文档库 最新最全的文档下载
当前位置:文档库 › 判定PFC变换器稳定性的新方法

判定PFC变换器稳定性的新方法

判定PFC变换器稳定性的新方法
判定PFC变换器稳定性的新方法

实验一--控制系统的稳定性分析

实验一--控制系统的稳定性分析

实验一控制系统的稳定性分 班级:光伏2班 姓名:王永强 学号:1200309067

实验一控制系统的稳定性分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响;

3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB中的tf2zp函数求出系统的零极点,或者利用root函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递 函数为 0.2( 2.5) () (0.5)(0.7)(3) s G s s s s s + = +++,用MATLAB编写 程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 在MATLAB命令窗口写入程序代码如下:z=-2.5 p=[0,-0.5,-0.7,-3] k=1 Go=zpk(z,p,k)

Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den dens=ploy2str(dc{1},'s') 运行结果如下: Gctf = s + 2.5 --------------------------------------- s^4 + 4.2 s^3 + 3.95 s^2 + 2.05 s + 2.5 Continuous-time transfer function. dens是系统的特征多项式,接着输入如下MATLAB程序代码: den=[1,4.2,3.95,1.25,0.5] p=roots(den)

李雅普诺夫稳定性分析

第六章 李雅普诺夫稳定性分析 在反馈控制系统的分析设计中,系统的稳定性是首先需要考虑的问题之一。因为它关系到系统是否能正常工作。 经典控制理论中已经建立了劳斯判据、Huiwitz 稳定判据、Nquist 判据、对数判据、根轨迹判据等来判断线性定常系统的稳定性,但不适用于非线性和时变系统。分析非线性系统稳定性及自振的描述函数法,则要求系统的线性部分具有良好的滤除谐波的性能;而相平面法则只适合于一阶、二阶非线性系统。 1892年俄国学者李雅普诺夫(Lyapunov )提出的稳定性理论是确定系统稳定性的更一般的理论,它采用状态向量来描述,不仅适用于单变量、线性、定常系统,还适用于多变量、非线性、时变系统。 §6-1 外部稳定性和内部稳定性 系统的数学模型有输入输出描述(即外部描述)和状态空间描述(即内部描述),相应的稳定性便分为外部稳定性和内部稳定性。 一、外部稳定性 1、定义(外部稳定性): 若系统对所有有界输入引起的零状态响应的输出是有界的,则称该系统是外部稳定的。 (外部稳定性也称为BIBO (Bounded Input Bounded Output )稳定性) 说明: (1)所谓有界是指如果一个函数)(t h ,在时间区间],0[∞中,它的幅值不会增至无穷,即存在一个实 常数k ,使得对于所有的[]∞∈0 t ,恒有∞<≤k t h )(成立。 (2)所谓零状态响应,是指零初始状态时非零输入引起的响应。 2、系统外部稳定性判据 线性定常连续系统 ∑),,(C B A 的传递函数矩阵为 Cx y Bu Ax x =+= BU A sI X BU X A sI CX Y BU AX sX 1)()(--==-=+= B A sI C s G 1 )()(--= 当且仅当)(s G 极点都在s 的左半平面内时,系统才是外部稳定(或BIBO 稳定)的。 【例6.1.1】已知受控系统状态空间表达式为

控制系统的稳定性分析

精品 实验题目控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、系统模拟电路图 系统模拟电路图如图3-1 图3-1 系统模拟电路图R3=0~500K; C=1μf或C=0.1μf两种情况。 四、实验报告 1.根据所示模拟电路图,求出系统的传递函数表达式。 G(S)= K=R3/100K,T=CuF/10 2.绘制EWB图和Simulink仿真图。

精品 3.根据表中数据绘制响应曲线。 4.计算系统的临界放大系数,确定此时R3的值,并记录响应曲线。 系统响应曲线 实验曲线Matlab (或EWB)仿真 R3=100K = C=1UF 临界 稳定 (理论值 R3= 200K) C=1UF

精品 临界 稳定 (实测值 R3= 220K) C=1UF R3 =100K C= 0.1UF

精品 临界 稳定 (理论 值R3= 1100 K) C=0.1UF 临界稳定 (实测值 R3= 1110K ) C= 0.1UF

精品 实验和仿真结果 1.根据表格中所给数据分别进行实验箱、EWB或Simulink实验,并进行实验曲线对比,分析实验箱的实验曲线与仿真曲线差异的原因。 对比: 实验曲线中R3取实验值时更接近等幅振荡,而MATLAB仿真时R3取理论值更接近等幅振荡。 原因: MATLAB仿真没有误差,而实验时存在误差。 2.通过实验箱测定系统临界稳定增益,并与理论值及其仿真结果进行比较(1)当C=1uf,R3=200K(理论值)时,临界稳态增益K=2, 当C=1uf,R3=220K(实验值)时,临界稳态增益K=2.2,与理论值相近(2)当C=0.1uf,R3=1100K(理论值)时,临界稳态增益K=11 当C=0.1uf,R3=1110K(实验值)时,临界稳态增益K=11.1,与理论值相近 四、实验总结与思考 1.实验中出现的问题及解决办法 问题:系统传递函数曲线出现截止失真。 解决方法:调节R3。 2.本次实验的不足与改进 遇到问题时,没有冷静分析。考虑问题不够全面,只想到是实验箱线路的问题,而只是分模块连接电路。 改进:在实验老师的指导下,我们发现是R3的取值出现了问题,并及时解决,后续问题能够做到举一反三。 3.本次实验的体会 遇到问题时应该冷静下来,全面地分析问题。遇到无法独立解决的问题,要及时请教老师,

