走8 km 4.如果△ABC 的顶点坐标分别是A (4,6), (2,1)B -,(4,1)C -,则重心的坐标是 ( ) A.(2,1) B.(2,2) C.(1,2) D.(2,4) 5.若AB →=(2,4),AC →=(1,3),则BC →=( ) A .(1,1) B .(-1,-1) C .(3,7) D .(-3,-7) 6.下列向量组中能作为表示它们所在平面内的所有向量的基底的是( ) A.1e r =(0,0),2e u u r =(1,-2) B. 1e r =(-1,2),2e u u r =(5,7) C. 1e r =(3,5),2e u u r =(6,10) D. 1e r =(2,-3),2e u u r =(21,-4 3) 7. O 是ΔABC 所在的平面内的一点,且满足(OB -OC )·(OB +OC -2OA )=0,则ΔABC 的形 状一定为( ) A .正三角形 B .直角三角形 C .等腰三角形 D .斜三角形 8.已知12,5||,3||=?==b a b a 且,则向量a 在向量b 上的投影为( ) A . 512 B .3 C .4 D .5

高中数学必修二第二章经典练习题

绝密★启用前 201*年**中学同步教学测试试卷 **测试试卷 考试围:xxx;考试时间:100分钟;命题人:xxx 题号一二三四五总分 得分 注意事项: 1.答题前填写好自己的、班级、考号等信息 2.请将答案正确填写在答题卡上 第I卷(选择题) 请修改第I卷的文字说明 评卷人得分 一、单项选择 1. 在空间,下列哪些命题是正确的(). ①平行于同一条直线的两条直线互相平行 ②垂直于同一条直线的两条直线互相平行 ③平行于同一个平面的两条直线互相平行 ④垂直于不一个平面的两条直线互相平行 A.仅②不正确B.仅①、④正确 C.仅①正确D.四个命题都正确 2. 如果直线 a是平面α的斜线,那么在平面α() A 不存在与a平行的直线 B 不存在与a垂直的直线 C 与a垂直的直线只有一条 D 与a平行的直线有无数条3. 平面α有一四边形ABCD,P为α外一点,P点到四边形ABCD各边的距离相等,则这个四边形() A 必有外接圆 B 必有切圆 C 既有切圆又有外接圆 D 必是正方形 4. 已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是( ) A.PB⊥AD B.平面PAB⊥平面PBC C.直线BC∥平面PAE D.直线PD与平面ABC所成的角为45° 5. 若a,b是异面直线,直线c∥a,则c与b的位置关系是()A.相交 B.异面 C.平行 D.异面或相交 6. 设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥(如图),使得截面四边形是平行四边形,则这样的平面α( ) A.不存在B.只有1个 C.恰有4个D.有无数多个 7. 设P是△ABC所在平面外一点,P到△ABC各顶点的距离相等,而且P 到△ABC各边的距离也相等,那么△ABC() A 是非等腰的直角三角形 B 是等腰直角三角形 C 是等边三角形 D 不是A、B、C所述的三角形 8. 已知正四棱锥S ABCD 的侧棱长与底面边长都相等,E是SB的中

高中数学必修4知识点总结:第二章 平面向量

高中数学必修4知识点总结 第二章 平面向量 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a b b a +=+ ; ②结合律:()() a b c a b c ++=++ ;③00a a a +=+= . ⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ . 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- . 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1 212 ,x x y y A B=-- . 19、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ . ①a a λλ= ; ②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相反;当0λ=时,0a λ= . ⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③() a b a b λλλ+=+ . ⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ== . 20、向量共线定理:向量() 0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使b a λ= . 设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、() 0b b ≠ 共线. 21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .(不共线的向量1e 、2e 作为这一平面内所有向量的一组基 b a C B A a b C C -=A -AB =B

高中数学必修4知识总结(完整版)

高中数学必修四知识点总结 ?? ??? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{} 36036090,k k k αα?<,则sin y r α= ,cos x r α=,()tan 0y x x α=≠.

