文档库 最新最全的文档下载
当前位置:文档库 › 焓湿图例题解析

焓湿图例题解析

焓湿图例题解析
焓湿图例题解析

中乾汇泰企业培训例题习题(二)

【例题1】某空调房间冷负荷Q =3.6KW,湿负荷W =0.3g/s ,室空气状态参数为:t N =22±1℃,? N =55±5%,当地大气压为101325Pa, 房间体积150 m 3

求:送风状态、送风量和除湿量。 解:(1)求热湿比ε= = (2)在焓湿图上确定室空气状态点N ,通过该点画出ε=12600的过程线。

依据±1℃温度偏差查表1取送风温差为 ℃,则送风温度22-8=14℃。从而得出:h 0=36KJ/kg h N =46 KJ/kg d O =8.6g/kg d N =9.3g/kg

(3)计算送风量 按消除余热: kg/s

按消除余湿: kg/s

则L =0.33/1.2×3600=990m 3/h

换气次数n =990/150(次/h) =6.6次/h ,符合要求。

除湿量: 舒适性空调送风温差与换气次数 表1 室允许波动围 送风温差(℃)

换气次数(次/h ) ±0.1~0.2℃ 2~3

150~20 ±0.5℃ 3~6

>8 ±1.0℃ 6~10

≥5 >±1.0℃

人工冷源:≤15

≥5 天然冷源:可能的最大值 ≥5 二、两个不同状态空气混合过程的计算

混合气体模型:

空气A :质量流量q A (Kg/s),状态为(h A ,d A )

空气B: 质量流量q B (Kg/s),状态为(h B ,d B )

W Q 12000103.06.33=?-80=?t 33.036466.30=-=-=i i Q G N 33.05.83.93.00=-=-=d d W G N h

kg h g h g s g do d G M N /83.0/6.831)/(3600231.0)

/(231.0)6.83.9(33.0)(==?==-?=-?=

B C A B C A

h h q q h h -=-B C A B C A d d q q d d -=-B C C A B C C A h h h h d d d d --=--B C B C A C A C A B d d h h q BC CA d d h h q --===--混合后空气质量为:q C =q A +q B (kg/s)

状态为C : (h C ,d C )

混合原理

空气的热平衡:q C h C =q A h A +q B h B ;空气水分的湿平衡:q C d C =q A d A +q B d B ; 将 q C =q A +q B 代入以上两式,整理得:

1) q A h C +q B h C =q A h A +q B h B ? q A h C -q A h A =q B h B -q B h C ;

2) q A d C +q B d C =q A d A +q B d B ? q A d C -q A d A =q B d B -q B d C ;

(与流量成反比)

上式分别为CB 、AC 的斜率,可见AC 与BC 具有相同斜率,C 点又为公共点,所以A ,C ,B 在同一直线上。混合点C 将直线AB 分为两段,即AC 与CB 。 混合点C 的位置:混合点C 将线段AB 分成两段,两段长度之比和参与混合的两种空气的质量成反比,混合点靠近质量大的空气状态一端。

【例题3】已知空气量q m =2.0kg/s ,初状态参数t w=-5oC ,?w=80%。现将该空气加热至t N =20oC 。求:空气的终状态参数及空气加热器的加热量。所在地区的大气压力101325Pa 。

解:1)在i-d 图上确定初状态W 及其参数。dw=2.1g/kg 干, h w=0kJ/kg 干

2)在i-d 图上确定终状态N 及其参数。

等湿、焓增过程 ?N =15%, h N =25.5 kJ/kg 干

3)空气加热器的加热量为 Q= q m (h N -h w)=51kW

(加热过程为等湿增焓的过程,是向上的等湿线)

【例题4】某空调房间总的余热量Q =15KW,余湿量

W =1.5g/s ,室空气参数为:t N =23℃,? N =50%,

当地大气压为101325Pa, t w=35oC ,?w=65%。现

采用一次回风系统处理空气,取送风温差 5

℃,机器露点?为90%,新风百分比为15%,求:1)送风状态和送风量,2)新风冷负荷,3)加热段的再热负荷,4)空气处理制冷量。

解:1)计算室热湿比:ε=Q/W =15KW/(1.5/1000)Kg/s =10000

60=?t

解:1)计算室热湿比:ε=Q/W=4.8KW/(0.6/1000)Kg/s =8000

2)画空气处理过程焓湿图如上:先画出室外状态W点和室状态N点(即回风状态),查焓湿图表,查得:hw=99.681KJ/Kg, dw=24.662g/Kg,

h N=58.471KJ/Kg, d N=12.636g/Kg,

3)由于新风处理到室状态的等焓,新风处理出风点L的状态参数如下:

h L=h N=58.471KJ/Kg,ΦL=90%,查得d L=14.477g/Kg

4)由于管温升,新风升温到K点状态温度23℃,且含湿量不变,即

d K=d L=14.477g/Kg,查得:h K=60.053KJ/Kg;

5)室空气经风机盘管冷却出风M点温度为16℃,且相对湿度ΦM=90%,查得M 点状态参数:h M=41.998KJ/Kg, d M=10.21g/Kg;

6)送风状态O点风机盘管出风M与新风K连线与热湿比线的交点,即风机盘管出风与新风的混合空气状态点,查h-d图得:h O=45.05KJ/Kg, d O=11g/Kg;

7)总送风质量:G=Q/(h N-h0)=4.8/(58.47-45.05)(Kg/s) =0.3576751 (Kg/s) 总送风量:V=G/ρ=0.367576/1.2(m3/s)=0.298(m3/s)=1073(m3/h)

8)风机盘管送风量:

V f=V*(h K-h0)/(h K-h M)=1073*(60.053-45.05)/(60.053-41.998)=891.44m3/h G f=G*(h K-h0)/(h K-h M)=0.357675*0.8307(Kg/s)=0.29712(Kg/s)

