文档库 最新最全的文档下载
当前位置:文档库 › 实验四 信号抽样与调制解调

实验四 信号抽样与调制解调

实验四  信号抽样与调制解调
实验四  信号抽样与调制解调

实验四信号抽样与调制解调

一、实验目的

1、进一步理解信号的抽样及抽样定理;

2、进一步掌握抽样信号的频谱分析;

3、掌握和理解信号抽样以及信号重建的原理;

4、掌握傅里叶变换在信号调制与解调中的应用。

基本要求:掌握并理解“抽样”的概念,理解抽样信号的频谱特征。深刻理解抽样定理及其重要意义。一般理解信号重建的物理过程以及内插公式所描述的信号重建原理。理解频率混叠的概念。理解调制与解调的基本概念,理解信号调制过程中的频谱搬移。掌握利用MATLAB 仿真正弦幅度调制与解调的方法。

二、实验原理及方法 1、信号的抽样及抽样定理

抽样(Sampling ),就是从连续时间信号中抽取一系列的信号样本,从而,得到一个离散时间序列(Discrete-time sequence ),这个离散序列经量化(Quantize )后,就成为所谓的数字信号(Digital Signal )。今天,很多信号在传输与处理时,都是采用数字系统(Digital system )进行的,但是,数字系统只能处理数字信号,不能直接处理连续时间信号或模拟信号(Analog signal )。为了能够处理模拟信号,必须先将模拟信号进行抽样,使之成为数字信号,然后才能使用数字系统进行传输与处理。所以,抽样是将连续时间信号转换成离散时间信号必要过程。模拟信号经抽样、量化、传输和处理之后,其结果仍然是一个数字信号,为了恢复原始连续时间信号,还需要将数字信号经过所谓的重建(Reconstruction )和平滑滤波(Smoothing )。图4.1展示了信号抽样与信号重建的整个过程。

图4.2给出了信号理想抽样的原理图:

图4.1 模拟信号的数字处理过程

x

上图中,假设连续时间信号是一个带限信号(Bandlimited Signal ),其频率范围为

m m ωω~-,抽样脉冲为理想单位冲激串(Unit Impulse Train ),其数学表达式为:

∑∞

∞--=)()(s nT t t p δ 4.1

由图可见,模拟信号x(t)经抽样后,得到已抽样信号(Sampled Signal )x s (t),且:

)()()(t p t x t x s = 4.2

将p(t)的数学表达式代入上式得到:

∑∞

--=)()()(s s s nT t nT x t x δ 4.3

显然,已抽样信号x s (t) 也是一个冲激串,只是这个冲激串的冲激强度被x(nT s ) 加权了。 从频域上来看,p(t) 的频谱也是冲激序列,且为:

∑∞

--=)()}({s s n t p F ωωδω 4.4

根据傅里叶变换的频域卷积定理,时域两个信号相乘,对应的积的傅里叶变换等于这两个信号的傅里叶变换之间的卷积。所以,已抽样信号x s (t)的傅里叶变换为:

∑∞

-∞

=-=

n s

s

s n j X T j X ))((1

)(ω

ωω 4.5

表达式4.5告诉我们,如果信号x(t)的傅里叶变换为X(j ω),则已抽样信号x s (t) 的傅里叶变换X s (j ω)等于无穷多个加权的移位的X(j ω)之和,或者说,已抽样信号的频谱等于原连续时间信号的频谱以抽样频率ωs 为周期进行周期复制的结果。如图4.3所示:

图4.2 (a) 抽样原理图,(b) 带限信号的频谱

(a)

(b)

由图可见,如果抽样频率不小于信号带宽的2倍时,x s (t) 的频谱中,X(j ω)的各个复制品之间没有混叠(Aliasing ),因此,可以用一个理想低通滤波器来恢复原始信号。由抽样信号恢复原来的原始信号的过程称为信号的重建( Reconstruction )。反之,如果抽样频率小于信号带宽的2倍时,x s (t) 的频谱中,X(j ω)的各个复制品之间的距离(也就是ωs )太近,所以必将造成频谱之间的混叠,在这种情况下,是无论如何也无法恢复出原来的连续时间信号的。

由此,我们得出下面的结论:当抽样频率ωs >2ωM 时,将原连续时间信号x(t)抽样而得到的离散时间序列x[n]可以唯一地代表原连续时间信号,或者说,原连续时间信号x(t)可以完全由x[n]唯一地恢复。

以上讨论的是理想抽样的情形,由于理想冲激串是无法实现的,因此,这种理想抽样过程,只能用来在理论上进行抽样过程的分析。在实际抽样中,抽样往往是用一个A/D 转换器实现的。一片A/D 转换芯片包含有抽样保持电路和量化器。模拟信号经过A/D 转换器后,A/D 转换器的输出信号就是一个真正意义上的离散时间信号,而不再是冲激串了。

A/D 转换器的示意图如图4.4所示。

上述的实际抽样过程,很容易用简单的数学公式来描述。设连续时间信号用x(t)表示,抽样周期(Sampling Period )为T s ,抽样频率(Sampling Frequency )为ωs ,则已抽样信

s

T )

(t x ]

[n x 图4.4 A/D 转换器示意图

)

(ωj P ω

s

ωs ω-s

ωM

M 图4.3 信号抽样及其频谱图

号的数学表达式为

)()(][s nT t nT x t x n x s === 4.6

在MA TLAB 中,对信号抽样的仿真,实际上就是完成式4.6的计算。下面给出一个例题和相应的范例程序,来实现信号抽样的仿真运算。

例题4.1设连续时间信号为一个正弦信号 x(t) = cos(0.5πt),抽样周期为T s = 1/4秒,编程

序绘制信号x(t)和已抽样信号x[n]的波形图。

范例程序Sampling 如下:

% Sampling clear,close all, t = 0:0.01:10;

Ts = 1/4; % Sampling period

n = 0:Ts:10; % Make the time variable to be discrete x = cos(0.5*pi*t);

xn = cos(0.5*pi*n); % Sampling subplot(221)

plot(t,x),title('A continuous-time signal x(t)'),xlabel('Time t') subplot(222)

stem(n,xn,'.'),title('The sampled version x[n] of x(t)'),xlabel('Time index n') 执行该程序后,得到的波形图如图4.5所示。

图4.5 连续时间信号及其抽样后的离散时间序列

在这个范例程序中,先将连续时间t 进行离散化,使之成为以Ts = 1/4秒的离散时间n ,然后,将n 代入到信号x(t) 的数学表达式中计算,就完成了抽样过程,且得到了抽样后的离散时间序列x[n]。

2、信号抽样过程中的频谱混叠

为了能够观察到已抽样信号的频谱是否会存在混叠现象,或者混叠程度有多么严重,有必要计算并绘制出已抽样信号的傅里叶变换。

根据式4.5可计算出已抽样信号的频谱。下面给出的范例程序Program4_1就是按照式4.5进行计算的。其中,主要利用了一个for 循环程序完成周期延拓运算。

% Program4_1 clear,close all,

tmax = 4;dt = 0.01;

t = 0:dt:tmax;