人教版高中数学必修2全册学案(完整版)

第一章 立体几何初步 一、知识结构 二、重点难点 重点:空间直线,平面的位置关系。柱、锥、台、球的表面积和体积的计算公式。平行、垂直的定义,判定和性质。 难点:柱、锥、台、球的结构特征的概括。文字语言,图形语言和符号语言的转化。平行,垂直判定 与性质定理证明与应用。 第一课时 棱柱、棱锥、棱台 【学习导航】 学习要求 1.初步理解棱柱、棱锥、棱台的概念。掌握它们的形成特点。 2.了解棱柱、棱锥、棱台中一些常用 名称的含义。 3.了解棱柱、棱锥、棱台这几种几何 体简单作图方法 4.了解多面体的概念和分类. 【课堂互动】 自学评价 1. 棱柱的定义: 表示法: 思考:棱柱的特点:. 【答】 2. 棱锥的定义: 表示法: 思考:棱锥的特点:. 【答】 3.棱台的定义: 表示法: 思考:棱台的特点:. 【答】

4.多面体的定义: 5.多面体的分类: ⑴棱柱的分类 ⑵棱锥的分类 ⑶棱台的分类 【精典范例】 例1:设有三个命题: 甲:有两个面平行,其余各面都是平行四边形所围体一定是棱柱; 乙:有一个面是四边形,其余各面都三角形所围成的几何体是棱锥; 丙:用一个平行与棱锥底面的平面去截棱锥,得到的几何体叫棱台。 以上各命题中,真命题的个数是(A)A.0 B. 1 C. 2 D. 3 例2:画一个四棱柱和一个三棱台。 【解】四棱柱的作法: ⑴画上四棱柱的底面----画一个四边形; ⑵画侧棱-----从四边形的每一个顶点画平行且相等的线段; ⑶画下底面------顺次连结这些线段的另一个端点 互助参考7页例1 ⑷画一个三棱锥,在它的一条侧棱上取一点,从这点开始,顺次在各个侧面画出与底面平行的线段,将多余的线段檫去. 互助参考7页例1 点评:(1)被遮挡的线要画成虚线(2)画台由锥截得 思维点拔: 解柱、锥、台概念性问题和画图需要:(1).准确地理解柱、锥、台的定义(2).灵活理解柱、锥、台的特点: 例如:棱锥的特点是:⑴两个底面是全等的多边形;⑵多边形的对应边互相平行;⑶棱柱的侧面都是平行四边形。反过来,若一个几何体,具有上面三条,能构成棱柱吗?或者说,上面三条能作为棱柱的定义吗? 答:不能. 点评:就棱柱来验证这三条性质,无一例外,能不能找到反例,是上面三条能作为棱柱的定义的关键。 自主训练一 1. 如图,四棱柱的六个面都是平行四边形。这个四棱柱可以由哪个平面图形按怎样的方向平移得到? 答由四边形ABCD沿AA1方向平移得到. 2.右图中的几何体是不是棱台?为什么? 答:不是,因为四条侧棱延长不交于一点.3.多面体至少有几个面?这个多面体是怎样的几何体。 答:4个面,四面体. 第二课时圆柱、圆锥、圆台、球 【学习导航】 知识网络 A C B D A1 C1 B1 D1

高中数学人教版必修4全套教案

第1,2课时1.1.1 任意角 教学目标 (一) 知识与技能目标 理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二) 过程与能力目标 会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写. (三) 情感与态度目标 1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点:任意角概念的理解;区间角的集合的书写. 教学难点:终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入: 1.回顾角的定义 ①角的第一种定义是有公共端点的两条射线组成的图形叫做角. ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课: 1.角的有关概念: ①角的定义: 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称: ③角的分类: ④注意: ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念: ①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 始 边 终 边 顶 点 A O B 负角:按顺时针方向旋转形成的角