系统的相对稳定性分析

系统的相对稳定性分析 已知某系统的开环传递函数为200 153.0005.060023)()(+++= S S S H G S S ,试用Nyquistw 稳定判据判断闭环系统的稳定性,并用阶跃响应曲线验证。 (1)计算系统开环特征方程的根。 p=[0.0005 0.3 15 200]; roots(p) 程序运行结果 ans= 1.0e+002 * -5.4644 -0.2678 + 0.0385i -0.2678 - 0.0385i 即三个根均有负实部,都为稳定根。故开环特征方程的不稳定根的个数p=0。 (2)绘制系统的开环Nyquist 图,并用来判断闭环系统的稳定性。 n=600;d=[0.0005 0.3 15 200]; GH=tf(n,d); nyquist(GH) 程序运行后,绘制出系统的开环Nyquist 曲线如图1所示,由图1可以看出系统的Nyquist 曲线不包围(-1,j0)点。而p=0,根据Nyquist 稳定判据,其闭环系统是稳定的。这还可以用系统的阶跃响应曲线来验证。 图1系统的开环Nyquist 图

(3)用阶跃响应曲线来验证。 syms s GH sys; GH=600/(0.0005*s^3+0.3*s^2+15*s+200); sys=factor(GH/(1+GH)) 程序运行结果 sys = 1200000/(s^3 + 600*s^2 + 30000*s + 1600000) 即1600000 300006001200000s 23+++=Φs s s )( 下面为使用matlab 绘制系统单位阶跃响应曲线的程序代码: n=1200000;d=[1 600 30000 1600000]; sys=tf(n,d); step(sys) 程序运行后,绘制系统单位阶跃响应曲线如图2所示。由图2可知,曲线略微超调后迅速衰减到响应终了值,对应的系统闭环不仅稳定,而且具有优良的性能指标,这就证明了Nyquist 稳定判据的正确性。 图2 系统的单位阶跃响应曲线

控制系统的稳定性分析

自动控制理论实验报告 实验题目控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、系统模拟电路图 系统模拟电路图如图3-1 图3-1 系统模拟电路图R3=0~500K; C=1μf或C=0.1μf两种情况。 四、实验报告 1.根据所示模拟电路图,求出系统的传递函数表达式。 G(S)= K=R3/100K,T=CuF/10

自动控制理论实验报告 2.绘制EWB 图和Simulink 仿真图。 3.根据表中数据绘制响应曲线。 4.计算系统的临界放大系数,确定此时R3的值,并记录响应曲线。

自动控制理论实验报告

自动控制理论实验报告

自动控制理论实验报告 实验和仿真结果 1.根据表格中所给数据分别进行实验箱、EWB或Simulink实验,并进行实验曲线对比,分析实验箱的实验曲线与仿真曲线差异的原因。 对比: 实验曲线中R3取实验值时更接近等幅振荡,而MATLAB仿真时R3取理论值更接近等幅振荡。 原因: MATLAB仿真没有误差,而实验时存在误差。 2.通过实验箱测定系统临界稳定增益,并与理论值及其仿真结果进行比较 (1)当C=1uf,R3=200K(理论值)时,临界稳态增益K=2, 当C=1uf,R3=220K(实验值)时,临界稳态增益K=2.2,与理论值相近(2)当C=0.1uf,R3=1100K(理论值)时,临界稳态增益K=11 当C=0.1uf,R3=1110K(实验值)时,临界稳态增益K=11.1,与理论值相近 四、实验总结与思考 1.实验中出现的问题及解决办法 问题:系统传递函数曲线出现截止失真。 解决方法:调节R3。 2.本次实验的不足与改进 遇到问题时,没有冷静分析。考虑问题不够全面,只想到是实验箱线路的问题,而只是分模块连接电路。 改进:在实验老师的指导下,我们发现是R3的取值出现了问题,并及时解决,后续问题能够做到举一反三。 3.本次实验的体会 遇到问题时应该冷静下来,全面地分析问题。遇到无法独立解决的问题,要及时请教老师,