Ts = 1/10;

ws = 2*pi/Ts;

w0 = 20*pi; dw = 0.1;

w = -w0:dw:w0;

n = 0:1:tmax/Ts;

x = exp(-4*t).*u(t);

xn = exp(-4*n*Ts);

subplot(221)

plot(t,x),title('A continuous-time signal x(t)'),

xlabel('Time t'),axis([0,tmax,0,1]), grid on

subplot(223)

stem(n,xn,'.'),title('The sampled version x[n] of x(t)'),

xlabel('Time index n'),axis([0,tmax/Ts,0,1]), grid on

Xa = x*exp(-j*t'*w)*dt;

X = 0;

for k = -8:8;

X = X + x*exp(-j*t'*(w-k*ws))*dt;

end

subplot(222)

plot(w,abs(Xa))

title('Magnitude spectrum of x(t)'), grid on

axis([-60,60,0,1.8*max(abs(Xa))])

subplot(224)

plot(w,abs(X))

title('Magnitude spectrum of x[n]'), xlabel('Frequency in radians/s'),grid on

axis([-60,60,0,1.8*max(abs(Xa))])

本程序可以用来观察在不同的抽样频率条件下,已抽样信号的频谱的混叠程度,从而更加牢固地理解抽样定理。但是,提请注意的是,在for循环程序段中,计算已抽样信号的频谱X 时,没有乘以系数1/T s,是为了便于比较X与Xa之间的区别,从而方便观察频谱的混叠程度。另外,程序中的时间步长dt的选择应该与抽样周期Ts保持一定的比例关系,建议Ts不应小于10dt,否则,计算得到的已抽样信号的频谱将出现错误。

3、信号重建

如果满足抽样定理,那么,我们就可以唯一地由已抽样信号x[n] 恢复出原连续时间信号x(t)。在理想情况下,可以将离散时间序列通过一个理想低通滤波器,图4.6给出了理想情况下信号重建的原理示意图。

)(t

x

图4.6 信号重建原理图

)(t x r

理想低通滤波器也称重建滤波器,它的单位冲激响应

t

t T t h c c c πωωω)

sin()(=

4.7

已抽样信号x p (t)的数学表达式为:∑∞

--=)()()(nT t nT x t x p δ,根据系统输入输出的

卷积表达式,我们有

)()()(t h t x t x p r *= 4.8

将x p (t)代入式4.8,有

-∞

=--=

n c c c r nT t nT t T nT x t x )

())

(sin()

()(ωωπω 4.9

这个公式称为内插公式(Interpolation Formula ),该公式的推导详见教材,请注意复习有关内容。须提请注意的是,这里的内插公式是基于重建滤波器为理想低通滤波器的。若

重建滤波器不是理想低通滤波器,则不能用这个内插公式。理想低通滤波器的频率响应特性曲线和其单位冲激响应曲线如图4.7所示。

范例程序程序Program4_2就是根据这个内插公式来重构原始信号。本程序已经做了较为详细的注释,请结合教材中的内插公式仔细阅读本程序,然后执行,以掌握和理解信号重建的基本原理。范例程序Program4_2如下。

% Program4_2

% Signal sampling and reconstruction

% The original signal is the raised cosin signal: x(t) = [1+cos(pi*t)].*[u(t+1)-u(t-1)]. clear;close all,

wm = 2*pi; % The highest frequency of x(t) a = input('Type in the frequency rate ws/wm=:'); % ws is the sampling frequency wc =wm; % The cutoff frequency of the ideal lowpass filter t0 = 2;t = -t0:0.01:t0;

x = (1+cos(pi*t)).*(u(t+1)-u(t-1));

subplot(221); % Plot the original signal x(t) plot(t,x); grid on, axis([-2,2,-0.5,2.5]); title('Original signal x(t)');xlabel('Time t');

ws = a*wm;

% Sampling frequency

图4.7 理想低通滤波器的幅度频率响应和单位冲激响应

Ts = 2*pi/ws; % Sampling period

N = fix(t0/Ts); % Determine the number of samplers

n = -N:N;

nTs = n*Ts; % The discrete time variable

xs = (1+cos(pi*nTs)).*(u(nTs+1)-u(nTs-1)); % The sampled version of x(t)

subplot(2,2,2) % Plot xs

stem(n,xs,'.'); xlabel('Time index n'); grid on, title('Sampled version x[n]');

xr = zeros(1,length(t)); % Specify a memory to save the reconstructed signal

L = length(-N:N);

xa = xr;

figure(2); % Open a new figure window to see the demo of signal reconstruction

stem(nTs,xs,'.'); xlabel('Time index n'); grid on;hold on

for i = 1:L

m = (L-1)/2+1-i;

xa = Ts*(wc)*xs(i)*sinc((wc)*(t+m*Ts)/pi)/pi;

plot(t,xa,'b:');axis([-2,2,-0.5,2.5]);hold on

pause

xr = xr+xa; % Interpolation

end

plot(t,xr,'r');axis([-2,2,-0.5,2.5]);hold on

figure(1);

subplot(223)

plot(t,xr,'r');axis([-2,2,-0.5,2.5]);

xlabel('Time t');grid on

title('Reconstructed signal xr(t)');

% Compute the error between the reconstructed signal and the original signal

error = abs(xr-x);

subplot(2,2,4)

plot(t,error);grid on

title('Error');xlabel('Time t')

4、调制与解调

在通信系统(Communication system)中,信号在传输之前,往往需要先对它进行调制(Modulation),然后才能发射出去。在接收端,还要进行解调(Demodulation),才能恢复原信号。在实际应用中,有多种调制方法,在信号与系统中,仅介绍了模拟调制中的正弦幅度调制(Sinusoidal amplitude modulation)。正弦幅度调制就是利用高频正弦信号的幅度携带调制信号x(t),也就是使高频正弦信号的幅度随调制信号的变化而变化。正弦调制的解调分为同步解调(Synchronous demodulation)和异步解调(Asychronous demodulation),

调制与解调的原理框图如图4.8所示。

图中,需要传输的信号称为调制信号(Modulating signal ),频率为ωc 的正弦信号称为载波(Carrier ),ωc 称为载频,调制器的输出信号称为已调信号(Modulated signal )。 正弦幅度调制的基本原理,就是将调制信号与一个高频正弦载波相乘,从而将调制信号的频谱搬移到较高的频段上,以利于发射传输。

下面,我们回顾一下调制与解调过程中的时域和频域的有关情况。从时域上看,已调信号的数学表达式为

)cos()()(t t x t y c ω= 4.10

调制信号x(t)、载波c(t)和已调信号y(t)的波形如图4.9所示

图4.9 正弦幅度调制中信号的波形

从频域上看,假设调制信号是一个带限信号,其频谱用X(j ω) 表示,而正弦载波cos(ωc

t)

?

)

(t x )

(t y )cos()(t t c c ω=图4.8 正弦幅度调制与解调 (a) 调制 (b) 同步解调

(a)

(b)

?