角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例1.如图⑴⑵中的角分别属于第几象限角? 例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角. ⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°; 答:分别为1、2、3、4、1、2象限角. 3.探究: 终边相同的角的表示: 所有与角α终边相同的角,连同α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k ∈Z ⑵ α是任一角; ⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差 360°的整数倍; ⑷ 角α + k ·720 °与角α终边相同,但不能表示与角α终边相同的所有角. 例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角. ⑴-120°;⑵640 °;⑶-950°12'. 答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角; 例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}. 例5.写出终边在x y 上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类: ⑵ B 1 y ⑴ O x 45° B 2 O x B 3 y 30° 60o

高中数学必修二学案

§1.1.1 柱、锥、台、球的结构特征 一、课前准备 (预习教材P2~ P4,找出疑惑之处) 引入:小学和初中我们学过平面上的一些几何图形如直线、三角形、长方形、圆等等,现实生活中,我们周围还存在着很多不是平面上而是“空间”中的物体,它们占据着空间的一部分,比如粉笔盒、足球、易拉罐等.如果只考虑这些物体的形状和大小,那么由这些物体抽象出来的空间图形叫做空间几何体.它们具有千姿百态的形状,有着不同的几何特征,现在就让我们来研究它们吧! 二、基础探究 1.观察下面的图片,请将这些图片中的物体分成两类,并说明分类的标准是什么? 图1 2.【研读课本】 (1)多面体的概念:叫多面体, 叫多面体的面,叫多面体的棱, 叫多面体的顶点。 ①棱柱:两个面,其余各面都是,并且每相邻两个四 边形的公共边都,这些面围成的几何体叫作棱柱 ②棱锥:有一个面是,其余各面都是的三角形,这些面 围成的几何体叫作棱锥 ③棱台:用一个棱锥底面的平面去截棱锥,, 叫作棱台。 (2)旋转体的概念: 叫旋转体,叫旋转体的轴。

①圆柱:所围成的 几何体叫做圆柱. ②圆锥:所围成的 几何体叫做圆锥. ③圆台:的部分叫 圆台. ④球的定义 三、能力探究 例1.(1)如图,观察四个几何体,其中判断正确的是() A.(1)是棱台 B.(2)是圆台 C.(3)是棱锥 D.(4)不是棱柱 (2)下列说法错误的是() A.多面体至少有四个面 B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形 C.长方体、正方体都是棱柱 D.三棱柱的侧面为三角形 (3)下列命题中正确的是() A.棱台各侧棱的延长线交于一点 B.以直角梯形的一腰为轴旋转所得的旋转体是圆台 C.连接圆柱上、下底面圆周上两点的线段是圆柱的母线 D.圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径 (4)下列几个命题中, ①两个面平行且相似,其余各面都是梯形的多面体是棱台; ②有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台; ③各侧面都是正方形的四棱柱一定是正方体; ④分别以矩形两条不等的边所在直线为旋转轴,将矩形旋转,所得到的两个圆柱是两个不同的圆柱. 其中正确的有__________个.() A.1 B.2 C.3 D.4 (5)下列说法中不正确的是() A 棱与侧棱是同一概念 B 三棱锥与四面体是同一概念 C四棱柱有4条体对角线 D 存在这样的棱锥,它的各个面都是直角三角形 (6)一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为______cm. 例2有两个面互相平行,其余各面是平行四边形的几何体是棱柱吗?如果不是,请举例说明。

