文档库 最新最全的文档下载
当前位置:文档库 › 预应力下的结构模态计算

预应力下的结构模态计算

预应力下的结构模态计算
预应力下的结构模态计算

第十章 模态综合方法

第十章模态综合方法 §10.1 模态综合法的基本原理 【为什么要使用模态综合法】 ★复杂结构自由度多,方程阶数高,计算成本大。 ★对整个结构用假设模态法分析难以实现。 ★大型复杂结构其主要部件可能在不同地区生产,由于条件限制,只能进行部件模态试验,无法进行整体结构的模态试验。 ★结构的响应只由低阶模态控制,不必为少数低阶模态去求解整个结构的高阶动力学方程。 【解决途径】 仿照有限元方法,先对各个局部子结构进行分析,然后再通过某种方法进行整体分析,具体讲就是对各子结构进行模态分析,按某种原则得到能恰当描述整个结构振动的“假设模态”,再按假设模态分析方法来求解整个结构的振动。 【模态综合法的基本思想】 ★按复杂结构的特点将其划分为若干子结构 ★对各子结构进行离散化,通过动力学分析或试验,得到子结构的分支模态。★对各子结构的物理坐标——结点位移坐标进行模态坐标变换 ★对子结构进行“组集”,获得整个结构的模态坐标 ★通过子结构的界面连接条件,作第二次坐标变换—独立坐标变换,消去不独立的模态坐标,得到一组用独立的各子结构模态坐标组成的描述整个结构运动的独立广义坐标,从而导出整个系统以独立模态坐标表示的动力学方程。 【模态综合法的实质】 采用子结构技术,来获得一组复杂结构的品质优良的“假设模态”,以此假设模态作为李兹基底所张成的模态空间,可以很好地覆盖住系统真实的低阶模态空间。 模态综合方法是子结构方法中最成熟、应用最普遍的方法。

【例】 以两端固支梁分成两个子结构为例,来简要说明模态综合法的基本原理 将图示的梁结构分成两个子结构α、β, 其物理坐标集}{u 分成内部坐标集}{ u 和界面坐标集}{j u ,即 ??????????=αααj i u u u }{ ??????????=βββj i u u u }{ (10-1) 界面位移连续条件: }{}{βαj j u u = 结构动能 }]{[}{2 1}]{[}{21βββαααβαu m u u m u T T T T T +=+= (10-3) 结构势能 }]{[}{2 1}]{[}{21βββαααβαu k u u k u V V V T T +=+= (10-4) 假定已经选出了各子结构合适的模态矩阵][][βαφφ(下面各节中就专门讨论][][βαφφ的求法),则有 }]{[}{}]{[}{βββαααφφp u p u == (10-5) 通常,][],[βαφφ的个数远少于对应子结构的自由度数。 记: ????? ?=????? ?=? ?????=][00][][][00][][}{βαβαβαK K K M M M p p p (10-6) ] ][[][][] ][[][][ββββαααα????m M m M T T == (10-7) ]][[][][] ][[][][ββββαααα????k K k K T T == (10-8) 从而, α β} {

结构模态分析方法

模态分析技术的发展现状综述 摘要:本文首先系统的介绍了模态分析的定义,并以模态分析技术的理论为基础,查阅了大量的文献和资料后,介绍了三种模态分析技术在各领域的应用,以及国内外对于结构模态分析技术研究的发展现状,分析并总结三种模态分析技术的特点与发展前景。 关键词:模态分析技术发展现状 Modality Analysis Technology Development Present Situation Summary Abstract:This article first systematic introduction the definition of modality analysis,and based on modal analysis theory,after has consulted the massive literature and the material.Introduced application about three kind of modality analysis technology in various domains. At home and abroad, the structural modal analysis technology research and development status quo.Analyzes and summarizes three kind of modality analysis technology characteristic and the prospects for development. Key words:Modality analysis Technology Development status 0 引言 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。模态分析的过程如果是由有限元计算的方法完成的,则称为计算模态分析;如果是通过试验将采集的系统输入与输出信号经过参数识别来获得模态参数的,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 1 数值模态分析的发展现状 数值模态分析主要采用有限元法,它是将弹性结构离散化为有限数量的具体质量、弹性特性单元后,在计算机上作数学运算的理论计算方法。它的优点是可以在结构设计之初,根据有限元分析结果,便预知产品的动态性能,可以在产品试制出来之前预估振动、噪声的强度和其他动态问题,并可改变结构形状以消除或抑制这些问题。只要能够正确显示出包含边界条件在内的机械振动模型,就可以通过计算机改变机械尺寸的形状细节。有限元法的不足是计算繁杂,耗资费时。这种方法,除要求计算者有熟练的技巧与经验外,有些参数(如阻尼、结合面特征等)目前尚无法定值,并且利用有限元法计算得到的结果,只能是一个近似值。 正因如此,大多数数学模拟的结构,在试制阶段常应做全尺寸样机的动态试验,以验证计算的可靠程度并补充理论计算的不足,特别对一些重要的或涉及人身安全的结构,就更是如此。 70 年代以来,由于数字计算机的广泛应用、数字信号处理技术以及系统辨识方法的发展 , 使结构模态试验技术和模态参数辨识方法有了较大进展,所获得的数据将促进产品性能的改进、更新[1] 。在硬件上,国外许多厂家研制成功各种类型的以FFT和