R22压焓图

实验9 小型制冷机的制冷系数及热力完善度 制冷的方法有许多种,其中液气集态变化应用最广泛。目前我国空调制冷、家用制冷以及冷冻库房制冷主要采用蒸汽式压缩式制冷,它是一种液体汽化制冷。本是验的目的是用简便的方法测定蒸气压缩式制冷机的主要性能指标——制冷系数及热力完善度。 【预习要求】 R的p--h图。 弄清单级蒸气压缩式制冷的原理,了解制冷剂 22 【实验目的】 本是验的目的是用简便的方法测定小型蒸气压缩式制冷机的主要性能指标——制冷系数及热力完善度。【实验原理】 单级蒸气压缩制冷系统是由压缩机、冷凝器、节流阀(或毛细管)、蒸发器组成的一密闭循环系统。如图3-9-1所示。系统内有一定量的的制冷剂工质(如氟里昂)。制冷循环由工质的压缩、冷凝、节流、蒸发四个过程组成。压缩机启动后,不断抽走 图3-9-1 低压饱和蒸汽(工质),将它压缩成高压气体排出,此过程(1→2)需要消耗能量;经压缩机压缩的高温高压气体在冷凝器被常温界质(通常是空气或水)冷却,凝结成高压液体,此过程(2→3),气体工质向环境界质放热。高压液体经节流阀节流成低压低温的湿蒸汽,此过成(3→4),工质的焓不变。低压湿蒸汽在蒸发器中吸收被却空间的热不断气化,从而使被冷却空间中的物质冷却因此,此过程(4→)产生制冷效应。湿蒸气在蒸发器中气化,干度不断增加,出蒸发器后成为干饱和蒸气。然后再被压缩机抽走。如此周而复始循环。 理论制冷循环过城可以请楚地表示在压——焓图上。见图3-9-1,图中点1表示制冷剂工质进入压缩机的状态,它是对应于蒸发温度t0的饱和蒸汽。对应的饱和压力p0,实际循环中制冷剂工制裁进入压缩机的状态p0压力下的过热蒸汽状态。点2表示制冷剂出压缩机的状态,也就是进制冷凝器时的状态。点3表示制冷剂出冷凝器的状态,它是与冷凝温度t k和冷凝压力p k相对应的饱和液体。过程线2—2,和2,—3分别表示制冷剂在冷凝器中的冷却和冷凝过程。点4表示制冷剂出节流阀的状态,也就是进入蒸发器时的状态。过程3—4

R22压焓图解读

压焓图解读 在制冷工程中,最常用的热力图就是制冷剂的压焓图。该图纵坐标是绝对压力的对数值lgp(图中所表示的数值是压力的绝对值),横坐标是比焓值h。 1、临界点K和饱和曲线 临界点K为两根粗实线的交点。在该点,制冷剂的液态和气态差别消失。 K点左边的粗实线Ka为饱和液体线,在Ka线上任意一点的状态,均是相应压力的饱和液体;K点的右边粗实线Kb为饱和蒸气线,在Kb线上任意一点的状态均为饱和蒸气状态,或称干蒸气。 2、三个状态区 Ka左侧——过冷液体区,该区域内的制冷剂温度低于同压力下的饱和温度; Kb右侧——过热蒸气区,该区域内的蒸气温度高于同压力下的饱和温度; Ka和Kb之间——湿蒸气区,即气液共存区。该区内制冷剂处于饱和状态,压力和温度为一一对应关系。 在制冷机中,蒸发与冷凝过程主要在湿蒸气区进行,压缩过程则是在过热蒸气区内进行。 3、六组等参数线 制冷剂的压-焓(LgP-E)图中共有八种线条: 等压线P(LgP),等焓线(Enthalpy),饱和液体线(Saturated Liquid),等熵线(Entropy),等容线(Volume),干饱和蒸汽线(Saturated Vapor),等干度线(Quality),等温线(Temperature)

(1)等压线:图上与横坐标轴相平行的水平细实线均是等压线,同一水平线的压力均相等。 (2)等焓线:图上与横坐标轴垂直的细实线为等焓线,凡处在同一条等焓线上的工质,不论其状态如何焓值均相同。 (3)等温线:图上用点划线表示的为等温线。等温线在不同的区域变化形状不同,在过冷区等温线几乎与横坐标轴垂直;在湿蒸气区却是与横坐标轴平行的水平线;在过热蒸气区为向右下方急剧弯曲的倾斜线。 (4)等熵线:图上自左向右上方弯曲的细实线为等熵线。制冷剂的压缩过程沿等熵线进行,因此过热蒸气区的等熵线用得较多,在lgp-h图上等熵线以饱和蒸气线作为起点。 (5)等容线:图上自左向右稍向上弯曲的虚线为等比容线。与等熵线比较,等比容线要平坦些。制冷机中常用等比容线查取制冷压缩机吸气点的比容值。 (6)等干度线:从临界点K出发,把湿蒸气区各相同的干度点连接而成的线为等干度线。它只存在与湿蒸气区。 上述六个状态参数(p、t、v、x、h、s)中,只要知道其中任意两个状态参数值,就可确定制冷剂的热力状态。在lgp-h图上确定其状态点,可查取该点的其余四个状态参数 压焓图画线 压焓图是以焓值为横坐标,以压力为纵坐标的坐标图。对于制冷工况来说,有四个重要的点,压缩机吸气温度点1,压缩机排气温度点2,冷凝器出口温度3,蒸发器入口温度4。可以这样来确定: a)确定蒸发压力和冷凝压力,按蒸发和冷凝的温度确定也可以。就可以在压焓图上画好两条横线L1和L2。 b) 确定过冷度和过热度。过冷度是冷凝温度与冷凝器出口温度的差值。过热度是压缩机吸气温度与蒸发温度的差值。蒸发压力线L1对应的压缩机吸气温度点就是1,冷凝压力线L2对应的冷凝器的出口温度点就是3。 c) 1点沿等熵线与L2的交点就是2。 d) 3点沿等焓线与L1的交点就是4。 以上指的是理想循环。

新风系统设计方案和新风量计算方法详解

新风系统设计方案和新风量计算方法详解

4 风管设置情况一般情况下如办公室、住宅 等只设新风管,管路较简 单,餐厅、会议室等新风量 较大的场合需设排风管 设新风管、排风管,管路较 复杂;要求不高时,也可采 用走廊回风 一般情况下如办公室、住 宅等只设新风管,管路较 简单,餐厅、会议室等新 风量较大的场合需设排风 5 使用寿命零部件及整机进行了全面的 检测,寿命长达20年 热交换元件是以多孔纤维性 材料加工的纸作为基材制成 的,寿命较短 寿命较长 6 造价及运行费用需设置室外机,新风系统的 造价较高,但空调系统(不 包括新风系统)的造价较 低,运行费用稍高 新风系统的造价比①低,但 空调系统的造价比①高,运 行费用低 新风系统的造价最低,但 空调系统的造价最高,运 行费用稍低 7 使用范围制冷: 20℃~43℃,低于2 0℃自动转换为通风; 制热: -5℃~15℃,高于 15 ℃自动转换为通风;低 于-5℃,系统停机 在空气焓湿图上,室内、室 外两个状态点的连线与饱和 曲线相交时,冷凝水会形成 在热交换元件上,此时,不 宜使用,因此,(1)当室 外温度低于-10℃~-15℃ 时,有可能会出现凝水、结 霜,设计时必须仔细校核, 必要时应在新风进风管上设 空气预热器;(2)当室内 空气的相对湿度较大(如浴 室)且室外温度较低时,有 可能会出现凝水,此时,不 宜使用 当室内机不使用时,直接 送新风易造成室内温度过 高或过低,特别在冬季, 由于室内温度过低,室内 机不易开启,室内达到空 调设定温度的时间加长, 影响空调效果 另外,显热交换器有时也会采用,与全热交换器相比,其优点为:热交换元件 是以交叉叠放的铝箔波纹板作为基材制成的,寿命长;其缺点为:只能回收显热,不能回收潜热,焓效率较低。 (3)通过以上对比,可以看出,“风机箱直接送风”这种新风方案,处理不当会造成室内舒适度下降,实际工程中应用较少;对于新风处理机和全热交换器这两种方案,应首选新风处理机,因为该方案将室外新风处理到室内设计状态,处理效果最好,最规范。 1.3 除以上三种外,其它新风方案有: (1)选用风冷热泵水机和水盘管的新风机组;