高中数学必修一、必修四、必修五知识点汇总

高中数学必修一、必修四、必修五知识点 一、知识点梳理 必修一第一单元 1.集合定义:一组对象的全体形成一个集合. 2.特征:确定性、互异性、无序性. 3.表示法:列举法{1,2,3,…}、描述法{x|P}、韦恩图、语言描述法{不是直角三角形的三角形} 4.常用的数集:自然数集N 、整数集Z 、有理数集Q 、实数集R 、正整数集N *. 5.集合的分类: (1) 有限集 含有有限个元素的集合 (2) 无限集 含有无限个元素的集合 (3) 空集φ 不含任何元素的集合 例:{x|x 2 =-5} 5.关系:属于∈、不属于?、包含于?(或?)、真包含于、集合相等=. 6.集合的运算 (1)交集:由所有属于集合A 且属于集合B 的元素所组成的集合;表示为:B A ? 数学表达式:{} B x A x x B A ∈∈=?且 性质:A B B A A A A A ?=?Φ=Φ?=?,, (2)并集:由所有属于集合A 或属于集合B 的元素所组成的集合;表示为:B A ? 数学表达式:{} B x A x x B A ∈∈=?或 性质:A B B A A A A A A ?=?=Φ?=?,, (3)补集:已知全集I ,集合I A ?,由所有属于I 且不属于A 的元素组成的集合。表示:A C I 数学表达式:{} A x I x x A C I ?∈=且 方法:韦恩示意图, 数轴分析. 注意:① 区别∈与、与?、a 与{a}、φ与{φ}、{(1,2)}与{1,2}; ② A ?B 时,A 有两种情况:A =φ与A ≠φ. ③若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有真子集的个数是n 2-1, 所有非空真子集的个数是22-n 。 ④空集是指不含任何元素的集合。}0{、φ和}{φ的区别;0与三者间的关系。空集是任何集合的子集,是任何非空集合的真子集。条件为B A ?,在讨论的时候不要遗忘了φ=A 的情况。 ⑤符号“?∈,”是表示元素与集合之间关系的,立体几何中的体现 点与直线(面)的关系 ;符号“,?”是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系 。 8.函数的定义:设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A ,其中x 叫做自变量.x 的取值围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域. ①.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1.

高中数学必修4知识点总结:第二章 平面向量

高中数学必修4知识点总结 第二章平面向量 16、向量:既有大小,又有方向得量、数量:只有大小,没有方向得量、 有向线段得三要素:起点、方向、长度、零向量:长度为得向量、 单位向量:长度等于个单位得向量、 平行向量(共线向量):方向相同或相反得非零向量、零向量与任一向量平行、 相等向量:长度相等且方向相同得向量、 17、向量加法运算: ⑴三角形法则得特点:首尾相连、 ⑵平行四边形法则得特点:共起点、 ⑶三角形不等式:、 ⑷运算性质:①交换律:; ②结合律:;③、 ⑸坐标运算:设,,则、 18、向量减法运算: ⑴三角形法则得特点:共起点,连终点,方向指向被减向量、 ⑵坐标运算:设,,则、 设、两点得坐标分别为,,则、 19、向量数乘运算: ⑴实数与向量得积就就是一个向量得运算叫做向量得数乘,记作、 ①; ②当时,得方向与得方向相同;当时,得方向与得方向相反;当时,、 ⑵运算律:①;②;③、 ⑶坐标运算:设,则、 20、向量共线定理:向量与共线,当且仅当有唯一一个实数,使、 设,,其中,则当且仅当时,向量、共线、 21、平面向量基本定理:如果、就就是同一平面内得两个不共线向量,那么对于这一平面内得任意向量,有且只有一对实数、,使、(不共线得向量、作为这一平面内所有向量得一组基底) 22、分点坐标公式:设点就就是线段上得一点,、得坐标分别就就是,,当时,点得坐标就就是、(当 23、平面向量得数量积: ⑴、零向量与任一向量得数量积为、 ⑵性质:设与都就就是非零向量,则①、②当与同向时,;当与反向时,;或、③、 ⑶运算律:①;②;③、 ⑷坐标运算:设两个非零向量,,则、 若,则,或、设,,则、 设、都就就是非零向量,,,就就是与得夹角,则、 第三章三角恒等变换 24、两角与与差得正弦、余弦与正切公式: ⑴;⑵; ⑶;⑷; ⑸(); ⑹()、 25、二倍角得正弦、余弦与正切公式:

高中数学必修一必修四知识点总结(杠杠的)