)

cos()(t t c c ω=)

cos()(t t x c ω

的频谱C(j ω) 由两个冲激构成,即

)]()([)(c c j C ωωδωωδπω-++= 4.11

根据傅里叶变换的频域卷积定理可知,已调信号的频谱为

)]()(21

)(ωωπ

ωj C j X j Y *=

4.12 即

)](())(([2

1

)(c c j X j X j Y ωωωωω-++= 4.13

式4.13说明,已调信号的频谱由两个移位的X(j ω)构成,位移量为±ωc 。图4.10示出了调制过程中各信号的频谱图。

从已调信号的频谱上看,我们发现,调制信号为低通信号(Lowpass signal ),其带宽(Bandwidth )为ωM ,而已调信号则变成了一个带宽为2ωM 的带通信号(Bandpass signal )。这表明,通过调制,信号在传输过程中,与不调制而直接传输相比,需要占居更宽的信道(Channel )带宽。

从图4.8可以看出,同步解调的原理类似于调制原理,只是在乘法器(Multiplier )后面接了一个低通滤波器,请同学们参看教材中的相关内容,自行分析同步解调的原理,并绘制出同步解调过程中各信号的频谱图。

5、通信系统中的调制与解调仿真

本实验室利用MATALAB 对通信系统中的调制与解调、

滤波等进行仿真。具体方法简述如下:

1、在命令窗口键入simulink 然后按回车键,这时屏幕上将

出现一个新界面: Simulink Library Browser 界面。

2、新建仿真系统图:

第一步:单击左上角的新建按钮,将在屏幕右部出现

建模窗口;

第二步:建立仿真系统的系统函数。单击continuous

模块,选择系统函数功能框,将它拖放到空白图面上,然后双击该功能框,又出现参数选择对话框,在该框中设定好仿真系统(滤波器)的参数。如果仿真模型中需要多个系统函数功能框图,可重复第二步;

第三步:选择信号源。单击Sources 模块,选择需要的信号源拖放到模型图中,然后双击已设定适当的参数;

第四步:选择信号之间的运算单元,如加法器,乘法器(调制器)等。单击Math Operations 模块,选择所需的运算单元,拖放到模型图中并双击加以设定;

第五步:选择显示器,通常选择示波器。单击Sinks 模块,并拖放到模型图中;双击加以设定;

)

(ωj C ωc ωc ω-π

M

M 图4.10 调制过程中各信号的频谱图

第六步:将模型图中的所有元件调整好位置,然后进行连接。

3、选择仿真时间,单击模型图上部的Simulation菜单,选中Simulation Parameters子菜单设定方针的起止时间,如不设定,则系统默认的起止时间为0~10s。

4、单击运行按钮开始仿真,双击示波器即可看到仿真结果。

三、实验内容及步骤

实验前,必须首先阅读本实验原理,了解所给的MATLAB相关函数,读懂所给出的全部范例程序。实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。并结合范例程序所完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序的编程算法。

实验前,一定要针对下面的实验项目做好相应的实验准备工作,包括事先编写好相应的实验程序等事项。

Q4-1给范例程序Program4_1加注释。

Q4-2范例程序Program4_1中的连续时间信号x(t) 是什么信号?它的数学表达式为:

Q4-3在1/2—1/10之间选择若干个不同Ts值,反复执行执行范例程序Program4_1,保

存执行程序所得到的图形。

Ts = 1/2时的信号时域波形和频谱图

Ts = 1/4时的信号时域波形和频谱图

Ts = 1/8时的信号时域波形和频谱图

根据上面的三幅图形,作一个关于抽样频率是怎样影响已抽样信号频谱的小结。答:

程序Program4_1中的连续信号是否是带限信号?如果不是带限信号,是否可以选择一个抽

样频率能够完全消除已抽样信号中的频谱的混叠?如果不是带限信号,那么,这个连续时间信号在抽样前必须滤波,请你选择一个较为合适的频率作为防混叠滤波器的截止频率,你选择的这个截止频率是多少?说明你的理由。

答:

Q4-4请手工计算升余弦信号x(t) = [1+cos(pi*t)].*[u(t+1)-u(t-1)]的傅里叶变换的数学表达式,手工绘制其幅度频谱图。

计算过程:

手工绘制的升余弦信号x(t) = [1+cos(pi*t)].*[u(t+1)-u(t-1)]的幅度频谱图

从上图的幅度频谱上看,升余弦信号是否是带限信号?能否近似将它看作是一个带限信号?如果可以,那么,估计信号的最高频率大约是多少?

答:

Q4-5 阅读范例程序Program4_2,在这个程序中,选择的信号的最高频率是多少?这个频

率选择得是否恰当?为什么?

答:

Q4-6 在1—8之间选择抽样频率与信号最高频率之比,即程序Program4_2中的a 值,反

复执行范例程序Program4_2,观察重建信号与原信号之间的误差,通过对误差的分析,说明对于带限信号而言,抽样频率越高,则频谱混叠是否越小?

答:

Q4-7 图Q4-7是一个RLC 串联电路,在有些场合,可以把它用来作为一个滤波器使用,

如果选择不同的位置的信号作为输出信号,该电路具有不同的滤波特性。该电路的输出信号分别为y 1(t)、y 2(t)和y 3(t)时,电路的输入输出微分方程和频率响应的数学表达式分别形如:

选择y 1(t)为输出信号时(可将电路看成系统1)

微分方程为)()()(2)(2

1212

12t x t y dt t dy dt

t y d n n n ωωζω=++ 频率响应为2

22)(2)()(n

n n

j j j H ωωζωωω

ω++= 选择y 2(t)为输出信号时(可将电路看成系统2)

)

t )

t )

(t

微分方程为2

222

2222)()()(2)(dt

t x d t y dt t dy dt t y d n n =++ωζω 频率响应为2

22

)(2)()()(n

n j j j j H ωωζωωωω++= 选择y 3(t)为输出信号时(可将电路看成系统3)

微分方程为dt t dx t y dt t dy dt t y d n

n n )(2)()(2)(32

32

32ζωωζω=++ 频率响应为2

2)(2)()

(2)(n

n n j j j j H ωωζωωωζωω++=

请写出上面的微分方程和频率响应表达式中的参数ξ、ωn 与R 、L 、C 之间的数学关系。

Q4-8 编写程序Q4_8,能够接受从键盘输入的ξ、ωn 之值,计算并在同一个图形窗口的三

个子图中绘制出这三个频率响应特性曲线,要求每个子图有标题,绘制的频率范围为0—40弧度/秒。图形布置如图Q4-8所示。

图Q4-8 图形布置(zeta = ξ,wn = ωn)

抄写程序Q4_8如下:

执行程序Q4_8,输入zeta = 0.7,wn = 15,在图形中的空白处,标上zeta 和wn之值,如图Q4-8所示。保存所得到的图形如下。zeta = 0.7,wn = 15时的频率响应曲线图

根据上面的图形,请说明系统1、系统2和系统3分别具有何种滤波特性?