焓湿图(中英文)开放版

CLM believes that it is incumbent on manufacturers to serve the industry by regularly disseminating information gathered through laboratory research, testing programs, and field experience. The CLM Air Conditioning Clinic series is one means of knowledge sharing. It is intended to acquaint a technical audience with various fundamental aspects of heating, ventilating, and air conditioning (HVAC). We have taken special care to make the clinic as uncommercial and straightforward as possible. Illustrations of CLM products only appear in cases where they help convey the message contained in the accompanying text. This particular clinic introduces the reader to psychrometry, the science concerned with the physical laws that govern air – water mixtures. CLM认为,制造商有责任通过定期传播通过实验室研究,测试程序和现场经验收集的信息来为行业服务。 CLM空调章节系列是知识共享的一种方式。旨在使技术人员熟悉加热,通风和空调(HVAC)的各个基本方面。我们已采取特殊措施,使章节尽可能地减少商业性和直接性。 CLM产品的插图仅在它们有助于传达随附文本中包含的信息的情况下出现。 这家特殊的章节向读者介绍了湿度法,这是一门管理空气-水混合物的物理定律的科学。

制冷循环压焓图分析和制冷剂流程图

第二章制冷循环压焓图分析和制冷剂流程图 Copy Right By: Thomas T.S. Wan ( ) Sept. 3, 2009 All Rights Reserved 工业冷冻系统设计从制冷循环压焓(P-H)图分析和制冷剂流程图开始: (1)制冷循环P-H图分析 (P-H Diagram Refrigeration Cycle Analysis)。 使用PH图计算制冷系统的热力学物性可以分析制冷循环的可行性。通过PH图分析,可以很清楚的确定系统设计点的制冷剂流量和运行工况。 (2)制冷剂流程图 (Refrigerant Flow Diagram) 制冷剂流程图给出了系统所用设备,设备间管道走向和尺寸,保温要求;还确定了压降、吸气过热度等等。制冷剂流程图可能非常简易,如果有必要也可以推广到工艺仪表流程图中(P&I D)。 制冷剂流程图是要与P-H图一起阅读。从制冷剂流程图和PH图中可以获悉完整的系统信息。P-H (Pressure-Enthalpy)图分析: R22典型PH(压焓)图如图2-1所示。利用P-H 图可以表达理论制冷循环,如图2-2所示。图2-3为制冷循环图2- 2简化版,但是只体现了与理论制冷循环相关的数据,省略了纵坐标(压力)和横坐标(比焓)。与循环相关的压力和比焓值如PH图所示。 蒸发器- A-B-C对应蒸发温度,B点与C点比焓差为单位质量制冷量。 压缩机- C-D为等熵压缩过程。压缩过程比焓差为H D-H C。压缩过程(绝热过程)也可以用英尺表示为(H D- H C)×778。对于实际压缩,不再遵循绝热过程,而是多变过程,如图2-3中C-D’所示。 冷凝- 冷凝(放热)过程为D-E(实际过程为D’-E)。冷凝器总放热量等于蒸发器吸热量与系统输入功率之和。

02-压焓图解读

压焓图 该图纵坐标是绝对压力的对数值lnp(图中所表示的数值是压力的绝对值),横坐标是比焓值h。 1、压焓图曲线的含义 压焓图曲线的含义可以用一点(临界点)、二线(饱和液体线、饱和蒸汽线)、三区(液相区、两相区、气相区)、五态(过冷液状态、饱和液状态、过热蒸汽状态、饱和蒸汽状态、湿蒸汽状态)和八线(等压线、等焓线、饱和液线、饱和蒸汽线、等干度线、等熵线、等比体积线、等温线)来概括。 2、临界点K和饱和曲线 临界点K为两根粗实线的交点。在该点,制冷剂的液态和气态差别消失。 K点左边的粗实线Ka为饱和液体线,在Ka线上任意一点的状态,均是相应压力的饱和液体;K点的右边粗实线Kb为饱和蒸气线,在Kb线上任意一点的状态均为饱和蒸气状态,或称干蒸气。 3、三个状态区 Ka左侧——过冷液体区,该区域内的制冷剂温度低于同压力下的饱和温度; Kb右侧——过热蒸气区,该区域内的蒸气温度高于同压力下的饱和温度; Ka和Kb之间——湿蒸气区,即气液共存区。该区内制冷剂处于饱和状态,压力和温度为一一对应关系。 在制冷机中,蒸发与冷凝过程主要在湿蒸气区进行,压缩过程则是在过热蒸气区内进行。

4、六组等参数线 制冷剂的压-焓(LgP-E)图中共有八种线条: 等压线P(LgP) 等焓线(Enthalpy) 饱和液体线(Saturated Liquid) 等熵线(Entropy) 等容线(Volume)干饱和蒸汽线(Saturated Vapor) 等干度线(Quality) 等温线(Temperature) (1)等压线:图上与横坐标轴相平行的水平细实线均是等压线,同一水平线的压力均相等。 (2)等焓线:图上与横坐标轴垂直的细实线为等焓线,凡处在同一条等焓线上的工质,不论其状态如何焓值均相同。 (3)等温线:图上用点划线表示的为等温线。等温线在不同的区域变化形状不同,在过冷区等温线几乎与横坐标轴垂直;在湿蒸气区却是与横坐标轴平行的水平线;在过热蒸气区为向右下方急剧弯曲的倾斜线。 (4)等熵线:图上自左向右上方弯曲的细实线为等熵线。制冷剂的压缩过程沿等熵线进行,因此过热蒸气区的等熵线用得较多,在lgp-h图上等熵线以饱和蒸气线作为起点。 (5)等容线:图上自左向右稍向上弯曲的虚线为等比容线。与等熵线比较,等比容线要平坦些。制冷机中常用等比容线查取制冷压缩机吸气点的比容值。 (6)等干度线:从临界点K出发,把湿蒸气区各相同的干度点连接而成的线为等干度线。它只存在与湿蒸气区。 上述六个状态参数(p、t、v、x、h、s)中,只要知道其中任意两个状态参数值,就可确定制冷剂的热力状态。在lgp-h图上确定其状态点,可查取该点的其余四个状态参数