用新规范计算预应力混凝土连续梁

用新规范计算预应力混凝土连续梁 谢宝来 【摘要】本文为用新规范进行桥梁结构设计的一个算例,其重点讨论了预应力混凝土构件纵向受力性能的计算方法和计算过程,以及对新规范的一些理解,其中包括汽车冲击系数、上下缘正负温差、翼缘有效宽度、极限承载能力(塑性)和应力(弹性)计算等,同时也说明了一些构造方面的要求。 【关键词】规范预应力混凝土冲击系数有效宽度 一、设计概况 该桥为京津高速公路跨越永定新河的一座特大桥,单幅桥宽16.5米,特大桥是因为长度超过了1000米,以永定新河的交角为45度,跨越河流时采用三联3x55米,用PZ造桥机施工的预应力混凝土连续箱梁,此处平曲线半径为5000米,当然小半径也可以采用此施工工艺。第一阶段施工为简支单悬臂,施工长度为55米简支加11米(悬臂为跨径的五分之一,此处弯矩最小,为施工缝的最加位置)悬臂,平移模板,第二阶段施工长度为44米加11米悬臂,最后施工剩下的44米。主要预应力钢束均为单向张拉,最大单向张拉长度为66米。按预应力砼A 类构件设计。 二、设计参数 (一)桥宽:16.5m(1+0.75+3x3.75+3+0.5); (二)跨径:3x55m; (三)梁高:3.0m; (四)荷载标准:公路-I级;计算车道数:3;横向折减系数:0.78; (五)二期荷载:100mm厚沥青混凝土;80mmC40防水混凝土;两侧栏杆20kN/m。 (六)采用的主要规范: 《公路桥涵设计通用规范》(JTG-D60-2004); 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG-D62-2004); (七)选用材料: ①混凝土C50:f cd =22.4MPa,f td =1.83MPa,E c =3.45x104MPa;

第十章预应力混凝土构件的计算

第十章预应力混凝土构件的计算 1.静定预应力混凝土结构和超静定预应力混凝土结构有何本质区别? 2.如何布置预应力筋时,张拉预应力筋不引起超静定预应力混凝土结构支座反力的变化? 3.何谓预应力结构中的侧限? 4.何谓无侧限预应力混凝土结构?举例说明。 5.何谓侧限影响系数? 6.什么叫做张拉预应力筋所引起的次反力? 7.什么叫预应力混凝土结构的次内力? 8.什么叫预应力混凝土结构的主内力? 9.什么叫预应力结构的综合内力? 10.综合内力有哪两种计算方法? 11.次内力有哪两种计算方法? 12.预应力混凝土简支梁与连续梁正截面承载力计算公式的本质区别是什么?13.简述预应力筋的两阶段工作原理? 14.规范中锚具下混凝土局部受压承载力计算公式存在哪四个问题? 15.用基于简支梁板所求得的无粘结筋等效折减系数α去计算连续梁板的裂缝和变形会带来什么问题? 16.预应力混凝土结构连续梁有哪几种破坏机制? 17.对有侧限多、高层预应力混凝土结构张拉预应力筋时应注意哪些问题?18.对于预应力筋通长布置,梁高相同而梁跨相差悬殊的连续梁和框架梁,预应力筋线形选择时应注意什么问题? 19.张拉预应力混凝土转换结构的预应力筋时应注意哪些问题? 20.举例说明竖向预应力的用途? 21.什么是预应力混凝土结构?预应力混凝土结构的工作原理是什么?

29. 预应力混凝土结构施工由哪几部分组成? 30. 选择预应力混凝土结构材料及工艺时应遵循什么原则? 31. 预应力筋线形选择应遵循什么原则?等效荷载计算时应注意什么? 32.预应力混凝土结构抗力计算的经典计算方法和统一计算方法的思路特点各是 什么? 33. 利用0.9(2)L c L c v cor y Ln F f f A ββαρβ≤+进行局压承载力验算时应注意哪些问题? 34. 简述预应力混凝土结构工作原理。 35. 选用预应力筋张拉控制应力应遵循什么原则? 36. 为何要对预应力结构的反拱值设限 ? 37. 写出矩形截面预应力混凝土连续梁正截面承载力计算公式(基于经典方法)。 38. 基于统一方法写出有侧限结构的矩形截面预应力混凝土梁正截面承载力计 算公式。 39. 为满足锚具下混凝土局压承载力要求,控制A 类和B 类裂缝开展均需设置 间接钢筋,这三类间接钢筋的布置范围及各范围用量的取用方法。 40.什么是预应力混凝土?为什么说普通钢筋混凝土结构中无法利用高 强材 料,较难建造起大跨度结构?预应力混凝土结构又怎样? 41. 预应力混凝土结构的主要优缺点是什么? 42. “预应力混凝土结构是一种预先检验过的结构”这种说法对吗? 43. 什么是先张法和后张法预应力混凝土 ?它们的主要区别是什么? 44. 对预应力混凝土中的钢筋和混凝土的性能分别有哪些要求 ?为什么? 45.为什么配置无屈服台阶的光面钢丝和钢绞线的预应力混凝土受弯构件,当材 料质量有可靠保证时,钢筋的设计强度可乘以钢筋应力增大系数 ?它是怎样确定的? 46.预应力混凝土与普通钢筋混凝土之间的主要异同点是什么? 47.为什么在预应力混凝土结构中要用较高强度等级的混凝土? 48. 什么是张拉控制应力?为什么要规定张拉控制应力的上限值?它与那些因 素有关?张拉控制应力是否有下限值? 49.预应力混凝土结构中的预应力损失包括那些项目?如何分批?每一批损失在 计算中如何应用的? 50.影响收缩和徐变损失的主要因素有哪些?这时的混凝土预压应力是指哪一位 置处的值? 51.什么是钢材的应力松弛? 松弛损失与哪些因素与有关?为什么超张拉(短 时间的)可减松弛少损失? 52.换算截面0A 和净截面n A 的意义是什么?为什么计算施工阶段的混凝土应力 时,先张法构件用0A 、后张法构件用净截面n A ?而计算外荷载引起的截面应力时,为什么先张法和后张法构件都用0A ? 53.在受弯构件截面受压区配置预应力筋对正截面抗弯强度有何影响? 54.预应力混凝土受弯构件的截面限制条件和斜截面抗剪强度计算是否与普通钢 筋混凝土受弯构件相同?