答:

固定zeta = 0.7,在2—30之间选择不同的wn值,反复执行程序Q4_8,保存zeta = 0.7,

wn = 5和zeta = 0.7,wn = 20所得到的两幅图形。根据执行程序所得到的系统频率响应的形状,说明wn的不同取值分别对系统1、系统2和系统3的滤波特性(从通频带的带宽、过渡带宽和截止频率等方面作说明)的影响。

zeta = 0.7,wn = 5时的频率响应曲线图

zeta = 0.7,wn = 20时的频率响应曲线图

答:

固定wn = 15,在0.2—1之间选择不同的zeta值,反复执行程序Q4_8,保存zeta = 0.4,

wn = 15和zeta = 0.8,wn = 15所得到的两幅图形。根据执行程序所得到的系统频率响应的形状,说明zeta的不同取值分别对系统1、系统2和系统3的滤波特性的影响。

zeta = 0.4,wn = 15时的频率响应曲线图

zeta = 0.8,wn = 15时的频率响应曲线图

答:

Q4-9调制与解调仿真实验。设调制信号为单频正弦信号x(t) = sin(t),其角频率为1 rad/s ,

载波为c(t) = cos(10t),载频为10rad/s 。

请按下面的图Q4-9建立仿真模型图:

图中共有三个信号源,其中:

Sin Wave 为调制信号源即调制信号,可设定其频率为1 rad/s ;

Sin Wave1为载波信号,可设定其频率为30rad/s ,Band-Limited White Noise 为带限白噪声干扰信号,其频率可认为远大于1 rad/s ;

Product 和Product1分别为调制器和解调器,完成信号的乘法运算。

图Q4-9 信号的调制与解调仿真模型图

第一个乘法器之后的Transfer Fun 是一个带通滤波器,数学模型可给定为:

2

2)(2)()

(2)(n

n n j j j j H ωωζωωωζωω++=

可以用Q4-7的RLC 串联电路构成的系统3实现。

根据调制信号和载波的频率,以及实验结果,你认为图Q4-9中的带通滤波器的参数 ωn

ξ 应该选择为:

wn = ξ =

第二个乘法器之后的Transfer Fun 是一个低通滤波器,设定其系统函数为:

2

22)(2)()(n

n n

j j j H ωωζωωωω++= 可以用Q4-7的RLC 串联电路构成的系统1实现。

根据调制信号和载波的频率,以及实验结果,你认为图Q4-9中的低通滤波器的参数 ωn

ξ应该选择为:

wn = ξ =

四、实验报告要求

1、按要求完整书写你所编写的全部MATLAB程序

2、详细记录实验过程中的有关信号波形图(存于自带的U盘中),图形要有明确的标题。全部的MA TLAB图形应该用打印机打印,然后贴在本实验报告中的相应位置,禁止复印件。

3、实事求是地回答相关问题,严禁抄袭。

本实验完成时间:年月日

信号与系统实验题目及答案

第一个信号实验的题目 1实现下列常用信号 (1)(5)u t +;(2)(1)t δ-;(3)cos(3)sin(2)t t +;(4)()[(1)(2)]f t t u t t u t t =?---; (5)0.5()4cos(),010t f t e t t π-=?= 2连续信号的基本运算与波形变换 已知信号2 2,2 1 ()33 t t f t ? -+-≤≤?=???,试画出下列各函数对时间t 的波形: (1)()f t -(2)(2)f t -+(3)(2)f t (4)1 (1)2 d f t dt +(5)(2)t f d ττ-∞-? 3连续信号的卷积运算 实现12()()f t f t *,其中1()f t 、2()f t 从第2个题目中任选3对组合。 4连续系统的时域分析 (1) 描述某连续系统的微分方程为()2()()()2()y t y t y t f t f t ''''++=+,求当输入信号为 2()2()t f t e u t -=时,该系统的零状态响应()y t 。 (2) 已知描述某连续系统的微分方程为2()()3()()y t y t y t f t '''+-=,试用MATLAB 绘出 该系统的冲激响应和阶跃响应的波形。 实验一答案: (1)(5)u t +在MATLAB 软件的输入程序及显示波形如下:

(2)(1)t δ-在MATLAB 软件的输入程序及显示波形如下: (3)cos(3)sin(2)t t +在MATLAB 软件的输入程序及显示波形如下: (4)()[(1)(2)]f t t u t t u t t =?---在MATLAB 软件的输入程序及显示波形如下: (5)0.5()4cos(),010t f t e t t π-=?=在MATLAB 软件的输入程序及显示波形如下:

BPSK调制及解调实验报告

实验五BPSK调制及解调实验 一、实验目的 1、掌握BPSK调制和解调的基本原理; 2、掌握BPSK数据传输过程,熟悉典型电路; 3、了解数字基带波形时域形成的原理和方法,掌握滚降系数的概念; 4、熟悉BPSK调制载波包络的变化; 5、掌握BPSK载波恢复特点与位定时恢复的基本方法; 二、实验器材 1、主控&信号源、9号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、BPSK调制解调(9号模块)实验原理框 PSK调制及解调实验原理框图 2、BPSK调制解调(9号模块)实验框图说明 基带信号的1电平和0电平信号分别与256KHz载波及256KHz反相载波相乘,叠加后得到BPSK调制输出;已调信号送入到13模块载波提取单元得到同步载波;已调信号与相干载波相乘后,经过低通滤波和门限判决后,解调输出原始基带信号。 四、实验步骤 实验项目一 BPSK调制信号观测(9号模块) 概述:BPSK调制实验中,信号是用相位相差180°的载波变换来表征被传递的信息。本项目通过对比观测基带信号波形与调制输出波形来验证BPSK调制原理。 1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【BPSK/DBPSK数字调制解调】。将9号模块的S1拨为0000,调节信号源模块W3使256 KHz载波信号峰峰值为3V。 3、此时系统初始状态为:PN序列输出频率32KHz。 4、实验操作及波形观测。 (1)以9号模块“NRZ-I”为触发,观测“I”; (2)以9号模块“NRZ-Q”为触发,观测“Q”。 (3)以9号模块“基带信号”为触发,观测“调制输出”。 思考:分析以上观测的波形,分析与ASK有何关系? 实验项目二 BPSK解调观测(9号模块) 概述:本项目通过对比观测基带信号波形与解调输出波形,观察是否有延时现象,并且验证BPSK解调原理。观测解调中间观测点TP8,深入理解BPSK解调原理。 1、保持实验项目一中的连线。将9号模块的S1拨为“0000”。 2、以9号模块测13号模块的“SIN”,调节13号模块的W1使“SIN”的波形稳定,即恢复出载波。 3、以9号模块的“基带信号”为触发观测“BPSK解调输出”,多次单击13号模块的“复位”按键。观测“BPSK解调输出”的变化。 4、以信号源的CLK为触发,测9号模块LPF-BPSK,观测眼图。 思考:“BPSK解调输出”是否存在相位模糊的情况?为什么会有相位模糊的情况? 五、实验报告 1、分析实验电路的工作原理,简述其工作过程; 输入的基带信号由转换开关转接后分成两路,一路经过差分编码控制256KHz的载频,另一路经倒相去控制256KHz的载频。???解调采用锁相解调,只要在设计锁相环时,使它锁定在FSK的一个载频上此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。? 2、分析BPSK调制解调原理。 调制原理是:基带信号先经过差分编码得到相对码,再根据相对码进行绝对调相, 即将相对码的1电平和0电平信号分别与256K载波及256K反相载波相乘,叠加后得到DBPSK 调制输出。?