焓湿图例题解析说课讲解

中乾汇泰企业培训例题习题(二) 【例题1】某空调房间冷负荷Q =3.6KW,湿负荷W =0.3g/s ,室内空气状态参数为:t N =22±1℃,? N =55±5%,当地大气压为101325Pa, 房间体积150 m 3 。 求:送风状态、送风量和除湿量。 解:(1)求热湿比ε= = (2)在焓湿图上确定室内空气状态点N ,通过该点画出ε=12600的过程线。 依据±1℃温度偏差查表1取送风温差为 ℃,则送风温度22-8=14℃。从而得出:h 0=36KJ/kg h N =46 KJ/kg d O =8.6g/kg d N =9.3g/kg (3)计算送风量 按消除余热: kg/s 按消除余湿: kg/s 则L =0.33/1.2×3600=990m 3 /h 换气次数n =990/150(次/h) =6.6次/h ,符合要求。 除湿量: 舒适性空调送风温差与换气次数 表1 室内允许波动范围 送风温差(℃) 换气次数(次/h ) ±0.1~0.2℃ 2~3 150~20 ±0.5℃ 3~6 >8 ±1.0℃ 6~10 ≥5 >±1.0℃ 人工冷源:≤15 ≥5 天然冷源:可能的最大值 ≥5 二、两个不同状态空气混合过程的计算 混合气体模型: 空气A :质量流量q A (Kg/s),状态为(h A ,d A ) 空气B: 质量流量q B (Kg/s),状态为(h B ,d B ) W Q 1200010 3.06 .33 =?-80=?t 33.036 466 .30=-=-=i i Q G N 33 .05 .83.93 .00=-=-=d d W G N h kg h g h g s g do d G M N /83.0/6.831)/(3600231.0)/(231.0)6.83.9(33.0)(==?==-?=-?=

如何看压焓图

教你如何看压焓图 在制冷工程中,最常用的热力图就是制冷剂的压焓图。该图纵坐标是绝对压力的对数值lgp(图中所表示的数值是压力的绝对值),横坐标是比焓值h。 1、临界点K和饱和曲线 临界点K为两根粗实线的交点。在该点,制冷剂的液态和气态差别消失。 K点左边的粗实线Ka为饱和液体线,在Ka线上任意一点的状态,均是相应压力的饱和液体; K点的右边粗实线Kb为饱和蒸气线,在Kb线上任意一点的状态均为饱和蒸气状态,或称干蒸气。 2、三个状态区 Ka左侧——过冷液体区,该区域内的制冷剂温度低于同压力下的饱和温度; Kb右侧——过热蒸气区,该区域内的蒸气温度高于同压力下的饱和温度; Ka和Kb之间——湿蒸气区,即气液共存区。该区内制冷剂处于饱和状态,压力和温度为一一对应关系。 在制冷机中,蒸发与冷凝过程主要在湿蒸气区进行,压缩过程则是在过热蒸气区内进行。 3、六组等参数线 (1)等压线:图上与横座标轴相平行的水平细实线均是等压线,同一水平线的压力均相等。 (2)等焓线:图上与横坐标轴垂直的细实线为等焓线,凡处在同一条等焓线上的工质,不论其状态如何焓值均相同。 (3)等温线:图上用点划线表示的为等温线。等温线在不同的区域变化形状不同,在过冷区等温线几乎与横坐标轴垂直;在湿蒸气区却是与横坐标轴平行的水平线;在过热蒸气区为向右下方急剧弯曲的倾斜线。 (4)等熵线:图上自左向右上方弯曲的细实线为等熵线。制冷剂的压缩过程沿等熵线进行,因此过热蒸气区的等熵线用得较多,在lgp-h图上等熵线以饱和蒸气线作为起点。 (5)等容线:图上自左向右稍向上弯曲的虚线为等比容线。与等熵线比较,等比容线要平坦些。制冷机中常用等比容线查取制冷压缩机吸气点的比容值。(6)等干度线:从临界点K出发,把湿蒸气区各相同的干度点连接而成的线为等干度线。它只存在与湿蒸气区。 上述六个状态参数(p、t、v、x、h、s)中,只要知道其中任意两个状态参数值,就可确定制冷剂的热力状态。在lgp-h图上确定其状态点,可查取该点的其余四个状态参数。 找工作,到如东人才网 压焓图lgh-h(又称:莫里尔图Molliev Diagram) 液体气化制冷是一种广泛应用的制冷方法,它是利用液体气化时的吸热效应而

焓湿图例题解析

,符合要求。 换气次数(次/h ) 150~20 >8 ≥5 h kg s g /) /(231.0

A B C A h h q q h h -=-A B C A d d q q d d -=-B C C A h h h h d d d d --=--A C A C A B d d h h q BC CA d d h h q --===--混合后空气质量为:q C =q A +q B (kg/s) 状态为C : (h C ,d C ) 混合原理 空气的热平衡:q C h C =q A h A +q B h B ;空气水分的湿平衡:q C d C =q A d A +q B d B ; 将 q C =q A +q B 代入以上两式,整理得: 1) q A h C +q B h C =q A h A +q B h B ? q A h C -q A h A =q B h B -q B h C ; 2) q A d C +q B d C =q A d A +q B d B ? q A d C -q A d A =q B d B -q B d C ; (与流量成反比) 上式分别为CB 、AC 的斜率,可见AC 与BC 具有相同斜率, C 点又为公共点,所以A ,C ,B 在同一直线上。混合点C 将直线AB 分为两段,即AC 与CB 。 混合点C 的位置:混合点C 将线段AB 分成两段,两段长度之比和参与混合的两