复模态理论

(2). 复特征值分析 复特征值分析主要用于求解具有阻尼效应的结构特征值和振型, 分析过程与实特征值分析类似。此外NASTRAN的复特征值计算还可考虑阻尼、质量及刚度矩阵的非对称性。复特征值抽取方法包括直接复特征值抽取和模态复特征值抽取两种: a). 直接复特征值分析 通过复特征值抽取可求得含有粘性阻尼和结构阻尼的结构自然频率和模态,给出正则化的复特征矢量和节点的约束力, 及复单元内力和单元应力。主要算法包括elerminated法、Hossen-bery法、新Hossenbery、逆迭代法、复Lanczos法,适用于集中质量和分布质量、对称与反对称结构,并可利用DMAP工具检查与测试分析的相关性。 MSC.NASTRAN V70.5版中Lanczos算法在特征向量正交化速度上得到了进一步提高, 尤其是在求解百个以上的特征值时, 速度较以往提高了30%。 b). 模态复特征值分析 此分析与直接复特征值分析有相同的功能。本分析先忽略阻尼进行实特征值分析, 得到模态向量。然后采用广义模态坐标,求出广义质量矩阵和广义刚度矩阵, 再计算出广义阻尼矩阵, 形成模态坐标下的结构控制方程, 求出复特征值。模态复特征值分析得到输出类型与用直接复特征值分析的得到输出类型相同。复模态振型与实模态振型的区别在于:1,复模态不存在各点位移均为零的瞬间。2,复模态各点位移之间的比值随时间变化。3,复模态一般不具有实模态振型所具有的那种稳定的节点或节线,或者说,复模态振型节线是随着时间的变化而移动的。 另外,复模态的振幅含幅值和一个任意的相位角,也就是说,复模态向量对应的各点的相位没有固定的相位差角,也不存在确定的振动位形。 摩擦尖叫噪声有限元预测分析的可靠性研究 中国西部机电网 hebby1986 2009年6月8日 摘要:使用相同的制动系统,分别建立了基于ABAQUS和NASTRAN的制动摩擦尖叫噪声有限元 预测分析模型。基于ABAQUS的摩擦尖叫噪声模型利用接触耦合关系计算法向力,不需要在接触界面 假设接触弹簧。基于NASTRAN的摩擦尖叫噪声模型根据罚函数法计算法向力,需要在接触界面假设 接触弹簧。比较了这2种模型的计算结果,发现即使这2个模型采用相同的有限元网格,计算预测到 的不稳定频率(即实部为正的复特征值虚部)通常不同,且NASTRAN建模方法只能部分预测到中高 频尖叫噪声。计算结果显示,当接触弹簧刚度大于等于32×109 N/m时,NASTRAN模型的预测结果基本相同;有限元网格尺寸和单元类型对计算结果也有较大的影响。 关键词:摩擦;制动;噪声;尖叫;有限元 对摩擦噪声的研究历史已有七八十年,但到目前为止还没有一种技术能完全消除制动摩擦尖叫噪声[1-4]。对摩擦尖叫噪声形成机制的认识也是不断发展的,现在比较认同的摩擦噪声机制是:粘 滑、摩擦力相对滑动速度负斜率、Spragslip、模态耦合、模态分裂(Modal splitting)和锤击机制[1-4]。 最近作者提出了基于摩擦力时间滞后的尖叫噪声新理论,可以解释许多尖叫噪声的物理现象[5-6]。 尽管如此,作者认为制动摩擦系统有限元复特征值分析仍然是当前比较有效的预测摩擦尖叫噪声的方

预应力混凝土结构构件计算(精)