数学知识点总结

高中数学必修1知识点 第一章集合与函数概念 〖1.1〗集合 【1.1.1】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法 表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集. (3)集合与元素间的关系 对象与集合的关系是,或者,两者必居其一. 只要构成两个集合的元素是一样的,就称这两个集合相等。 (4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{|具有的性质},其中为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类 ①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集().把研究的对象统称为元素,把一些元素组成的总体叫做集合。 【1.1.2】集合间的基本关系 1、一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的 子集。记作. 2、如果集合,但存在元素,且,则称集合A是集合B的真子集.记作:A B. 3、把不含任何元素的集合叫做空集.记作:.并规定:空集合是任何集合的子集. 4、如果集合A中含有n个元素,则集合A有个子集,个真子集. 5、子集、真子集、集合相等 名称记号意义性质示意图 子集(或A中的任一元素都 属于B A (1)A (2) ,则 且 若 (3) ,则 且 若 (4)或

真子集 A B (或 B A) 中 B ,且 至少有一元素不属 于A 为非空子集) A ( ) 1 ( ,则 且 若 (2) 集合相等A中的任一元素都 属于B,B中的任 一元素都属于A B (1)A A (2)B 6、已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有 非空真子集. 【1.1.3】集合的基本运算 1、一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A与B的并集.记作:. 2、一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.记作:. 3、全集、补集 名称记号意义性质示意图 交集且 (1) (2) (3) 并集或 (1) (2) (3) 补集 2 1 【1.2.1】函数的概念 1、函数的概念 ①设A、B是非空的数集,如果按照某种确定的对应关系,使对于集合A中的任意一个数,在集合B中都有惟一确定的数和它对应,那么就称为集合A到集合B的一个函数,记作:. ②函数的三要素:定义域、值域和对应法则. ③如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等 【1.2.2】函数的表示法 2、函数的表示方法 表示函数的方法,常用的有解析法、列表法、图象法三种. ①解析法:就是用数学表达式表示两个变量之间的对应关系. ②列表法:就是列出表格来表示两个变量之间的对应关系.

高一数学必修四第二章平面向量测试题及答案

一、选择题: (本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设点P(3,-6),Q(-5,2),R的纵坐标为-9,且P、Q、R三点共线,则R点的横坐标为()。 A、-9 B、-6 C、9 D、6 2.已知=(2,3), b=(-4,7),则在b上的投影为()。 A、B、C、D、 3.设点A(1,2),B(3,5),将向量按向量=(-1,-1)平移后得 向量为()。 A、(2,3) B、(1,2) C、(3,4) D、(4,7)4.若(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ΔABC是()。 A、直角三角形 B、等边三角形 C、等腰三角形 D、等腰直角三角形 5.已知| |=4, |b|=3, 与b的夹角为60°,则| +b|等于()。 A、B、C、D、 6.已知O、A、B为平面上三点,点C分有向线段所成的比为2,则()。 A、B、 C、D、 7.O是ΔABC所在平面上一点,且满足条件,则点O是ΔABC的()。 A、重心 B、垂心 C、内心 D、外心 8.设、b、均为平面内任意非零向量且互不共线,则下列4个命题: (1)( ·b)2= 2·b2(2)| +b|≥| -b|(3)| +b|2=( +b)2 (4)(b) -(a)b与不一定垂直。其中真命题的个数是()。 A、1 B、2 C、3 D、4

9.在ΔABC中,A=60°,b=1,,则 等于()。 A、B、C、D、 10.设、b不共线,则关于x的方程x2+b x+ =0的解的情况是()。 A、至少有一个实数解 B、至多只有一个实数解 C、至多有两个实数解 D、可能有无数个实数解 二、填空题:(本大题共4小题,每小题4分,满分16分.). 2,则 =_________ 11.在等腰直角三角形ABC中,斜边AC=2 12.已知ABCDEF为正六边形,且AC=a,AD=b,则用a,b表示AB为______. 13.有一两岸平行的河流,水速为1,速度为的小船要从河的一边驶向对岸,为使所行路程最短,小船应朝________方向行驶。 14.如果向量与b的夹角为θ,那么我们称×b为向量与b的“向 量积”,×b是一个向量,它的长度| ×b|=| ||b|sinθ,如果| |=3, |b|=2, ·b=-2,则| ×b|=______。 三、解答题:(本大题共4小题,满分44分.) 15.已知向量= , 求向量b,使|b|=2| |,并且与b的夹角为 。(10分) 16、已知平面上3个向量、b、的模均为1,它们相互之间的夹角均