℃,机器露点?为90%,新风百)新风冷负荷,3)加热段的再热负

解:1)计算室内热湿比:ε=Q/W=4.8KW/(0.6/1000)Kg/s =8000 2)画空气处理过程焓湿图如上:先画出室外状态W点和室内状态N点(即回风状态),查焓湿图表,查得:hw=99.681KJ/Kg, dw=24.662g/Kg, h N=58.471KJ/Kg, d N=12.636g/Kg, 3)由于新风处理到室内状态的等焓,新风处理出风点L的状态参数如下: h L=h N=58.471KJ/Kg,ΦL=90%,查得d L=14.477g/Kg 4)由于管温升,新风升温到K点状态温度23℃,且含湿量不变,即 d K=d L=14.477g/Kg,查得:h K=60.053KJ/Kg; 5)室内空气经风机盘管冷却出风M点温度为16℃,且相对湿度ΦM=90%,查得M点状态参数:h M=41.998KJ/Kg, d M=10.21g/Kg; 6)送风状态O点风机盘管出风M与新风K连线与热湿比线的交点,即风机盘管出风与新风的混合空气状态点,查h-d图得:h O=45.05KJ/Kg, d O=11g/Kg;7)总送风质量:G=Q/(h N-h0)=4.8/(58.47-45.05)(Kg/s) =0.3576751 (Kg/s) 总送风量:V=G/ρ=0.367576/1.2(m3/s)=0.298(m3/s)=1073(m3/h) 8)风机盘管送风量: V f=V*(h K-h0)/(h K-h M)=1073*(60.053-45.05)/(60.053-41.998)=891.44m3/h G f=G*(h K-h0)/(h K-h M)=0.357675*0.8307(Kg/s)=0.29712(Kg/s) 9)风机盘管制冷量:Q f=G f*(h N-h M)=0.29712*(58.47-41.998)(KW)=4.8936KW

压焓图解读原创

压焓图解读原创 压焓图(p,h) 一、压焓图的用途 相变制冷是利用制冷剂的状态变化实现的,制冷剂在不同的状态时具有不同的特性,为方便科学研究以及工程计算,将工质的状态参数绘制在一张曲线图上,p,h图是比较常用的一种。 二、压焓图介绍 名词解释: 焓的定义:把制冷剂的内能与制冷剂流动过程中所传递能量之和定义为制冷剂的 焓。表达式:h,u,pv h:表示1kg制冷剂的焓(比焓); u:表示1kg制冷剂的内能; pv:表示1kg制冷剂流动过程中传递的能量。(p-压力,v-比体积)。

从焓的表达式中可以看出u代表1kg工质的内能,是储存于工质的内部的能量,pv 是1kg工质移动时传递的能量。也就是说,当1kg工质通过一定的界面流入系统时储存在其内部的内能随工质进入系统,同时还把从外部功源获得能量带进系统,因此,系统中因为引进1kg工质所获得的总能量是内能与传递的能量之和。 熵的定义:表示工质温度变化时,热量传递的程度,用S表示,单位kJ/kg?K。 表达式:dQ/dT (dQ-表示热量的变化,dT表示温度的变化)。 目前熵这个参数在空调系统热力计算或参数确定时用的很少。干度x:表示系统中制冷剂蒸汽与液体的变化关系(数值范围0~1)。当干度x=1 时,说明制冷剂均以饱和蒸汽的形式存在,当干度x=0时,说明制冷剂 均以液态形式存在。干度在0与1之间变化,表示制冷剂蒸汽与液体的 变化过程。 等压线:在压焓图上即为水平线。 等焓线:在压焓图上即为垂直线。 等温线:在两相区为水平线,在过冷液体区为略向左上方延伸的上凹曲线,接近 于垂直,在过热蒸汽区等温线是向右下方延伸的下凹曲线。等比容线:在过热蒸汽区为向右上方延伸的下凹曲线。 等比熵线:在过热蒸汽区为向右上方延伸的下凹曲线,斜率大于等比容线。过热蒸汽区:等干度线x=1的右侧区域为过热蒸汽区(不存在液态制冷剂)。过冷液体区:等干度线x=0左侧区域为过冷液体区(不存在液态制冷剂)。两相区:在等干度线x=0与x=1之间的区域为两相区,在两相区内制冷剂液体与 制冷剂蒸汽共存。x值越大越接近饱和蒸汽,x越小越接近饱和液体。三、P,h图的应用:

蒸发式冷凝器原理讲解

先向大家好解释几个概念: 一、显热与潜热 物体在加热或冷却过程中,温度升高或降低而不改变其原有相态所需吸收或放出的热量,称为“显热”。它能使人们有明显的冷热变化感觉,通常可用温度计测量出来。如将水从20℃升高到80℃所吸收到的热量,就叫显热。 在物体吸收或放出热量过程中,其相态发生了变化(如气体变成液体,功液体变成气体),但温度不发生变化,这种吸收或放出的热量叫“潜热”。“潜热”不能用温度计测量出来,人体也无法感受到,但可通过实验计算出来。 如水从100℃液态变为100℃气态这时所吸收的热量就是潜热。 二、干球温度与湿球温度 干球温度是温度计在普通空气中所测出的温度,即我们一般天气预报里常说的气温。 湿球温度是指同等焓值空气状态下,空气中水蒸汽达到饱和时的空气温度,在空气焓湿图上是由空气状态点沿等焓线下降至100%相对湿度线上,对应点的干球温度。 蒸发式冷凝器最低可冷却到湿球温度以上8℃,在宝鸡地区湿球温度是24.8℃,就是说可冷凝到33℃。 干球温度对水冷器的换热效果影响不大,同样在宝鸡地区普通水冷只能冷凝到时37~40℃。 总之,冷凝的效果跟冷却水的进口温度、需冷却介质的进口温度有关,但还有热量、介质、压力等等因素有关。如果换热面积无限大,循环水量无限大那就可以降到更低的温度,可以降到冷却水的进口温度。也就是说在宝鸡地区和普通水冷相比,同样的条件下,和普通水冷相比蒸发冷可以冷凝到32度,而水冷只能到37~40度。最经济的设备投资下我们的冷凝温度要比水冷器低,所以说蒸发冷凝要比水冷节能。 蒸发式冷凝器工作原理 蒸发冷凝器以水和空气作为冷却剂,它主要利用部分水的蒸发带走工艺介质