第9章预应力混凝土结构构件计算 1.何谓预应力混凝土结构? 答:所谓预应力混凝土结构,就是在外荷载作用之前,先对混凝土施加压力,造成人为的应力状态,它所产生的预压应力能抵消外荷载所引起的部分或全部拉应力◆。这样,在外荷载作用下,裂缝就能延缓或不会产生,即使出现了裂缝,裂缝宽度也不致过大。 2.与非钢筋混凝土结构相比较,预应力混凝土结构主要有哪几方面的优点? 答:与非钢筋混凝土结构相比较,预应力混凝土结构主要有以下几方面的优点: (1)预应力混凝土结构在使用荷载作用下不出现裂缝或推迟裂缝的出现,在同样的荷载下,能减小裂缝宽度,因此也提高了构件的刚度,增加结构的耐久性。如用在处于腐蚀性介质和潮湿环境中的结构以及海洋工程结构中,可根本解决裂缝问题,对水工建筑物的意义尤为重大。 (2)预应力混凝土结构可以合理、有效地利用高强钢筋◆和高强混凝土,从而节省材料,减轻结构自重,可建造大跨度结构。 (3)施加纵向预应力可延缓斜裂缝的形成,使受剪承载力得到提高。 (4)预应力可以降低钢筋的疲劳应力比,因而提高了构件的抗疲劳性能。 3.根据预应力对构件裂缝控制程度不同预应力混凝土结构可分成哪几类,各有何特点? 答:根据预应力对构件裂缝控制程度不同预应力混凝土结构可分成:全预应力混凝土、有限预应力混凝土和部分预应力混凝土。 全预应力混凝土:在全部荷载即荷载效应的短期组合下,截面不出现拉应力的预应力混凝土,称为全预应力混凝土。全预应力混凝土的特点是: (1)抗裂性好。由于构件截面不出现拉应力,混凝土不开裂,因而其抗裂性能好、刚度大,常用于对抗裂或抗腐蚀性能要求较高的结构,如核电站安全壳、贮液罐、吊车梁等。 (2)抗疲劳性能好。预应力钢筋从张拉到使用阶段的全过程中,其应力值变化幅度小,所以在重复荷载下抗疲劳性能好。 (3)反拱值可能过大。当活荷载较大,在正常使用情况下,由于预加应力较高,引起结构的反拱过大,使混凝土在施工阶段产生裂缝,影响上 部结构构件的正常使用。 (4)延性较差。由于构件的开裂荷载与极限荷载较为接近,使构件延较差,对结构的抗震不利。 有限预应力混凝土:在全部荷载即荷载效应的短期组合下,截面拉应力不超过混凝土规定的抗拉强度;在长期荷载即荷载效应的长期组合下,截面不出现拉应力的预应力混凝土,称为有限预应力混凝土。 部分预应力混凝土:截面允许出现裂缝,但最大的裂缝宽度不得超过允许的限值,称为部分预应力混凝土。部分预应力混凝土的特点: (1)节约钢材。可根据结构构件的不同使用要求、荷载作用情况及环境条件等,对裂缝进行控制,降低了预应力值,从而节约预应力钢筋及锚具的用量,降低造价。 (2)反拱值不致于过大。由于施加预应力较小,可避免产生过大反拱。 (3)延性较好。由于配置了非预应力钢筋,可提高构件的延性,有利于结构抗震,并可改善裂缝分布,减小裂缝宽度。 (4)与全预应力混凝土相比,可简化张拉、锚固等工艺,其综合经济效果较好。对于抗裂要求不太高的结构构件,部分预应力混凝土已得到广泛应用。

预应力大变形模态分析到 PSTRES 和 SSTIF 的辨异

一,前言: 在ANSYS中有两个命令可以将预应力效应激活并考虑在求解方程计算中,但是他们是有区别,最近在论坛上出现很多的帖子讨论预应力大变形模态分析,但是好象大家对以上两个命令出现一定程度的混淆,本文结合例子对以上两个命令及相关问题做以阐释。不妥之处,欢迎高手批评指正 二,例子简单介绍: 借用网友的例子进行说明,下面简单介绍以下我们分析的问题。 实际的问题是两根拉索,通过圆钢管联系在一起成以下平面形状,拉索中通过施加应变yingbian=3.51e-3考虑索中的预应力。本文将对以下结构进行静力求解和模态求解。 三,静力求解结果分析: 本文采用以下四种不同的求解方式进行求解,并对结果进行分析: SOLUTION 1 小变形求解,不激活以上两个命令,使用以下命令流: Nlgeom,off Sstif,off Pstres,off Solv SOLUTION 2-1 小变形求解,激活Pstres命令,使用以下命令流: Nlgeom,off Pstres,on solv SOLUTION 2-2 大变形求解,激活Pstres命令,使用以下命令流: Nlgeom,on Pstres,on solv SOLUTION 2-2 大变形求解,激活SSTIF,on命令,使用以下命令流: Nlgeom,on Sstif,on solv 经过求解分别得到以下计算结果:以UX变形为例 结论:通过以上结果可见,PSTRES,ON 是不适合用于大变形分析,因为该命令不会激活△U的附加刚度矩阵。 四,命令辨析: 为从根本上阐明以上问题,我们先从两个命令的说明上进行对比,区分其中的不同之处。4-1PSTRES 命令 PSTRES, Key Specifies whether *1pstress effects are calculated or included. 注1,Pstres主要为激活预应力效应,注意和SSTIF使用目的的区别 Notes Specifies whether or not prestress effects are to be calculated or included. Prestress effects are calculated in a static or transient analysis for inclusion in a buckling, modal, harmonic (Method = FULL or REDUC), transient (Method = REDUC), or substructure generation analysis. If used in SOLUTION, this command is valid only*2within the first load step.