信号与系统实验

《信号与系统及MATLAB实现》实验指导书

前言 长期以来,《信号与系统》课程一直采用单一理论教学方式,同学们依靠做习题来巩固和理解教学内容,虽然手工演算训练了计算能力和思维方法,但是由于本课程数学公式推导较多,概念抽象,常需画各种波形,作题时难免花费很多时间,现在,我们给同学们介绍一种国际上公认的优秀科技应用软件MA TLAB,借助它我们可以在电脑上轻松地完成许多习题的演算和波形的绘制。 MA TLAB的功能非常强大,我们此处仅用到它的一部分,在后续课程中我们还会用到它,在未来地科学研究和工程设计中有可能继续用它,所以有兴趣的同学,可以对MA TLAB 再多了解一些。 MA TLAB究竟有那些特点呢? 1.高效的数值计算和符号计算功能,使我们从繁杂的数学运算分析中解脱出来; 2.完备的图形处理功能,实现计算结果和编程的可视化; 3.友好的用户界面及接近数学表达式的自然化语言,易于学习和掌握; 4.功能丰富的应用工具箱,为我们提供了大量方便实用的处理工具; MA TLAB的这些特点,深受大家欢迎,由于个人电脑地普及,目前许多学校已将它做为本科生必须掌握的一种软件。正是基于这些背景,我们编写了这本《信号与系统及MA TLAB实现》指导书,内容包括信号的MA TLAB表示、基本运算、系统的时域分析、频域分析、S域分析、状态变量分析等。通过这些练习,同学们在学习《信号与系统》的同时,掌握MA TLAB的基本应用,学会应用MA TLAB的数值计算和符号计算功能,摆脱烦琐的数学运算,从而更注重于信号与系统的基本分析方法和应用的理解与思考,将课程的重点、难点及部分习题用MA TLAB进行形象、直观的可视化计算机模拟与仿真实现,加深对信号与系统的基本原理、方法及应用的理解,为学习后续课程打好基础。另外同学们在进行实验时,最好事先预习一些MA TLAB的有关知识,以便更好地完成实验,同时实验中也可利用MA TLAB的help命令了解具体语句以及指令的使用方法。

《信号与系统》实验四

信息科学与工程学院《信号与系统》实验报告四专业班级电信09-班姓名学号实验时间2011 年月日指导教师陈华丽成绩

0≤n 的幅频特性曲线,由此图可以确

1.对连续信号)()sin()(0t u t Ae t x t a Ωα-=(128.444=A ,πα250=,πΩ2500=)进行理想采样,可得采样序列500) ()sin()()(0≤≤==-n n u nT Ae nT x n x nT a Ωα。图1给出了)(t x a 的幅频特性曲线,由此图可以确 定对)(t x a 采用的采样频率。分别取采样频率为 1KHz 、300Hz 和200Hz ,画出所得采样序列)(n x 的幅频

特性)( j e X 。并观察是否存在频谱混叠。 源程序: % 产生序列x(n) n=0:50; A=444.128; a=50*sqrt(2.0)*pi; T=1/1000; % T 分别取1/1000、1/300、1/200 w0=50*sqrt(2.0)*pi; x=A*exp(-a*n*T).*sin(w0*n*T); %函数f 的表达式 subplot(1,2,1),stem(n,x) title('理想采样序列 fs=1000Hz') % 绘制x(n)的幅度谱 k=-250:250; W=pi/125*k; X=x*(exp(-j*pi/125)).^(n'*k); % 由公式计算DTFT magX=abs(X); subplot(1,2,2),plot(W,magX) title('理想采样序列的幅度谱') 结果图

fs=300HZ fs=200HZ

抽样定理和PCM调制解调实验报告

《通信原理》实验报告 实验一:抽样定理和PAM调制解调实验 系别:信息科学与工程学院 专业班级:通信工程1003班 学生姓名:陈威 同组学生:杨鑫 成绩: 指导教师:惠龙飞 (实验时间:2012 年 12 月 7 日——2012 年 12 月28日) 华中科技大学武昌分校

1、实验目的 1对电路的组成、波形和所测数据的分析,加深理解这种调制方法的优缺点。 2.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。 2、实验器材 1、信号源模块 一块 2、①号模块 一块 3、60M 双踪示波器 一台 4、连接线 若干 3、实验原理 3.1基本原理 1、抽样定理 图3-1 抽样与恢复 2、脉冲振幅调制(PAM ) 所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。 自然抽样 平顶抽样 ) (t m ) (t T

图3-3 自然抽样及平顶抽样波形 PAM方式有两种:自然抽样和平顶抽样。自然抽样又称为“曲顶”抽样,(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变已抽样信号m s 化的规律(如图3-3所示)。平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。 四、实验步骤 1、将信号源模块、模块一固定到主机箱上面。双踪示波器,设置CH1通道为同步源。 2、观测PAM自然抽样波形。 (1)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。 (2)将模块一上K1选到“自然”。 (3)关闭电源,连接 表3-1 抽样实验接线表 (5)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在1V左右。在PAMCLK处观察被抽样信号。CH1接PAMCLK(同步源),CH2接“自然抽样输出”(自然抽样PAM信号)。

信号与系统实验2

实验报告 实验二连续时间系统的时域分析 一、实验目的: 1、掌握用Matlab进行卷积运算的数值方法和解析方法,加深对卷积积分的理解。 2、学习利用Matlab实现LTI系统的冲激响应、阶跃响应和零状态响应。 二、实验内容及步骤 实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。并结合范例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。

1、 编写程序Q2_1,完成)(1t f 与)(2t f 两函数的卷积运算。 2、 编写程序Q2_2,完成)(1t f 与)(2t f 两函数的卷积运算。 3、编写程序Q2_3。利用程序Q2_1,验证卷积的相关性质。 (a) 验证性质:)()(*)(t x t t x =δ (b) 验证性质: )()(*)(00t t x t t t x -=-δ 4、编写程序Q2_4。某线性时不变系统的方程为 )(8)(2)(6)(5)(t f t f t y t y t y +'=+'+'', (a)系统的冲激响应和阶跃响应。 (b)输入()()t f t e u t -=,求系统的零状态响应)(t y zs 。 三. 实验结果 一: dt=0.01 t1=0:dt:2 f1=0.5*t1 t2=0:dt:2 f2=0.5*t2 f=dt*conv(f1,f2) t=0:0.01:4 plot(t,f);axis([-1 5 0 0.8])

二: dt=0.01 t=-3:dt:3 t1=-6:dt:6 ft1=2*rectpuls(t,2) ft2=rectpuls(t,4) y=dt*conv(ft1,ft2) plot(t1,y) axis([-4 4 0 5]) 以上两题出现错误点:(1)最开始模仿例1的写法用function [f,k]=sconv,总提示出现 错误 (2)t0+t2 ≤ t ≤ t1+t3 不大能理解的运用个特点,在编写的时候总是被忽略。导致t和t1设置的长度总出错。 三: (a) dt=0.01 t=0:dt:2 t0=0 t1=0:dt:2t2=0:dt:2

通信原理实验四 实验报告 抽样定理与PAM系统实训

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:■验证□综合□设计□创新实验日期:实验成绩:实验四抽样定理与PAM系统实训 一、实验目的 1.熟通过对模拟信号抽样的实验,加深对抽样定理的理解; 2.通过PAM调制实验,使学生能加深理解脉冲幅度调制的特点; 3.通过对电路组成、波形和所测数据的分析,了解PAM调制方式的优缺点。 二、实验原理 1.取样(抽样、采样) (1)取样 取样是把时间连续的模拟信号变换为时间离散信号的过程。 (2)抽样定理 一个频带限制在(0,f H) 内的时间连续信号m(t),如果以≦1/2f H每秒的间隔对它进行等间隔抽样,则m(t)将被所得到的抽 样值完全确定。 (3)取样分类 ①理想取样、自然取样、平顶取样; ②低通取样和带通取样。 2.脉冲振幅调制电路原理(PAM) (1)脉冲幅度调制系统 系统由输入电路、高速电子开关电路、脉冲发生电路、解调滤波电路、功放输出电路等五部分组成。 图 1 脉冲振幅调制电路原理框图 (2)取样电路 取样电路是用4066模拟门电路实现。当取样脉冲为高电位时,