新加坡留学

新加坡留学 近年来,留学新加坡的价值逐渐被人们发掘,新加坡这个美丽的花园国家吸引着越来越多的中国学子前往求学。新加坡严谨的教育制度,完善的教育体系,卓越的公立教育系统和高素质的私立教育机构以及教育的环球化可让中国学生有多种选择。 新加坡地理位置优越,教育基础设施完善,每年政府投资GDP的4%于教育事业。其优越的教育体系,独特的中英文双语环境和安定的社会环境,令其成为近年来莘莘学子出国留学的首选之处。一项调查显示,1/3的中国留学生以新加坡留学作为跳板,以便将来有机会到第三国深造或发展。该调查近期向1312名在新加坡各个私立学校念书的中国留学生发放了问卷调查。其中28%的中国留学生以"跳板"作为选择到新加坡留学的主要原因,而22%的学生则以费用低为理由。其他原因包括父母的安排、华人环境及教育水平高等。 一、新加坡留学的十大优势 1.新加坡可以完成世界著名大学课程,及获得该大学文凭。 2.新加坡是全世界治安最稳定的国家,犯罪率是世界最低的。 3.新加坡政府大力支持教育业其中制度延袭英国教育制度,其教育水平和文凭都被教育部认可,其中的学校都是和美国、英国、澳洲、德国、新西兰等国家著名大学联办。 4.在新加坡留学,学生可以采取双语(汉语和英语)接受教育(学校以教育为本,学生接受英文教育.但可以用华语学术交流)。 5.新加坡的费用(生活费.学费)跟英国、澳洲、美国相比便宜很多。学生可以在投资最小的情况下获得最大的收获。留学费用和生活费用低。一年总费用只需要8万人民币左右。 6.到新加坡留学不需要雅思和托福成绩。 7.跳板欧美最佳途径:在新加坡就读学校的学生可以转到欧美大学,签证比较简单。 8.签证成功率高,一般2-6周即可拿到签证。 9.新加坡失业率在全世界最低,就业机会高,发展空间广阔,新加坡有600多家跨国公司为毕业生提供了大量的工作机会。 10.新加坡政府放宽移民政策在2007年到2012年间增加20万绿卡和4万公民。(持新加坡护照可免签世界186个国家) 二、留学项目

新风系统设计方案和新风量计算方法详解

新风系统设计方案和新风量计算方法详解 一新风方案的选择 1.1 空调系统的新风量,应符合下列规定: (1)不小于人员所需新风量,以及补偿排风和保持室内正压所需风量两项中的较大值; (2)人员所需新风量应满足下表的要求,并根据人员的活动和工作性质以及在室内的停留时间等因素确定。 (3)工业建筑应保证每人不小于 30m3/h的新风量。

1.2 当空调系统不设新风系统时,室外风仍可通过门、窗的缝隙渗透到室内,因此负荷计算时,必须计算通过围护结构、门、窗缝隙渗入室内的新风负荷,渗入的空气量可按不小于以下换气次数估算:

适用于一面或二面有门、窗暴露的房间,当房间有三面或四面门、窗暴露面时,应乘以系 数1.15。 1.3 与多联式中央空调相配套,常用的新风方案有三种:①新风处理机;②全热交换器; ③风机箱直接送风(新风不处理)。 (1)板翅式全热交换器 板翅式全热交换器的热交换单元是采用不燃性矿物纤维作为基材,经专门加工制成吸湿、 透湿性能良好的纸状波形折摺态,能够实现湿度(水分子)的交换,这样,温度和湿度不 同的两股气流相间通过各自流道时,一方面通过传导进行显热的交换,另一方面,也在水 蒸气分压力差的作用下,透过薄的纸状层进行质-湿的交换。 (2)三种方案的对比如下:

另外,显热交换器有时也会采用,与全热交换器相比,其优点为:热交换元件是以交叉叠放的铝箔波纹板作为基材制成的,寿命长;其缺点为:只能回收显热,不能回收潜热,焓效率较低。 (3)通过以上对比,可以看出,“风机箱直接送风”这种新风方案,处理不当会造成室内舒适度下降,实际工程中应用较少;对于新风处理机和全热交换器这两种方案,应首选新风处理机,因为该方案将室外新风处理到室内设计状态,处理效果最好,最规范。 1.3 除以上三种外,其它新风方案有: (1)选用风冷热泵水机和水盘管的新风机组; (2)高层的塔楼选用多联机系统,而裙房选用传统的水机系统时,可以考虑用水机系统带上塔楼的新风系统; (3)选用其他品牌的直接蒸发的新风机组。 (4)机械排风、自然进风的“会呼吸”的新风系统。 1.4 普通的风管式室内机与新风处理机相比,配件的选用、内部构造、控制方式以及工作范围等有很大的不同,风管机处理的是室内工况(回风工况),不能处理全新风工况,因此不能当作新风机来用。 普通风管机可以处理新风与回风的混合风,新风量不应超过风管机处理风量的30%。 二新风系统的设计 2. 1 首先要注意各种新风系统的使用范围,例如:

如何理解焓湿图

暖通工程师 如何理解焓湿图? 说说你对焓湿图的理解,简单的一个图包含很多东西。能不能介绍一下,让一个人可以对这个东西有直观的了解。比如你说冰,大部分人立刻会知道,凉。能不能达到让人有这样的直观概念??定义 焓湿图:表示空气各参数之间关系的线图。 焓湿图就像一本字典,你可以根据拼音(某一参数)查字(空气其他参数)。 ?空气的部分参数 干球温度(℃):简称温度,就是平常用温度计量的温度。 含湿量(g/kg):湿空气中与一千克干空气同时并存的水蒸气的质量。 通常的空气中都有水蒸气,所以是湿的。湿空气可以分为干空气和水蒸气。 相对湿度:相同温度下,空气中水汽压与饱和水汽压的百分比。 一立方干空气可以“喝”10g水,现在只“喝”了5g,那相对湿度就是50%。 焓(kj/kg):一千克的物质含多少千焦能量。 可简单理解为广义的内能,就是空气含多少能量。 热湿比:焓的变化(△h)和含湿量的变化(△d)的比值。 热量和含湿量两者的变化值的比值。 ?等值线

等温线:线上的温度相同。它的平行线也都是等温线。 同样的温度,空气的含湿量越大,相对湿度和焓值越大。(非水平) 等焓线:线上的焓值相同。它的平行线也都是等焓线。 同样的焓值,空气温度上升,含湿量在下降。 等湿度线:线上的湿度相同。它的平行线也都是等湿度线。 同样的含湿量,空气温度越低,焓值(能量)越低。 等相对湿度线:线上的相对湿度相同。它的平行线也都是等相对湿度线。同样的相对湿度,空气温度越高,焓值(能量)越高。

?【小应用】 露点温度:空气中的水蒸气变为露珠时候的温度。图2中A点的温度35℃,相对湿度100%、焓值130kj/kg,含湿量36.6g/kg。 这时如果温度下降到30℃,含湿量和气压不变。A点就到了B点(虚拟点)的状态。这时的相对湿度大于100%,多余的水就会从气态凝结成水珠,直到相对湿度小于或等于100%。 到这里你应该能够看懂焓湿图了,下面来再试牛刀。