模态分析意义

模态分析意义模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与胯动响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。近十多年来,由于计算机技术、

FFT 分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。在各种各样的模态分析方法中,大致均可分为四个基本过程:(1)动态数据的采集及频响函数或脉冲响应函数分析1)激励方法。试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。2)数据采集。SISO 方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振形数据。SIMO 及MIMO 的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本较高。3)时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。(2)建立结构数学模型根据已知条件,建立一种描述结构状态及特性的模型,作为计算及识别参数依据。目前一般假定系统为线性的。由于采用的识别方法不同,也分为频域建模和时

预应力混凝土构件的计算

9 预应力混凝土构件的计算 9.1 预应力混凝土的基本概念和一般计算规定 9.1.1 概述 普通钢筋混凝土构件虽已广泛应用于土木工程建筑之中,但由于混凝土的极限拉应变很小,仅 有(0.1~0.15)×10-3,故在正常使用条件下构件的受拉区开裂,刚度下降,变形较大,使其适用范 围受到限制。为了控制构件的裂缝和变形,可采取加大构件的截面尺寸,增加钢筋用量,采用高强混凝土和高强钢筋等措施。但是如采用增加截面尺寸和用钢量的方法,一般来讲不经济,并且当荷载及跨度较大时不仅不经济而且很笨重;如提高混凝土的强度等级,由于其抗拉强度提高得很小,对提高构件抗裂性和刚度的效果也不明显;如果提高钢筋的强度,则钢筋达到屈服强度时的拉应变 很大,约在2×10-3以上,与混凝土的极限拉应变相差悬殊。因此对不允许开裂的构件,使用时受拉 钢筋的应力只能为20~30N/mm 2左右。由此可见,在普通钢筋混凝土结构中,高强混凝土和高强钢筋 是不能充分发挥作用的。 为了充分利用高强混凝土及高强钢材,可以在混凝土构件受力前,在其使用时的受拉区内预先施加压力,使之产生预压应力,造成人为的应力状态。当构件在荷载作用下产生拉应力时,首先要抵消混凝土构件内的预压应力,然后随着荷载的增加,混凝土构件受拉并随荷载继续增加才出现裂缝,因此可推迟裂缝的出现,减小裂缝的宽度,满足使用要求。这种在构件受荷前预先对混凝土受拉区施加压应力的结构称为“预应力混凝土结构”。 预应力混凝土的构思出现在19世纪末,1886年就有人申请了用张拉钢筋对混凝土施加 预压力防止混凝土开裂的专利。但那时材料的强度很低,混凝土的徐变性能尚未被人们充分认识,通过张拉钢筋对混凝土构件施加预压力不久,由于混凝土的收缩、徐变,使已建立的混凝土预压应力几乎完全消失,致使这一新颖的构思未能实现。直到1928年,法国的E .Freyssinet 首先用高强度钢丝及高强混凝土成功地设计建造了一座水压机,以后在本世纪三十年代,高强钢材能够大量生产时,预应力混凝土才真正为人们所应用。 随着土木工程中混凝土强度等级的不断提高,高强钢筋的进一步使用,预应力混凝土目前已广泛应用于大跨度建筑结构、公路路面及桥梁、铁路、海洋、水利、机场、核电站等工程之中。例如,新建的国际会展中心,广州市九运会的体育场馆,日新月异的众多公路大桥,核电站的反应堆保护壳,上海市的东方明珠电视塔、遍及沿海地区高层建筑、大跨建筑以及量大面广的工业建筑的吊车梁,屋面梁等都采用了现代预应力混凝土技术。 现以预应力混凝土简支梁的受力情况为例,说明预应力的基本原理。如图9-1所示,在荷载作用之前,预先在梁的受拉区施加一对大小相等,方向相反的偏心预压力N ,使梁截面下边缘混凝土产生预压应力c (图9-l ),当外荷载作用时,截面下边缘将产生拉应力t (图9-l ),最后的应力分布为上述两种情况的叠加,梁的下边缘应力可能是数值很小的拉应力。(图9-1),也可能是压应力。也就是说,由于预压应力c 的作用,可部分抵消或全部抵消外荷载所引起的拉应力t ,因而延缓了混凝土构件的开裂或者构件不开裂。 图9-2为两根具有相同材料强度、跨度、截面尺寸和配筋量的梁的—(荷载—挠度) 曲线对比图。其中一根为普通钢筋混凝土梁,另一根为预应力混凝土梁。可以看出,预应力梁的开裂荷载F pcI ,大于钢筋混凝土梁的开裂荷载F pcI ;同时在使用荷载作用下,前者并未开裂而后者已开裂,且前者的挠度小于后者的挠度;但两者最终的破坏荷载基本相同。 预应力钢筋混凝土结构与普通钢筋混凝士结构相比,其主要优点是: (1)不会过早地出现裂缝,抗裂性好。 (2)可合理地利用高强钢材和混凝土,与钢筋混凝土相比,可节约钢材30~50%,减轻结构自重达30%左右,且跨度越大越经济。 图9—1 预应力梁的受力情况 图9—2 梁的荷载—绕度曲线对比图 (a ) (a ) 压力作用下; (b )荷载作用下; (c ) 预压力与荷载共同作用下; σa σb c σσF f p f f u F