高中数学必修二第二章同步练习

1.1.1 柱、锥、台、球的的结构特征 练习一 一、选择题 1、下列命题中,正确命题的个数是() (1)桌面是平面;(2)一个平面长2米,宽3米;(3)用平行四边形表示平面,只能画出平面的一部分;(4)空间图形是由空间的点、线、面所构成。 A 、 1 B、 2 C、 3 D、 4 2、下列说法正确的是() A、水平放置的平面是大小确定的平行四边形 B、平面ABCD就是四边形ABCD的四条边围来的部分 C、 100个平面重叠在一起比10个平面重叠在一起厚 D、平面是光滑的,向四周无限延展的面 3、下列说法中表示平面的是() A、水面 B、屏面 C、版面 D、铅垂面 4、下列说法中正确的是() A、棱柱的面中,至少有两个面互相平行 B、棱柱的两个互相平行的平面一定是棱柱的底面 C、棱柱的一条侧棱的长叫做棱柱的高 D、棱柱的侧面是平行四边形,但它的底面一定不是平行四边形 5、长方体的三条棱长分别是AA/=1,AB=2,AD=4,则从A点出发,沿长方体的表面到C/的最短距离是() A、 5 B、 7 C、 D、 6、若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是() A、三棱锥 B、四棱锥 C、五棱锥 D、六棱锥]

7、过球面上两点可能作出球的大圆() A、 0个或1个 B、有且仅有1个 C、无数个 D、一个或无数个 8、一个圆柱的母线长为5,底面半径为2,则圆柱的轴截面的面积为() A、 10 B、 20 C、 40 D、 15 二、填空题 9、用一个平面去截一个正方体,截面边数最多是----------------条。 10、正三棱台的上、下底面边长及高分别为1、2、2,则它的斜高是------------。 11、一个圆柱的轴截面面积为Q,则它的侧面面积是----------------。 12、若圆锥的侧面面积是其底面面积的2倍,则这个圆锥的母线与底面所成的角为----------------,圆锥的侧面 展开图扇形的圆心角为----------------。 13、在赤道上,东经1400与西经1300的海面上有两点A、B,则A、B两点的球面距离是多少海里---------------。 (1海里是球心角1/所对大圆的弧长)。 三、解答题 14、一个正三棱柱的底面边长是4,高是6,过下底面的一条棱和该棱所对的上底面的顶点作截面,求这 截面的面积。 15、圆锥底面半径是6,轴截面顶角是直角,过两条母线的截面截去底面圆周的1 6 ,求截面面积。