焓湿图及相关知识分享

焓湿图 1、理想气体混合物 2、湿空气 3、湿空气性质 4、焓湿图 5、湿空气过程 1、理想气体混合物 (1)道尔顿分压定律:在温度、总体积保持不变,混合气体的总压力p等于各组成气体分压之和。 (2)亚美格分体积定律:在温度、总压力保持不变,理想气体的分体积之和等于混合气体的总体积。(3)适用条件:理想气体状态(各组分气体的分子不具有体积,分子间不存在作用力,处于混合状态的个组分气体对容器壁面的撞击效果如同单独存在于容器时一样)。 2、湿空气 (1)定义:指干空气和水蒸气的混合空气。 (2)可作为理想气体混合物。 3、湿空气性质 (1)露点(温度):在保持水蒸气量不变的情况下(水蒸气分压力不变),未饱和湿空气冷却达到饱和状态时(即将结出露珠时)的温度,这个临界温度称之为露点温度td。可用湿度计或露点仪测量。t d=f(P v)。 机器露点指空气经喷水室或表冷器处理后接近饱和状态(100%相对湿度线)时的终状态点。(2)相对湿度φ:湿空气中,水蒸气的分压力p v,与同一温度下同样总压力的饱和湿空气中水蒸气的分压力p s(t)的比值。 (3)含湿量d:1kg干空气所带有的水蒸气质量。 绝对湿度ρv:单位体积的混合气体中,水蒸气的质量。 (4)焓值h:指含有1kg干空气的湿空气的焓值,等于1kg干空气的焓值与dkg水蒸气的焓值之和。基准:0℃下的干空气和0℃下的水蒸气的焓。 干空气比焓ha=1.005t;水蒸气的比焓hv=2051+1.86t

H=1.005t+d(2501+1.86t)KJ/kg干空气 (5)湿球温度tw:就是用湿球温度计测出的空气温度。也就是说将温度计的水银球用浸水的纱布包裹起来,所测得的稳定的空气温度。 从理论来说,湿球温度就是室内放置一盆水,水吸收空气中的热量后部分水蒸发成水蒸汽释放到空气中,增加空气的潜热,而空气失去了热量,温度降低失去了空气的显热。当这一热湿交换达到平衡以后,空气所得的潜热(水蒸汽)和所失的显热(温度降低)达到平衡后,其空气的总热量(焓值)不变时,此时的水面空气的温度就是空气的湿球温度(即增加的潜热等于失去的显热时)。湿球温度也就是相对湿度100%时的饱和温度。 (6)干球温度t::就是用干球温度计测出的空气温度。 (7)饱和水蒸气分压力pv (8)热湿比ε线:空调房间内的全热负荷与全湿负荷之比。 4、焓湿图 (1)坐标轴:纵坐标时湿空气的比焓h,单位kj/kg(干空气);横坐标时含湿量d,单位kg(水蒸气)/kg(干空气)。两者夹角135°。 (2)5条等值线: 5、湿空气过程 (1)加热/冷却过程:压力与含湿量均保持不变。Q=Δh=h2-h1;等湿加热/冷却。 (2)绝热加湿过程: ①喷淋加湿:绝热条件下,喷淋加热时,水蒸发需要热量,汽化热量由空气提供,故加湿后

制冷课后习题解读

空气调节用制冷技术习题 绪论 1. 什么是制冷? 2. 人工制冷的方法都有哪些?空气调节领域最常用的两种制冷方法是什么? 3. 什么液体汽化制冷? 第一章 蒸气压缩制冷的热力学原理 1. 蒸气压缩制冷循环系统主要由哪些部件组成,各有何作用? 2. 在图示有液体过冷,又有回汽过热的制冷循环中,写出各热力设备名称、其 中发生的热力过程及制冷剂在各热力设备前后所处的状态(温度、压力、物态) 压缩机 1 2 3 4 ( ) ( ) ( ) 绝热压缩 高温高压过热气体 3. 制冷剂在蒸气压缩制冷循环中,热力状态是如何变化的? 4. 试画出单级蒸气压缩式制冷理论循环的lg p -h 图,并说明图中各过程线的含 义。 5. 已知R22的压力为0.1MPa ,温度为10℃。求该状态下R22的比焓、比熵和 比体积。 6. 已知工质R134a 参数值如下表所示,请查找lg p -h 图填入未知项。 7. 什么单位容积制冷能力、跨临界循环 8. 有一个单级蒸气压缩式制冷系统,高温热源温度为30℃,低温热源温度为 -15℃,分别采用R22和R717为制冷剂,试求其工作时理论循环的性能指标。 9. 单级蒸气压缩式制冷实际循环与理论循环有何区别?试说明针对这些区别 应如何改善理论循环。 10. 什么是回热循环?它对制冷循环有何影响? 11. 某空调用制冷系统,制冷剂为氨,所需制冷量为48kW ,空调用冷水温度

tc=10℃,冷却水温度tw=32℃,试进行制冷剂的热力计算。计算中取蒸发器端部传热温差δt0=5 ℃,冷凝器端部传热温差δtk=8 ℃,节流前制冷剂液体过冷度δtsc=5 ℃,吸气管路有害过热度δtsh=5 ℃,压缩机容积效率ηv =0.8,指示效率ηi=0.8。 12.在同一T-S图上绘出理想循环(逆卡诺循环)与理论循环的循环过程,比较两 种循环,指出理论循环有哪些损失(在图中用阴影面积表示)。针对这些损失,说明如何改善蒸汽压缩制冷的理论循环。 13.活塞式压缩机,制冷量为1120kw,各状态点参数如下:h1=1780kJ/kg,ν 1=0.25m3/kg,h2=1950kJ/kg,h4=650kJ/kg,计算q0、qk、qv、wc、Mr、φk、Pth、εth。 14.液体过冷对循环各性能参数有何影响? 15.如何确定双级压缩制冷循环的最佳中间压力? 16.什么叫中间完全冷却、中间不完全冷却? 17.什么是复叠式制冷循环?为什么要采用复叠式制冷循环? 18.制冷剂在通过节流元件时压力降低,温度也大幅下降,可以认为节流过程近似为绝热过程,那么制冷剂降温时的热量传给了谁? 19.压缩机吸气管道中的热交换和压力损失对制冷循环有何影响? 20.请说明制冷剂的单位质量制冷能力q0和单位容积制冷能力q v的关系;在相同的工作条件下,不同制冷剂的q0与q v是否相同,为什么? 21.热泵循环的供热系数μ与制冷循环的制冷系数ε有何区别,二者之间有无关系? 22.某R22制冷循环,其蒸发温度为0℃,冷凝温度为35℃,膨胀阀前的液体温度为30℃,压缩机吸入干饱和蒸汽,试计算该理论循环的制冷系数εth及制冷效率ηR。 23.将一级节流、中间不完全冷却的双级压缩制冷循环表示在lgp-h和T-s图上,并推导该循环的理论制冷系数εth的计算公式。 24.在图1-27所示的R22一级节流、中间不完全冷却双级压缩式制冷循环中,其冷凝温度为35℃,蒸发温度为-38℃,膨胀阀2前的液体温度为30℃,膨胀阀1前的液体温度为0℃,低压级压缩机的吸气过热度为5℃。 (1)请画出如图所示制冷系统的压焓图。 (2)请问中间压力取多少较为适宜? (3)欲获得10Rt(冷吨,1Rt≈3.86kW)的制冷量,请问:高、低压级压缩机的实际输气量各为多少m3/s?