基于ANSYS WORKBENCH轴承的模态分析

基于ANSYS WORKBENCH轴承的模态分析 1有限元模型的建立 利用proe软件进行建模,可以从原件库里面直接调用,也可以重新建模,建模无需建立装配模型,只需要在单体零件中直接建立轴承内外圈和球体,选择不合并实体,从而形 成多实体的单体零件。轴承元件之间的间隙可以消除。 ?三维模型的建立 三维模型的建立是数值模拟分析中重要、关键的环节。UG软件能够方便地建立复杂的 三维模型,企业提供的初始的轴承三维模型主体钢结构是由不同厚度的钢板焊接而成,模 型钢板之间存在较多的焊缝,导致模型存在不同大小的间隙,给后继有限元分析带来困难,而且模型结构复杂,且为三维实体,建立有限元模型的过程中,要在符合结构力学特性的 前提下建立模型,有必要对结构做合理的简化。其主要简化说明如下: (1).忽略零件中一些微小特征。螺栓孔、倒圆角等一些微小的结构对结果准确性的 影响很小,所以建模时不考虑这些微小几何图元; (2).所有焊接位置不允许出现裂缝、虚焊等工艺缺陷,认为在焊接位置材料是连续的,直接填充间隙; (3).轴承模型附件品种繁多,形状复杂,且对机架的刚度和强度影响不大,在计算 模型中只要考虑其自重即可,例如料斗、辊子、走台、链板等其它辅助设备。 ?材料属性 结构用钢均采用Q235碳素结构钢材,Q235的弹性模量E=2.1e11N/m2,密度7830 kg/m3,剪切模量为81000MPa,泊松比为0.3,模型材料为各向同性。 表1 材料Q235许用应力一览表: MPa (N/mm2) Tab.1 List of Material Q235 Allowable stress: MPa (N/mm2)

第10章 周期对称结构的模态分析

第十章周期对称结构的模态分析 ANSYS的周期对称分析支持静力(Static)分析和模态(Modal)分析。静力分析支持线性和大变形非线性;模态分析支持带有预应力的模态分析和不带有预应力的两种,关于带有预应力的模态分析本书第九章有专门讲述。本章只讲述不带有预应力的模态分析。在静力分析和模态分析这两种分析类型中,关于模型建立部分的要求是一致的,不同的是在进行模态分析时需要指定求解的节径数以及指定对于每个节径数的求解的模态阶数。对于每个节径,ANSYS均将其作为一个载荷步。ANSYS将周期对称边界条件施加于每一载荷步,并且每求解一个载荷步(即节径)后,都将构成周期对称边界条件的约束方程删除(保留任何用户自定义的约束方程)。在静力分析中ANSYS只求解零节径,而在模态分析中默认将求解全部节径。 本章中介绍的实例依然是第7章的轮盘,包括模型和边界条件。 10.1 问题描述 某型压气机盘,见7.1节的对其描述。要求查看其低阶频率结构和振动模态。 10.2 建立模型 在周期对称分析中,在建立模型后,划分网格之前,需要指定周期对称选项。 10.2.1 设定分析作业名和标题 在进行一个新的有限元分析时,通常需要修改数据库文件名(原因见第二章),并在图形输出窗口中定义一个标题用来说明当前进行的工作内容。另外,对于不同的分析范畴(结构分析、热分析、流体分析、电磁场分析等)ANSYS6.1所用的主菜单的内容不尽相同,为此我们需要在分析开始时选定分析内容的范畴,以便ANSYS6.1显示出跟其相对应的菜单选项。 (1)选取菜单路径Utility Menu >File >Change Jobname,将弹出修改文件名(Change Jobname)对话框,如图10.1所示。

各种模态分析方法总结及比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。二、各模态分析方法的总结

(一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计算机内存,因此在当前小型二通道或四通道傅立叶分析仪中,都把这种方法做成内置选项。然而随着计算机的发展,内存不断扩大,计算速度越来越快,在大多数实际应用中,单自由度方法已经让位给更加复杂的多自由度方法。 1、峰值检测 峰值检测是一种单自由度方法,它是频域中的模态模型为根据对系统极点进行局部估计(固有频率和阻尼)。峰值检测方法基于这样的事实:在固有频率附近,频响函数通过自己的极值,此时其实部为零(同相部分最