取出信号样值;当取样脉冲为低电位,输出电压为0。 图 2 抽样电路 图 3 低通滤波电路 三、实验步骤 1.函数信号发生器产生2KHz(2V)模拟信号送入SP301,记fs; 2.555电路模块输出抽样脉冲,送入SP304,连接SP304和SP302,记fc; 3.分别观察fc>>2fs,fc=2fs,fc<2fs各点波形; 4.连接SP204 与SP301、SP303H 与SP306、SP305 与TP207,把扬声 器J204开关置到1、2 位置,触发SW201 开关,变化SP302 的输入 时钟信号频率,听辨音乐信号的质量. 四、实验内容及现象 1.测量点波形 图 4 TP301 模拟信号输入 图 5 TP302 抽样时钟波形(555稍有失真) fc=38.8kHz ①fc>>2fs,使fs=5KHz: 图 6 TP303 抽样信号输出1 图7 TP304 模拟信号还原输出1 ②fc=2fs,使fs=20KHz: 图8 TP303 抽样信号输出2 图9 TP304 模拟信号还原输出2 ③fc<2fs,使fs=25KHz: 图10 TP303 抽样信号输出3 图11 TP304 模拟信号还原输出3 2.电路Multisim仿真 图12 PAM调制解调仿真电路 图13 模拟信号输入 图14 抽样脉冲波形 图15 PAM信号 图16 低通滤波器特性 图17 还原波形 更多学习资料请见我的个人主页:

信号与系统实验四

信号与系统实验实验四:周期信号的傅里叶级数 小组成员: 黄涛13084220 胡焰焰13084219 洪燕东13084217

一、实验目的 1、分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。 2、观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。 3、掌握用傅里叶级数进行谐波分析的方法。 4、观察矩形脉冲信号分解出的各谐波分量可以通过叠加合成出原矩形脉冲信号。 二、预习内容 1、周期信号的傅里叶级数分解及其物理意义。 2、典型信号傅里叶级数计算方法。 三、实验原理 1. 信号的时间特性与频率特性 信号可以表示为随时间变化的物理量,比如电压)(t u 和电流)(t i 等,其特性主要表现为随时间的变化,波形幅值的大小、持续时间的长短、变化速率的快慢、波动的速度及重复周期的大小等变化,信号的这些特性称为时间特性。 信号还可以分解为一个直流分量和许多不同频率的正弦分量之和。主要表现在各频率正弦分量所占比重的大小不同;主要频率分量所占的频率范围也不同,信号的这些特性称为信号的频率特性。 无论是信号的时间特性还是频率特性都包含了信号的全部信息量。 2. 信号的频谱 信号的时间特性和频率特性是对信号的两种不同的描述方式。根据傅里叶级数原理,任意一个时域的周期信号)t (f ,只要满足狄利克莱(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。例如,对于一个周期为T 的时域周期信号)t (f ,可以用三角形式的傅里叶级数求出它的各次分量,在区间),(11T t t +内表示为 ()∑∞ =Ω+Ω+=10sin cos )(n n n t n b t n a a t f 即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。 A 0t A n 0A 0t (a)(b) Ω(c)ωΩ 5Ω3Ω Ω3Ω5 3. 信号的时间特性与频率特性关系 信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图4-1来形象地表示。其中图4-1(a)是信号在幅度--时间--频率三维坐标系统中的图形;图4-1(b)是信号在幅度--时间坐标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分量幅度的频谱称为振幅频谱。图4-1(c)是信号在幅度--频率坐标系统中的图形即振幅频谱图。反映各分量相位的频谱称为相位频谱。 4. 信号频谱的测量 在本实验中只研究信号振幅频谱。周期信号的振幅频谱有三个性质:离散性、谐波性、收敛

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

matlab验证时域采样定理实验报告

通信原理实验报告实验名称:采样定理 实验时间: 201211日年12月 指导老师:应娜 学院:计算机学院 级:班 学号: 姓名:

通信原理实验报告 一、实验名称 MATLAB验证低通抽样定理 二、实验目的 1、掌握抽样定理的工作原理。 2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。同时训练应用计算机分析问题的能力。 3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。 4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。 三、实验步骤 1、画出连续时间信号的时域波形及其幅频特性曲线,信号为 f(x)=sin(2*pi*80*t)+ cos(2*pi*30*t); 2、对信号进行采样,得到采样序列,画出采样频率分别为80Hz,110 Hz,140 Hz时的采样序列波形; 3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。 4、对信号进行谱分析,观察与3中结果有无差别。 5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。 四、数据分析 (1)部分程序分析: f=[fs0*k2/m2,fs0*k1/m1]; %设置原信号的频率数组 axis([min(t),max(t),min(fx1),max(fx1)]) %画原信号幅度频谱 f1=[fs*k2/m2,fs*k1/m1]; %设置采样信号的频率数组 fz=eval(fy); %获取采样序列 FZ=fz*exp(-j*[1:length(fz)]'*w); %采样信号的离散时间傅里叶变换 TMN=ones(length(n),1)*t-n'*T*ones(1,length(t)); 由采样信号恢复原信号fh=fz*sinc(fs*TMN); %. (2)原信号的波形与幅度频谱:

信号与系统实验报告_1(常用信号的分类与观察)

实验一:信号的时域分析 一、实验目的 1.观察常用信号的波形特点及产生方法 2.学会使用示波器对常用波形参数的测量 二、实验仪器 1.信号与系统试验箱一台(型号ZH5004) 2.40MHz双踪示波器一台 3.DDS信号源一台 三、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。 1、信号:指数信号可表示为f(t)=Ke at。对于不同的a取值,其波形表现为不同的形式,如下图所示: 图1―1 指数信号 2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。其波形如下图所示:

图1-2 正弦信号 3、指数衰减正弦信号:其表达式为其波形如下图: 图1-3 指数衰减正弦信号 4、Sa(t)信号:其表达式为:。Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

图1-4 Sa(t)信号 5、钟形信号(高斯函数):其表达式为:其信号如下图所示: 图1-5 钟形信号 6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。其信号如下图所示: 7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示 U(t)

通信原理抽样定理及其应用实验报告

实验1 抽样定理及其应用实验 一、实验目的 1.通过对模拟信号抽样的实验,加深对抽样定理的理解; 2.通过PAM 调制实验,使学生能加深理解脉冲幅度调制的特点; 3.学习PAM 调制硬件实现电路,掌握调整测试方法。 二、实验仪器 1.PAM 脉冲调幅模块,位号:H (实物图片如下) 2.时钟与基带数据发生模块,位号:G (实物图片见第3页) 3.20M 双踪示波器1台 4.频率计1台 5.小平口螺丝刀1只 6.信号连接线3根 三、实验原理 抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽 样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。 PAM 实验原理:它采用模拟开关CD4066实现脉冲幅度调制。抽样脉冲序列为高电平时, 模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开, 无信号输出 图1-2 PAM 信道仿真电路示意图 32W01 C1 C2 32P03 R2 32TP0