空气处理技术知识总结

焓湿图知识从头再理一遍 题记 从事空调主机研发好几年了,考虑到职业的发展以及自己对于职业的规划,毅然决定放弃之前的研发经验,投身于建设工程,离开之际觉得有必要对自己的工作进行一个切身的总结,善始善终,希望对新进入暖通行业的朋友有所帮助。 一空气调节 空气调节的主要任务就是对我们周围的环境空气进行冷却、加热、增湿、降湿与除尘。空气中含有78%的氮气、21%的氧气和1%的其它气体,其中水以水蒸气的形式悬浮于空气中,称为湿气。其中氮气、氧气及除了水蒸气以外的其它气体均为过热气体,统称之为干空气。湿空气是由干空气和水蒸汽组成的。 舒适是人体对环境感到愉快的一种完美的平衡。人体的舒适涉及到四个方面:⑴温度; ⑵湿度;⑶空气的流动;⑷空气的洁净度。人体正常温度为37摄氏度,人体要感觉到舒适,环境温度就必须低于人体温度,人体因为摄入食物而处于不断的以适当流量向周围环境空气排热。 二专业术语 1.熵 化学及热力学中所指的熵,是一种测量在动力学方面不能做功的能量总数,也就是当总体的熵增加,其做功能力也下降,熵的量度正是能量退化的指标。熵亦被用于计算一个系统中的失序现象,也就是计算该系统混乱的程度。熵是一个描述系统状态的函数,但是经常用熵的参考值和变化量进行分析比较,它在控制论、概率论、数论、天体物理、生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量。 2.含湿量 在湿空气中与一千克干空气同时并存的水蒸汽量称为含湿量。用含湿量可以确切而方便地表示空气中的水蒸汽含量。含湿量:1千克干空气同时并存的水蒸气量。千克/千克·干空气 3.湿度 相对湿度:就是空气中水蒸汽分压力和同温度下饱和水蒸汽分压力之比。相对湿度反映了湿空气中水蒸汽含量接近饱和的程度。含湿量和相对湿度都是表示空气湿度的参数,但意义却不相同:含湿量能表示空气中水蒸汽的含量多少,却不表示空气接近饱和的程度,而相对湿度能表示空气接近饱和的程度,却不能表示水蒸汽的含量多少。 绝对湿度:它表示每立方米空气中所含的水蒸气的量,单位是克/立方米 4.露点 露点温度:在保持湿空气含湿量不变的情况下使未饱和湿空气温度降低,降至相对湿度达到100%时所对应的空气干球温度称为该未饱和空气的露点温度。空气的露点温度只取决于空气的含湿量,含湿量不变时,露点温度为定值。

通风与空气调节工程学习重点及习题详解

第一章室内污染物的控制与通风 学习目标: 通过本章的学习,全面了解自然通风和机械通风的组成和工作原理,熟悉建筑物的防火排烟系统在通风、空调系统中的应用,具有一般建筑物通风的设计计算能力。 小结: 本章主要介绍了室内污染物的来源与危害,建筑物通风的分类、概念和工作原理,防火排烟系统的概念和作用原理,并讨论了建筑物通风和防火排烟系统的设计方法。在学习本章时应掌握和理解以下几点: 一、熟悉室内污染物的分类、来源及危害,理解室内空气品质的概念及其评价方法。 二、掌握局部通风的概念、组成、工作原理及特点,熟悉空气幕和外部吸气罩的设计计算方法。 三、掌握全面通风的分类和全面通风换气量的确定方法,理解置换通风的概念和作用原理,熟悉气流组织的类型及设计计算原则,利用空气质量平衡和热平衡方程熟练进行全面通风系统的设计计算。 四、理解热压和风压作用下自然通风的工作原理,熟悉自然通风的设计计算原则和设计计算方法。 五、掌握防火分区、防烟分区、加压送风防烟和疏导排烟等基本概念,理解烟气的危害和防排烟的重要性,熟悉烟气的流动与控制原则以及建筑物的防火排烟系统在通风、空调系统中的应用。 本章重点: 1、室内空气品质的概念及其评价。 2、局部通风、全面通风和自然通风的概念、工作原理及特点。 3、局部通风、全面通风和自然通风的设计计算方法。 4、防火分区、防烟分区的概念,加压送风量和机械排烟量的确定方法。 5、建筑物的防火排烟系统在通风、空调系统中的应用。

计算题详解: 1-6 已知某房间散发的余热量为160kW ,一氧化碳有害气体为32mg/s ,当地通风室外计算温度为31℃。如果要求室内温度不超过35℃,一氧化碳浓度不得大于1mg/m 3,试确定该房间所需要的全面通风量。 【解】 据题意得一氧化碳p1y ≤1 mg/m 3,考虑送风中不含有一氧化碳,故0s1=y 。 (1)消除余热所需的全面通风量: ()()=-?+?=-ρ=313531 273353011160s p p 1.t t C Q L 34.1 m 3/s (2)稀释一氧化碳所需的全面通风量: =?? ? ??-?=-=01326s1p112y y kx L 192m 3/s (取6=k ) 或 =??? ??-?=-= 013210s1p112y y kx L 320m 3/s (取10=k ) (3)该房间所需要的全面通风量取(1)和(2)中的最大值: 192m 3/s (取6=k )或320m 3/s (取10=k )。 1-8 已知某车间内总余热量为Q =80kW ,车间上部天窗排风量zp L =2.5m 3/s ,局部机械排风量jp L =3.0 m 3/s ,自然进风量zj L =1 m 3/s ,车间工作区温度为25℃,外界空气温度w t =-12℃。 求:(1)机械进风量jj G ;(2)机械送风温度jj t ;(3)加热机械进风所需的热量3Q 。 【解】 (1)确定机械进风量jj G : 由jp zp jj zj G G G G +=+得: jj j jp jp zp zp jj ρ-ρ+ρ=j L L L G 16512 2733530125273353032527335352....=-?-+?++? =kg/s (2)确定送风温度 jp jp zp zp zj zj jj jj Ct G Ct G Q Ct G Ct G +=++

相关文档