预应力钢筋计算方法

预应力钢筋计算方法 一、工程量计算方法: 先张法预应力钢筋,按构件外形尺寸计算长度。后张法预应力钢筋按设计图规定的预应力钢筋预留孔道长度加伸出孔道的工作长度计算,伸出孔道的工作长度,设计有规定时,按设计规定计算,设计无规定时,区别不同的锚具类型,分别按下列规定计算: (1)低合金钢筋两端采用螺杆锚具时,预应力的钢筋按预留孔道长度减0.35m,螺杆另行计算。考试吧 (2)低合金钢筋一端采用镦头插片,另一端采用螺杆锚具时,预应力钢筋长度按预留孔道长度计算,螺杆另行计算。 (3)低合金钢筋一端采用镦头插片,另一端采用帮条锚具时,预应力钢筋按孔道增加0.15m,两端均采用帮条锚具时,预应力钢筋长度按孔道长度增加0.3m计算。 (4)低合金钢筋采用后张混凝土自锚时,预应力钢筋长度增加0.35m计算。 (5)低合金钢筋(钢铰线)采用JM、XM、QM型锚具,孔道长度在20m以内时,预应力钢筋长度按孔道长度增加1m;孔道长度20m以上时,预应力钢筋(钢铰线)长度按孔道长度增加1.8m计算。 (6)碳素钢丝束采用锥形锚具,孔道在20m以内时,钢丝束长度按孔道长度增加1m;孔道长度在20m以上时,钢丝束长度按孔道长度增加1.8m。 (7)碳素钢丝束采用镦头锚具时,钢丝束长度按孔道长度增加0.35m计算 二、参数计算方法: 预应力的计算公式: F=PS F-张拉力kN,P-压力MPa,S-活塞面积mm2。 根据这个公式转换就行。通俗些,我给你举个例子,你就明白了。 假设预制板中铺设有10条10.7的钢筋(该规格的钢筋横截面积为90mm2,标准抗拉强度为1420MPa),按照一般标准规定,取张拉系数0.7,即每条钢筋的张拉应力为1420*0.7=994MPa。张垃机的油缸活塞面积为400cm2,则张拉时,压力表值P2计算为。由于在张拉过程中,钢筋受拉力F1与张拉机的张拉力F2大小是相等的,所以有F1=F2。即,P1*S1=P2*S2,所以P2=P1*S1/S2 =1条钢筋张拉应力*1条钢筋横截面积*钢筋条数/张拉机活塞面积=994*90*10/400*100=22.365MPa。

预应力混凝土预应力损失及计算方法

预应力混凝土预应力损失及计算方法 简介:对比了新旧混凝土结构规范中关于预应力计算方法的不同,总结了各国学者对总预应力损失近似估算值的研究成果,提出了预应力损失的简化计算方法,为快速合理地进行预应力混凝土结构设计提供了依据。 关键字:预应力损失简化计算 预应力损失的大小影响到已建立的预应力,当然也影响到结构的工作性能,因此,如何计算预应力损失值,是预应力混凝土结构设计的一个重要内容。引起预应力损失的原因很多,而且许多因素相互制约、影响,精确计算十分困难。我国新的《混凝土结构设计规范》GB50010-2002经历四年半修订,已顺利完成。此次修订对原规范GBJ10-89进行补充和完善,增加和改动了不少内容。现就其中预应力损失计算部分谈谈自己的理解,供大家参考指正。 1.预应力损失基本计算 在预应力损失值的计算原则方面,各国规范基本一致,均采用分项计算然后叠加以求得总损失。全部损失由两部分组成,即瞬时损失和长期损失。其中,瞬时损失包括摩擦损失,锚固损失(包括锚具变形和预应力筋滑移)和混凝土弹性压缩损失。长期损失包括混凝土的收缩,徐变和预应力钢材的松弛等三项,它们需要经过较长时间才能完成。我国新规范采用分项计算然后按时序逐项叠加的方法。下面将分项讨论引起预应力损失的原因,损失值的计算方法。 1.1孔道摩擦损失σl2 孔道摩擦损失是指预应力钢筋与孔道壁之间的摩擦引起的预应力损失。包括长度效应(kx)和曲率效应(μθ)引起的损失。宜按下列公式计算: σl2=σcon(1-1/ekx+μθ) 当(kx+μθ)≤0.2时(原规范GBJ10-89为0.3),σl2可按下列近似公式计算: σl2=(kx+μθ)σcon

上海交大《模态分析》练习题答案

《模态分析与参数辨识》 我做的,不一定全对。 1. 模态分析的基本目的和定义是什么?P2,P2 2. 什么是粘性阻尼?什么是结构阻尼?如何影响频响函数?P3,P6,P4P6 3. 什么是模态?模态正交性是什么?P35,P37 4. 解释半功率带宽,其意义何在?P12 5. 解释模态截断和剩余模态,对频响函数有何影响?P43 6. 留数与振型有何关系?P41 7. 原点与跨点导纳有何异同?P27 8. 反共振点的物理意义是什么?对频响函数的幅值和相位有何影响?P28 9. 位移、速度、加速度频响函数有何关系,如何影响对振型的估计?P7 10. 说明传递函数和脉冲响应函数的物理意义以及两者之间的关系。P23 11. 模态参数辨识主要识别那些参数?P39 12. 画出模态测试系统的框图。P341 13. 说明窗函数的作用,传感器布置与联接对测试结果的影响。P?这个扯远了,见课件。 14. 脉冲激励与随机激励的特点是什么?P60 15. 为什么说频率响应函数的确定是一个估计问题?有那些估计模型?P128 16. 模态参数可辨识的条件是什么?P116 17. 对一个N 自由度线性定常系统,试推导其在P 点激励,L 点响应的频率响应函数。P40 18. 论述实模态及复模态的性质,特点以及两者之间的区别。P39,P52 19. 论述分量分析法识别模态参数基本过程。P82-86 20. 用框图描述用最小二乘复指数法进行模态参数识别的基本过程。P126 21. 用框图描述用多参考点频域法进行模态参数识别的基本过程。P168 22. 试用框图(不必写出公式)说明特征系统实现算法的主要过程,并说明在该方法中采 用什么办法减少干扰提高辨识精度?P176-181 23. 试推导无阻尼系统()0=+-i i K M φλ特征值灵敏度?λ?i j p 。P253 24. 试用框图(不必写出公式)说明频域法中对比例阻尼系统载荷识别的模态坐标转换法 的主要过程P38 25. 论述模态综合法的基本思想,并说明固定界面模态综合法和改进的自由界面模态综合 法各自的特点,两种方法最后总的自由度数。P314 26. 写出二种计算模态和实验模态之间的相关准则以及频率响应函数的相关准则。P243 27. 二自由度系统(自由-自由)所测得的频率响应如下图所示,求系统的质量和刚度的关 系。