四、可调元件及测量点的作用 32P01:模拟信号输入连接铆孔。 32P02:抽样脉冲信号输入连接铆孔。 32TP01:输出的抽样后信号测试点。 32P03:经仿真信道传输后信号的输出连接铆孔。 32W01:仿真信道的特性调节电位器。 五、实验内容及步骤 1.插入有关实验模块: 在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“PAM脉冲幅度调制模块”,插到底板“G、H”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。 2.信号线连接: 用专用铆孔导线将P03、32P01;P09、32P02;32P03、P14连接(注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔)。 3.加电: 打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

信号与系统实验报告

中南大学 信号与系统试验报告 姓名: 学号: 专业班级:自动化 实验一 基本信号的生成 1.实验目的 ● 学会使用MATLAB 产生各种常见的连续时间信号与离散时间信号; ● 通过MATLAB 中的绘图工具对产生的信号进行观察,加深对常用信号的 理解; ● 熟悉MATLAB 的基本操作,以及一些基本函数的使用,为以后的实验奠 定基础。 2.实验内容 ⑴ 运行以上九个例子程序,掌握一些常用基本信号的特点及其MATLAB 实现方法;改变有关参数,进一步观察信号波形的变化。 ⑵ 在 k [10:10]=- 范围内产生并画出以下信号: a) 1f [k][k]δ=; b) 2f [k][k+2]δ=; c) 3f [k][k-4]δ=; d) 4f [k]2[k+2][k-4]δδ=-。

源程序: k=-10:10; f1k=[zeros(1,10),1,zeros(1,10)]; subplot(2,2,1) stem(k,f1k) title('f1[k]') f2k=[zeros(1,8),1,zeros(1,12)]; subplot(2,2,2) stem(k,f2k) title('f2[k]') f3k=[zeros(1,14),1,zeros(1,6)]; subplot(2,2,3) stem(k,f3k) title('f3[k]') f4k=2*f2k-f3k; subplot(2,2,4) stem(k,f4k) title('f4[k]') ⑶ 在 k [0:31]=范围内产生并画出以下信号: a) ()()k k 144f [k]sin cos π π=; b) ()2k 24f [k]cos π =; c) ()()k k 348f [k]sin cos π π=。 请问这三个信号的基波周期分别是多少? 源程序: k=0:31; f1k=sin(pi/4*k).*cos(pi/4*k); subplot(3,1,1) stem(k,f1k) title('f1[k]') f2k=(cos(pi/4*k)).^2; subplot(3,1,2) stem(k,f2k) title('f2[k]') f3k=sin(pi/4*k).*cos(pi/8*k); subplot(3,1,3) stem(k,f3k) title('f3[k]') 其中f1[k]的基波周期是4, f2[k]的基波周期是4, f3[k]的基波周期是16。

北京理工大学信号与系统实验实验报告

实验1 信号的时域描述与运算 一、实验目的 1. 掌握信号的MATLAB表示及其可视化方法。 2. 掌握信号基本时域运算的MA TLAB实现方法。 3. 利用MA TLAB分析常用信号,加深对信号时域特性的理解。 二、实验原理与方法 1. 连续时间信号的MATLAB表示 连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。在MATLAB中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。 从严格意义上来说,MATLAB并不能处理连续时间信号,在MATLAB中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。例如一个正弦信号可以表示如下: >> t=0:0.01:10; >> x=sin(t); 利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。 如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。例如对于上述正弦信号,可以用符号对象表示如下: >> x=sin(t); >> ezplot(X); 利用ezplot(x)命令可以绘制上述信号的时域波形 Time(seconds) 图1 利用向量表示连续时间信号

t 图 2 利用符号对象表示连续时间信号 sin(t) 2.连续时间信号的时域运算 对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。 1)相加和相乘 信号相加和相乘指两信号对应时刻的值相加和相乘,对于两个采用向量表示的可以直接使用算术运算的运算符“+”和“*”来计算,此时要求表示两信号的向量时间范围和采样间隔相同。采用符号对象表示的两个信号,可以直接根据符号对象的运算规则运算。 2)微分和积分 对于向量表示法表示的连续时间信号,可以通过数值计算的方法计算信号的微分和积分。这里微分使用差分来近似求取的,由时间向量[N t t t ,,,21?]和采样值向量[N x x x ,,,21?]表示的连续时间信号,其微分可以通过下式求得 1,,2,1,|)('1-?=?-≈ +=N k t x x t x k k t t k 其中t ?表示采样间隔。MA TLAB 中用diff 函数来计算差分 k k x x -+1。 连续时间信号的定积分可以由MATLAB 的qud 函数实现,调用格式为 quad ('function_name',a,b) 其中,function_name 为被积函数名,a 、b 为积分区间。

信号与系统实验报告

实验三 常见信号的MATLAB 表示及运算 一、实验目的 1.熟悉常见信号的意义、特性及波形 2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法 二、实验原理 根据MATLAB 的数值计算功能和符号运算功能,在MA TLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。在采用适当的MA TLAB 语句表示出信号后,就可以利用MA TLAB 中的绘图命令绘制出直观的信号波形了。 1.连续时间信号 从严格意义上讲,MATLAB 并不能处理连续信号。在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。在MATLAB 中连续信号可用向量或符号运算功能来表示。 ⑴ 向量表示法 对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。 ⑵ 符号运算表示法 如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。 ⑶ 常见信号的MATLAB 表示 单位阶跃信号 单位阶跃信号的定义为:10()0 t u t t >?=? 0); %定义函数体,即函数所执行指令

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告 一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,

Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。

图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 3. 2DPSK信号的解调原理 2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 (1) 2DPSK信号解调的极性比较法 它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。它的原理框图如图1.3.1所示。 码变换相乘 载波 s(t)e o(t) 相乘器低通滤波器抽样判决器2DPSK 带通滤波器 延迟T

信号与系统实验(新)

信号与系统实验 实验1 阶跃响应与冲激响应 一、实验目的 1、观察和测量RLC串联电路的阶跃响应与冲激响应的波形和有关参数,并 研究其电路元件参数变化对响应状态的影响; 2、掌握有关信号时域的测量方法。 二、实验原理说明 实验如图1-1所示RLC串联电路的阶跃响应与冲激响应的电路连接图,图1

用周期方波通过微分电路后得到的尖顶脉冲代替冲激信号。 三、实验内容 1、阶跃响应波形观察与参数测量 设激励信号为方波,其幅度为1.5V 峰峰值,频率为500Hz 。 实验电路连接图如图1-1(a )所示。 ① 连接如图1-1所示 ② 调整激励源信号为方波,调节频率旋钮,使f=500Hz ,调节幅度旋钮, 使信号幅度为1.5V 。(注意:实验中,在调整信号源的输出信号的参数时,需连接上负载后调节) ③ 示波器CH1接于TP909,调节滑动变阻器,使电路分别工作于欠阻尼、 临界和过阻尼三种状态,并将实验数据填入表格1-1中。 ④ TP908为输入信号波形的测量点,可把示波器的CH ·接于TP908上,便 于波形比较。 表1-1 注:描绘波形要使三状态的X 轴坐标(扫描时间)一致。 2、冲激响应的波形观察 冲激信号是由阶跃信号经过微分电路而得到。 实验电路如图1—1(b )所示。 参数测量 波形观察 欠阻尼状态 临界状态 过阻尼状态 状态 参数测量 R< Tr= Ts= δ= R= Tr= R>