高中数学必修2全册导学案精编

高中数学必修二复习全册导学案

必修2 第一章 §2-1 柱、锥、台体性质及表面积、体积计 算 【课前预习】阅读教材P1-7,23-28完成下面填空1.棱柱、棱锥、棱台的本质特征 ⑴棱柱:①有两个互相平行的面(即底面),②其余各面(即侧面)每相邻两个面的公共边都互相平行(即侧棱都). ⑵棱锥:①有一个面(即底面)是,②其余各面(即侧面)是 . ⑶棱台:①每条侧棱延长后交于同一点, ②两底面是平行且相似的多边形。 2.圆柱、圆锥、圆台、球的本质特征 ⑴圆柱: . ⑵圆锥: . ⑶圆台:①平行于底面的截面都是圆, ②过轴的截面都是全等的等腰梯形, ③母线长都相等,每条母线延长后都与轴交于同一点. (4)球: . 3.棱柱、棱锥、棱台的展开图与表面积和体积的计算公式 (1)直棱柱、正棱锥、正棱台的侧面展开图分别是 ①若干个小矩形拼成的一个, ②若干个, ③若干个 . (2)表面积及体积公式: 4.圆柱、圆锥、圆台的展开图、表面积和体积的计算公式 5.球的表面积和体积的计算公式【课初5分钟】课前完成下列练习,课前5分钟回答下列问题 1.下列命题正确的是() (A).有两个面平行,其余各面都是四边形的几何体叫棱柱。 (B)有两个面平行,其余各面都是平行四边形的几何体叫棱柱。 (C) 有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱。 (D)用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台。 2.根据下列对于几何体结构特征的描述,说出几何体的名称: (1)由8个面围成,其中两个面是互相平行且全等的六边形,其他面都是全等的矩形。 (2)一个等腰三角形绕着底边上的高所在的直线旋转180°形成的封闭曲面所围成的图形。 3.五棱台的上下底面均是正五边形,边长分别是6cm和16cm,侧面是全等的等腰梯形,侧棱长是13cm,求它的侧面面积。 4.一个气球的半径扩大a倍,它的体积扩大到原来的几倍? 强调(笔记): 【课中35分钟】边听边练边落实 5.如图:右边长方体由左边的平面图形围成的是()(图在教材P8 T1 (3))

高中数学必修2-3第二章2.4正态分布

2.4 正态分布 1.问题导航 (1)什么是正态曲线和正态分布? (2)正态曲线有什么特点?曲线所表示的意义是什么? (3)怎样求随机变量在某一区间范围内的概率? 2.例题导读 请试做教材P 74练习1题. 1.正态曲线 函数φμ,σ(x )=1 2πσ e -(x -μ)2 2σ2,x ∈(-∞,+∞),其中实数μ和σ(σ>0)为参数, φμ,σ(x )的图象为__________________正态分布密度曲线,简称正态曲线. 2.正态分布 一般地,如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=??a b φ μ,σ (x)d x , 则称随机变量X 服从正态分布.正态分布完全由参数________μ和________σ确定,因此正态分布常记作____________N(μ,σ2),如果随机变量X 服从正态分布,则记为________X ~N (μ,σ2). 3.正态曲线的性质 正态曲线φμ,σ(x)=1 2πσ e -(x -μ)22σ2,x ∈R 有以下性质: (1)曲线位于x 轴________上方,与x 轴________不相交; (2)曲线是单峰的,它关于直线________x =μ对称; (3)曲线在________x =μ处达到峰值________1 σ2π ; (4)曲线与x 轴之间的面积为________1; (5)当________σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移,如图①; (6)当μ一定时,曲线的形状由σ确定,σ________越小,曲线越“瘦高”,表示总体的分布越集中;σ________越大,曲线越“矮胖”,表示总体的分布越分散,如图②. 4.正态总体在三个特殊区间内取值的概率值

高中数学必修4第二章 平面向量公式及定义

平面向量公式 1、向量的加法 向量的加法满足平行四边形法则和三角形法则. AB+BC=AC. a+b=(x+x',y+y'). a+0=0+a=a. 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c). 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB.即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣. 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意. 当a=0时,对于任意实数λ,都有λa=0. 注:按定义知,如果λa=0,那么λ=0或a=0. 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩. 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍. 数与向量的乘法满足下面的运算律 结合律:(λa)?b=λ(a?b)=(a?λb). 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λ b. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ. 3、向量的的数量积 定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b.若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣. 向量的数量积的坐标表示:a?b=x?x'+y?y'. 向量的数量积的运算律 a?b=b?a(交换律);

高中数学必修二第一章第二章习题合集

空间几何体(习题) 一、选择题 1.如下图所示,观察四个几何体,其中判断正确的是( ) A .①是棱台 B .②是圆台 C .③是棱锥 D .④不是棱柱 2.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的( ) A.1 2 倍 B .2倍 C.2 4 倍 D.22 倍 3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( ) 4.正方体的体积是64,则其表面积是( ) A .64 B .16 C .96 D .无法确定 5.圆锥的高扩大到原来的2倍,底面半径缩短到原来的1 2,则圆锥的体积( ) A .缩小到原来的一半 B .扩大到原来的2倍