预应力计算规则

附录:江苏省2004定额钢筋计算规则 说明 1、钢筋工程以钢筋以钢筋的不同规格、不分品种按现浇构件钢筋、现场预制构件钢筋、加工厂预制构件钢筋、预应力构件钢筋、点焊网片分别编制定额项目。 2、钢筋工程内容包括:除锈、平直、制作、绑扎(点焊)、安装以及浇灌砼时维护钢筋用工。 3、钢筋搭接所耗用的电焊条、电焊机、铅丝和钢筋余头损耗已包括在定额内,设计图纸注明的钢筋接头长度以及未注明的钢筋接头按规范的搭接长度应计入设计钢筋用量中。 4、先张法预应力构件中的预应力、非预应力钢筋工程量应合并计算,按预应力钢筋相应项目执行;后张法预应力构件中的预应力钢筋、非预应力钢筋应分别套用定额。 5、预制构件点焊钢筋网片已综合考虑了不同直径点焊在一起的因素,如点焊钢筋直径粗细比在两倍以上时,其定额工日按该构件中主筋的相应子目乘系数1.25,其他不变(主筋是指网片中最粗的钢筋)。 6、粗钢筋接头采用电渣压力焊、套管接头、锥螺纹等接头者,应分别执行钢筋接头定额。计算了钢筋接头不能再计算钢筋搭接长度。 7、非预应力钢筋不包括冷加工,设计要求冷加工时,应另行处理。预应力钢筋设计要求人工时效处理时,应另行计算。 8、后张法钢筋的锚固是按钢筋帮条焊V型垫块编制的,如采用其他方法锚固时,应另行计算。 9、基坑护壁孔内安放钢筋按现场预制构件钢筋相应项目执行;基坑护壁上钢筋网片按点焊钢筋网片相应项目执行。 10、对构筑物工程,其钢筋可按表列系数调整定额中人工和机械用量:

11、钢筋制作、绑扎需拆分者,制作按45%、绑扎按55%拆算。 12、钢筋、铁件在加工制作时,由加工厂至现场的运输费应另列项目 计算。在现场制作的不计算此项费用。 13、后张法预应力钢丝束、钢绞线束不分单跨、多跨以及单向双向布 筋,当构件长在60米以内时,均按定额执行。定额中预应力筋按直径5毫米的碳素钢丝或直径15 ~15。24毫米的钢绞线编制的,采用其他规格时另行调整。定额按一端张拉考虑。当两端张拉时,有粘结锚具基价乘以系数1.14,无粘结锚具乘系数 1.07。当钢绞束用于地面预制构件时,应扣除定额中张拉平台摊销费,单位工程后张法预应力钢丝束、钢绞线束设计用量在3吨以内时,定额人工及机械台班有粘结张拉乘系数1.63;无粘结张拉乘系数1.8。 14、本定额无粘结钢绞线束以净重计时,若以毛重(含封油包塑的重 量)计量时,按净重与毛重之比1:1.08进行换算。 工程时计算规则 编制预算时,钢筋工程量可暂按构件体积(或水平投影面积、外围面积、延长米)×钢筋含量计算,详见附录一。结算时按设计要求,无设计要求按下列规则计算: 一、一般规则: 1、钢筋工程应区别现浇构件、预制构件、加工厂预制构件、预应力 构件、点焊网片等以及不同规格分别按不同规格分别按设计展开长度(展开长度、保护层、搭接长度应符合规范规定)乘理论重量以吨计算。 2、计算钢筋工程量时,搭接长度按规范规定计算。当梁、板(包括 整析基础)φ8以上的通筋未设计搭接位置时,预算书暂按8米一个双面电焊接头考虑,结算时应按钢筋实际定尺长度调整搭接个数,搭接方式按已审定的施工组织设计确定。 3、先张法预应力构件中的预应力和非预应力钢筋工程量应合并并按 设计长度计算,按预应力钢筋定额(梁、大型屋面板、F板执行φ5外的定额,其余均执行φ5内的定额)执行。后张法预应力钢筋与非预应力钢筋分别计算,预应力钢筋按设计图规定的预应力钢筋预留孔道长度,区别不同锚具类型分别按下列规定计算。 (1)低合金钢两端采用螺杆锚具时,预应力钢筋按预留孔道长度减350㎜,螺杆另行计算。

相关文档