①将信号输入接于P905。(频率与幅度不变); ②将示波器的CH1接于TP906,观察经微分后响应波形(等效为冲激激 励信号); ③连接如图1-1(b)所示 ④将示波器的CH2接于TP909,调整滑动变阻器,使电路分别工作于欠 阻尼、临界和过阻尼三种状态 ④观察TP909端三种状态波形,并填于表1-2中。 表1-2 表中的激励波形为在测量点TP906观察到的波形(冲激激励信号)。 四、实验报告要求 1、描绘同样时间轴阶跃响应与冲激响应的输入、输出电压波形时, 要标明信号幅度A、周期T、方波脉宽T1以及微分电路的τ值。 2、分析实验结果,说明电路参数变化对状态的影响。 五、实验设备 双踪示波器 1 台 信号系统实验箱 1台 上升时间t r :y(t)从0.1到第一次达到0.9所需时间。 峰值时间t p :y(t)从0上升y max 所需的时间。 调节时间t s :y(t)的振荡包络线进入到稳态值的% 5 误差范围所需的时间。 激励波形 响应波形 欠阻尼状态临界状态过阻尼状态

信号与系统通信原理抽样定理实验报告

新疆师范大学 实验报告 2020年4月20日课程名称通信原理实验项目实验三:抽样定理实验物理与电子工程学院电子17-5 姓名赵广宇 同组实验者指导教师 一、实验目的 了解抽样定理在通信系统中的重要性。 掌握自然抽样及平顶抽样的实现方法。 理解低通采样定理的原理。 理解实际的抽样系统。 理解低通滤波器的幅频特性对抽样信号恢复的影响。 理解低通滤波器的相频特性对抽样信号恢复的影响。 理解带通采样定理的原理。 二、实验器材 主控&信号源 3号信源编译模块 示波器 三、实验原理 2、实验框图说明

抽样信号由抽样电路产生。将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。平顶抽样和自然抽样信号是通过开关S1切换输出的。 抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。 要注意,这里的数字滤波器是借用的信源编译码部分的端口。在做本实验时与信源编译码的内容没有联系。 四、实验步骤 实验项目一抽样信号观测及抽样定理验证

基带信号+抽样脉冲输出 模拟滤波器恢复出的信号 数字滤波器恢复出的基带信号

五.心得与体会 1.通过本次实验进一步了解了抽样定理的内容 2.通过本次实验将理论与实践联系在了一起,不仅提高了动手实践能力,更加深了对课程的理解 3.通过实验现象可以更加深入的认识到,数字滤波器比模拟滤波器的恢复波形能力要强. 教师签字

信号与系统实验

序列号:__ 信号与系统实验报告 课程名称信号与系统 学院信息工程学院 年级班别电子信息工程1班 学号 3116002166 学生姓名陈俊杰 指导教师黄国宏 2018年6月15日

目录 实验二LTI系统的响应 (1) 一、实验目的 (1) 二、实验原理 (1) 三、实验内容 (3) 四、程序清单及实验结果 (4) 五、实验总结 (13) 实验三连续时间信号的频域分析 一、实验目的 (14) 二、实验原理 (14) 三、实验内容 (17) 四、程序清单及实验结果 (17) 五、实验总结 (25) 实验五连续信号与系统的S域分析 一、实验目的 (26) 二、实验原理 (26) 三、实验内容 (27) 四、程序清单及实验结果 (28) 五、实验总结 (36)

实验二 LTI 系统的响应 一、实验目的 1. 熟悉连续时间系统的单位冲激响应、阶跃响应的意义及求解方法 2. 熟悉连续(离散)时间系统在任意信号激励下响应的求解方法 3. 熟悉应用MATLAB 实现求解系统响应的方法 二、实验原理 1.连续时间系统 对于连续的LTI 系统,当系统输入为f (t ),输出为y (t ),则输入与输出之间满足如下的线性常系数微分方程:() ()00()()n m i j i j i j a y t b f t ===∑∑,当系统输入为单位冲激信号δ(t )时产生的零状态响应称为系统的单位冲激响应,用h(t)表示。若输入为单位阶跃信号ε(t )时,系统产生的零状态响应则称为系统的单位阶跃响应,记为g(t),如下图所示。 系统的单位冲激响应h (t )包含了系统的固有特性,它是由系统本身的结构及参数所决定的,与系统的输入无关。我们只要知道了系统的冲激响应,即可求得系统在不同激励下产生的响应。因此,求解系统的冲激响应h(t )对我们进行连续系统的分析具有非常重要的意义。 在MATLAB 中有专门用于求解连续系统冲激响应和阶跃响应, 并绘制其时域波形的函数impulse( ) 和step( )。如果系统输入为f (t ),冲激响应为h(t),系统的零状态响应为y (t ),则有:()()()y t h t f t =*。 若已知系统的输入信号及初始状态,我们便可以用微分方程的经典时域求解方法,求出系统的响应。但是对于高阶系统,手工计算这一问题的过程非常困难和繁琐。 在MATLAB 中,应用lsim( )函数很容易就能对上述微分方程所描述的系统的响应进行仿真,求出系统在任意激励信号作用下的响应。lsim( )函数不仅能

信号的采样与恢复实验报告

竭诚为您提供优质文档/双击可除信号的采样与恢复实验报告 篇一:实验2:连续信号的采样和恢复 电子科技大学 实验报告(二) 学生姓名:学号:指导教师:一、实验室名称:信号与系统实验室二、实验项目名称:连续信号的采样和恢复三、实验原理: 实际采样和恢复系统如图3.4-1所示。可以证明,奈奎斯特采样定理仍然成立。 xpT(t) ) 图3.4-1实际采样和恢复系统 采样脉冲:p(t)??F ?pT(j?)?T 2?T ?? ?

k???(:信号的采样与恢复实验报告) 2?ak?(??k?s) 其中,?s? ,ak? ?sin(k?s?/2)T k?s?/2 F ,???T。 采样后的信号:xs(t)???xs(j?)? 1T ? ?x(j(? k??? ?k?s) 当采样频率大于信号最高频率两倍,可以用低通滤波器hr(j?)由采样后的信号xs(t)恢复原始信号x(t)。 四、实验目的与任务: 目的:1、使学生通过采样保持电路理解采样原理。 2、使学生理解采样信号的恢复。 任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢 复的波形与频谱,并与观察结果比较。

五、实验内容: 1、采样定理验证 2、采样产生频谱交迭的验证 六、实验器材(设备、元器件): 数字信号处理实验箱、信号与系统实验板的低通滤波器模块u11和u22、采样保持器模块u43、pc机端信号与系统实验软件、+5V电源,连接线、计算机串口连接线等。 七、实验步骤: 打开pc机端软件ssp.exe,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。 【1.采样定理验证】 1、连接接口区的“输入信号1”和“输出信号”,如图1所示。 图1观察原始信号的连线示意图 2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6khz”。按“F4”键把采样脉冲设为10khz。 3、点击ssp软件界面上的 按钮,观察原始正弦波。 4、按图2的模块连线示意图连接各模块。 图2观察采样波形的模块连线示意图

相关文档