线性系统的稳定性分析

第三章 线性系统的稳定性分析 3.1 概述 如果在扰动作用下系统偏离了原来的平衡状态,当扰动消失后,系统能够以足够 的准确度恢复到原来的平衡状态,则系统是稳定的。否则,系统不稳定。一个实际的系统必须是稳定的,不稳定的系统是不可能付诸于工程实施的。因此,稳定性问题是系统控制理论研究的一个重要课题。对于线性系统而言,其响应总可以分解为零状态响应和零输入响应,因而人们习惯分别讨论这两种响应的稳定性,从而外部稳定性和内部稳定性的概念。 应用于线性定常系统的稳定性分析方法很多。然而,对于非线性系统和线性时变系 统,这些稳定性分析方法实现起来可能非常困难,甚至是不可能的。李雅普诺夫(A.M. Lyapunov)稳定性分析是解决非线性系统稳定性问题的一般方法。 本章首先介绍外部稳定性和内部稳定性的概念及其相互关系,然后介绍李雅普诺夫 稳定性的概念及其判别方法,最后介绍线性定常系统的李雅普诺夫稳定性分析。 虽然在非线性系统的稳定性问题中,Lyapunov 稳定性分析方法具有基础性的地 位,但在具体确定许多非线性系统的稳定性时,却并不是直截了当的。技巧和经验在解决非线性问题时显得非常重要。在本章中,对于实际非线性系统的稳定性分析仅限于几种简单的情况。 3.2 外部稳定性与内部稳定性 3.2.1 外部稳定: 考虑一个线性因果系统,如果对一个有界输入u (t ),即满足条件: 1()u t k ≤<∞ 的输入u (t ),所产生的输出y (t )也是有界的,即使得下式成立: 2()y t k ≤<∞ 则称此因果系统是外部稳定的,即BIBO (Bounded Input Bounded Output )稳定。 注意:在讨论外部稳定性的时候,我们必须要假定系统的初始条件为零,只有在这种假定下面,系统的输入—输出描述才是唯一的和有意义的。 系统外部稳定的判定准则 系统的BIBO 稳定性可根据脉冲响应矩阵或者传递函数矩阵来进行判别。

线性系统稳定性分析

线性系统稳定性分析 1.系统的稳定性: (1) 外部稳定:又称输出稳定,就是系统在干扰取消后,在一定时间内其输出会恢复到 原来的稳定输出。输出稳定有时描述为系统的BIBO 稳定,即有限的系统输入只能产生有限的系统输出。 (2) 内部稳定:主要针对系统内部状态,反映的是系统内部状态受干扰信号的影响情况。 当干扰信号取消后,若系统的内部状态会在一定时间内恢复到原来的平衡状态,则称系统状态稳定。 经典控制论中,研究对象都是高阶微分方程或传递函数描述的单输入单输出(SISO )系统,反映的仅仅是输入与输出的关系,不涉及系统的内部状态,因此经典控制论只讨论系统的输出稳定问题。对于系统内部状态稳定问题,经典控制论中的方法就不好发挥作用了,需要用到Lyapunov 稳定性理论。 2.平衡状态:设控制系统齐次状态方程为:0.0(,)()|t t X f X t X t X ===,其中,()X t 为系统的n 维状态向量,f 是有关状态向量X 以及时间t 的n 维矢量函数,f 不一定是线性定常的。如果对所有的t ,状态e X 总满足:(,)0e f X t =,则称e X 为系统的平衡状态。对于一般控制系统,可能没有,也可能有一个或多个平衡状态。系统的状态稳定性是针对系统的平衡状态的,当系统有多个平衡状态时,需要对每个平衡状态分别进行讨论。 3. Lyapunov 稳定性分析 (1)Lyapunov 稳定性定义 设一般控制系统的解为:00()(;,)X t t X t =Φ,它是与初始时间0t 及初始状态0X 有关的,体现系统状态从00(,)t X 出发的一条状态轨迹。设e X 为系统的一个平衡点,如果给定一个以e X 为球心,0(,)t δε为半径的n 维球域()S δ,使得从()S δ球域出发的任意一条系统状态轨迹00(;,)t X t Φ在0t t ≥的所有时间内都不会跑出()S ε球域,则称系统的平衡状态e X 是Lyapunov 稳定的。 一般来说,δ的大小不但与ε有关,而且与系统的初始时间0t 有关,当δ仅与ε有关时,称e X 是一致稳定的平衡状态。 进一步地,如果e X 不仅是Lyapunov 稳定的平衡状态,而且当时间t 无限增加时,从()S δ出发的任一条状态轨迹00(;,)t X t Φ都最终收敛于球心平衡点e X ,那么称e X 是渐进稳定的。 更近一步地,如果从()S ∞即整个系统状态空间的任意一点出发的任意一条状态轨迹00(;,)t X t Φ,当t →∞时都收敛于平衡点e X ,那么称e X 是大范围渐进稳定的。显然此时的e X 是系统唯一的平衡点。 反之,对于给定的()S ε,不论0δ>取得多么小,若从()S δ出发的状态轨迹 00(;,)t X t Φ至少有一条跑出()S ε球域,那么平衡点e X 是不稳定的。

相关文档