C .不变 D .缩小到原来的1 6 6.三个球的半径之比为1:2:3,那么最大球的表面积是其余两个球的表面积之和的( ) A .1倍 B .2倍 C.95倍 D.74倍 7.有一个几何体的三视图及其尺寸如下图(单位:cm),则该几何体的表面积为( ) A .12πcm 2 B .15πcm 2 C .24πcm 2 D .36πcm 2 8.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( ) A .7 B .6 C .5 D .3 9.某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为5的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为5的等腰三角形.则该几何体的体积为( )

A.24 B.80 C.64 D.240 二、填空题 1.圆台的底半径为1和2,母线长为3,则此圆台的体积为_______________ 2.一个几何体的三视图如图所示,则这个几何体的体积为________________ 三、解答题 1.画出如图所示几何体的三视图.

高中数学必修4知识点(完美版)

高中数学必修 4 第一章三角函数 正角: 按逆时针方向旋转形成的角 1、任意角负角: 按顺时针方向旋转形成的角 零角: 不作任何旋转形成的角 2、角的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称为第几象限角. o o o 第一象限角的集合为k 360 k 360 90 , k o o o o 第二象限角的集合为k 360 90 k 360 180 ,k o o o o 第三象限角的集合为k 360 180 k 360 270 ,k o o o o 第四象限角的集合为k 360 270 k 360 360 ,k o 终边在x 轴上的角的集合为k 180 ,k o o 终边在 y 轴上的角的集合为k 180 90 ,k o 终边在坐标轴上的角的集合为k 90 , k 2 Ⅰ Ⅰ、Ⅲ 2 Ⅱ Ⅰ、Ⅲ 2 Ⅲ Ⅱ、Ⅳ 2 Ⅳ Ⅱ、Ⅳ 2 o 3、与角终边相同的角的集合为k 360 , k 4、长度等于半径长的弧所对的圆心角叫做1弧度. 5、半径为r 的圆的圆心角所对弧的长为l ,则角的弧度数的绝对值是l r . o o , 1 180 57.3 o,1 o. 6、弧度制与角度制的换算公式: 2 360 180

7、若扇形的圆心角为为弧度制,半径为r ,弧长为l ,周长为 C ,面积为S,则l r ,C 2r l , 1

1 1 2 S lr r . 2 2 8、设是一个任意大小的角,的终边上任意一点的坐标是x, y ,它与原点的距离是 2 2 0 r r x y , 则sin y r ,cos x r y ,tan x 0 x .y P T 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正, 第三象限正切为正,第四象限余弦为正. 10、三角函数线:sin ,cos ,tan . O M x A 11 、角三角函数的基本关系: 2 2 1 sin cos 1 2 2 2 2 sin 1 cos ,cos 1 sin ; sin 2 tan cos sin tan cos ,cos s in tan . 12、函数的诱导公式: 1 sin 2k sin ,c os 2k cos ,t an 2k tan k . 2 sin sin ,cos cos ,t an tan . 3 sin sin ,cos cos ,tan tan . 4 sin sin ,cos cos ,tan tan . 口诀:函数名称不变,符号看象限. 5 sin cos 2 ,cos sin 2 . 6 sin cos 2 ,cos sin 2 . 口诀:正弦与余弦互换,符号看象限. 13、①的图象上所有点向左(右)平移个单位长度,得到函数y sin x 的图象;再将函数y sin x 1 的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数y sin x 的图象;再将 函数y sin x 的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数y sin x 的图象. 1 ②数y sin x 的图象上所有点的横坐标伸长(缩短)到原来的 倍(纵坐标不变),得到函数 y sin x 的图象;再将函数y sin x 的图象上所有点向左(右)平移个单位长度,得到函数y sin x 的图象;再将函数y sin x 的图象上所有点的纵坐标伸长(缩短)到原来的倍(横

相关文档
相关文档 最新文档